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Abstract

We present an extension of the recently introduced Generalized Matrix Learning Vector Quantiza-

tion algorithm. In the original scheme, adaptive square matrices of relevance factors parameterize a

discriminative distance measure. We extend the scheme to matrices of limited rank corresponding to

low-dimensional representations of the data. This allows to incorporate prior knowledge of the intrinsic

dimension and to reduce the number of adaptive parameters efficiently.

In particular, for very high dimensional data, the limitation of the rank can reduce computation

time and memory requirements significantly. Furthermore, two- or three-dimensional representations

constitute an efficient visualization method for labeled data sets. The identification of a suitable

projection is not treated as a pre-processing step but as an integral part of the supervised training.

Several real world data sets serve as an illustration and demonstrate the usefulness of the suggested

method.
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1. Introduction

Learning Vector Quantization (LVQ) [28] and

its variants constitute a popular family of su-

pervised, prototype-based classifiers. These algo-
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rithms have been employed successfully in a vari-

ety of scientific and commercial applications, in-

cluding image analysis, bioinformatics, robotics

etc [23, 21, 43, 5, 4, 36, 8, 9, 10]. The method

is easy to implement and its complexity is con-

trolled by the user in a straightforward way. LVQ

can be applied to multi-class problems without
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further complication and the resulting classifiers

can be interpreted intuitively. This is due to the

fact that the classification of data points is based

on distances to typical representatives, i.e. proto-

types, which are identified in feature space.

Numerous modifications of Kohonen’s origi-

nal, heuristic formulation of LVQ have been sug-

gested in the literature, aiming at better con-

vergence properties and generalization behavior.

For instance, Sato and Yamada [33] propose an

algorithm, termed Generalized Learning Vector

Quantization (GLVQ), which updates prototypes

by means of gradient descent with respect to a

heuristically motivated cost function. Recently

also kernelized versions have been proposed [35].

A key issue in all LVQ algorithms, with or without

underlying cost function, is the choice of an appro-

priate similarity or distance measure. Most fre-

quently, standard Euclidean or Minkowski metrics

are employed, which are not necessarily appropri-

ate for the given problem and data set. The fact

that features can have very different meaning and

magnitude in heterogeneous data, is accounted for

in so-called relevance learning schemes [5, 23, 22]

which employ adaptive scaling factors for each di-

mension in feature space.

An important extension of this concept has

been introduced in [36]: in the so-called Gener-

alized Matrix LVQ (GMLVQ) a full matrix of rel-

evances is used, which can account for correlations

between different features. An adaptive self-affine

transformation Ω of feature space identifies the

coordinate system which is most suitable for the

given classification task. The original formulation

of GMLVQ employs symmetric squared matrices.

In the simplest case, one matrix is taken to define

a global distance measure. Extensions to class-

wise or local matrices, attached to individual pro-

totypes, are technically straightforward and allow

for the parameterization of more complex decision

boundaries.

Here we present and discuss an important mod-

ification: the use of rectangular transformation

matrices Ω. The corresponding relevance matrices

are of bounded rank or, in other words, distances

are evaluated in a space with reduced dimension.

The motivation for considering this variation of

GMLVQ is at least two-fold: (a) prior knowledge

about the intrinsic dimension of the data can be

incorporated efficiently and (b) the number of free

parameters in the learning problem may be re-

duced significantly.

Although unrestricted GMLVQ displays a ten-

dency to reduce the rank of the relevance matrices

in the training process, the advantages of restrict-

ing the rank explicitly are obvious. In particular

for nominally very high-dimensional data, e.g. in

image analysis or bioinformatics, unrestricted rel-

evance matrices become intractable. In addition,

optimization results can be poor when the search

is performed in an unnecessarily large parameter

space. Furthermore, the exact control of the rank
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allows for pre-defining the dimension of the in-

trinsic representation and is, for instance, suitable

for the discriminative visualization of labeled data

sets. In contrast with many other schemes that

consider dimension reduction as a pre-processing

step, our method performs the training of proto-

types and the identification of a suitable trans-

formation simultaneously. Hence, both sub-tasks

are guided by the ultimate goal of implementing

the desired classification scheme.

Appropriate projections into two- or three-

dimensional spaces can furthermore be used for ef-

ficient visualization of labeled data. Visualization

enables to use the astonishing cognitive capabili-

ties of humans for visual perception when extract-

ing information from large data volumes. Struc-

tural characteristics can be captured almost in-

stantly by humans, independent of the number of

displayed points. Classical unsupervised dimen-

sion reduction techniques represent data points

contained in a high dimensional data manifold by

low dimensional counterparts in, for instance, two

or three dimensions, while preserving as much in-

formation as possible. Since it is not clear in

advance which parts of the data are relevant to

the user, this problem is inherently ill-posed: de-

pending on the specific data domain and the sit-

uation at hand, different aspects can be in the

focus of attention. Prior knowledge, in form of

label information, can be used to formulate a well-

defined objective in terms of the classification per-

formance.

There exist a few classical dimensionality re-

ducing visualization tools which take class la-

bels into account: Classical Fisher linear discrimi-

nant analysis (LDA), the recently introduced local

Fisher discriminant analysis (LFDA) [39], Neigh-

borhood Component Analysis (NCA) [20], as well

as partial least squares regression (PLS) offer su-

pervised linear visualization techniques. Kernel

techniques extend these settings to nonlinear pro-

jections [30, 2]. Adaptive dissimilarity measures

which modify the metric used for projection ac-

cording to the given auxiliary information have

been introduced in [26, 32, 10]. The resulting

metric can be integrated into various techniques

such as SOM, MDS, or a recent information theo-

retic model for data visualization [26, 32, 42]. An

ad hoc metric adaptation is used in [19] to ex-

tend Isomap [40] to class labels. Alternative ap-

proaches change the cost function of dimension-

ality reduction, for instance by using conditional

probabilities, class-wise similarity matrices or in-

troducing a covariance-based coloring matrix for

the side information as proposed in [25, 31, 38].

Before we describe our method more formally

in Sec. 3 we review GMLVQ in the following sec-

tion. In Sec. 4, we apply the novel LiRaM LVQ to

a benchmark problem and study the influence of

the dimension reduction on the classification per-

formance. We also compare the limited rank ver-

sion to the naive approach of taking the first com-
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ponents of the full rank GMLVQ. We show that

reducing the rank after training not only requires

more memory and CPU time, but also yields in-

ferior classification performance compared to Li-

RaM LVQ. In Sec. 5 we present example applica-

tions of our algorithm in the visualization of la-

beled data. We also compare with visualizations

obtained by LFDA and NCA. We conclude by

summarizing our findings and providing an out-

look on perspective investigations.

2. Review of Generalized Matrix LVQ

In this section we briefly review the General-

ized Matrix LVQ algorithm [36]. We will assume

that training is based on n examples of the form

(xi, yi) ∈ IRN × {1, . . . , C}, where N is the di-

mension of feature vectors and C is the number of

classes. Learning Vector Quantization (LVQ) pa-

rameterizes the classification by means of at least

C prototypes, which are chosen as typical rep-

resentatives of the respective classes. They are

characterized by their location in feature space

wi ∈ IRN and the respective class label c(wi) ∈

{1, . . . , C}. Given a distance measure dΛ(w,x)

in IRN parameterized by Λ, the classification is

done according to a ”winner takes all” or ”near-

est prototype” scheme: Any data point x ∈ IRN

is assigned to the class label c(wi) of the clos-

est prototype i with dΛ(wi,x) ≤ dΛ(wj,x) for all

j 6= i.

Frequently, learning corresponds to an iterative

procedure which presents a single example at a

time and which moves prototypes closer to (away

from) data points representing the same (a differ-

ent) class. In [33] a very flexible approach is intro-

duced, in which the training algorithm is guided

by the minimization of a cost function

f =
∑
i

Φ(µ) =
∑
i

Φ

(
dΛJ − dΛK
dΛJ + dΛK

)
, (1)

where the quantities

dΛJ = dΛ(wJ ,xi) with c(wJ) = c(xi) (2)

dΛK = dΛ(wK ,xi) with c(wK) 6= c(xi) (3)

correspond to the distances of the feature vector

xi from the closest correct (wrong) prototype wJ

(wK), respectively. In Eq. (1), Φ is a monotonic

function, e.g. the logistic function or the identity

Φ(x) = x which we will consider throughout the

following.

In GMLVQ the distance measure is specified by

an (N×N) matrix, which can adapt to correla-

tions of different features. It is of the form of a

Mahalanobis distance

dΛ(w,x) = (x−w)>Λ (x−w) (4)

with Λ ∈ IRN×N . The matrix Λ is assumed to

be positive (semi-) definite. Hence, the measure

corresponds to a (squared) Euclidean distance in

an appropriately transformed space and we can

substitute

Λ = Ω>Ω with Ω ∈ IRN×N (5)
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and, hence

dΛ(w,x) = [Ω (x−w)]2 (6)

with an arbitrary matrix Ω. Specific restrictions

may be imposed on Ω without loss of generality.

Note that, for instance, every positive symmetric

Λ has a symmetric root Ω with Λ = Ω2.

The original GMLVQ algorithm corresponds to

a stochastic gradient descent in the cost function,

Eq. (1), with respect to the prototype configura-

tion and an arbitrary matrix Ω ∈ IRN×N . Gra-

dients are evaluated with respect to the contri-

bution of single instances xi which are presented

random sequentially. The algorithm has been in-

troduced and discussed in [36] and will be modi-

fied in the following.

3. Limited Rank Matrix LVQ

In the following we extend the concept of GM-

LVQ to the use of rectangular matrices in the dis-

tance measure and refer to the corresponding al-

gorithm as Limited Rank Matrix Learning Vec-

tor Quantization (LiRaM LVQ). We consider Ω

to define a transformation from the original N -

dimensional feature space to IRM with M ≤ N so

that:

Λ = Ω>Ω with Ω ∈ IRM×N . (7)

This section addresses the use of one global ma-

trix for the dimension reduction and visualization.

Modifications in the sense of extensions towards

local distance measures will be discussed in the

next section.

Note that, in general, the transformation ma-

trix Ω is not uniquely determined. The dis-

tance measure is, for instance, invariant under

rotations in feature space. We can identify a

unique Ω̂ by decomposing Λ = Ω>Ω in a canonical

way: We determine the normalized eigenvectors

v1,v2, . . . ,vM corresponding to the M ordered

non-zero eigenvalues of Λ, λ1 ≥ λ2 ≥ · · · ≥ λM

and define Ω̂ as:

Ω̂ =
([√

λ1v1,
√

λ2v2, . . . ,
√

λMvM

])>
(8)

In addition we choose the sign of vi, such that the

component of vi with largest magnitude is posi-

tive. Note, that the value M limits the rank of

the dissimilarity matrix Λ to a maximum of M .

With the scheme Eq. (8) also a full matrix can

be restricted after training. However, if eigenvec-

tors with eigenvalues bigger than zero are omitted

classification accuracy might get lost. We discuss

this in section 4.

Nominally, the matrix Ω will have more in-

dependent entries than the symmetric Λ when-

ever M > (N + 1)/2. However, we have found

no evidence that this ambiguity complicates the

optimization problem. Therefore we consider

throughout the following, general, unrestricted

matrices Ω with M ·N independent entries.

In order to formulate stochastic gradient de-

scent with respect to the objective function (1)
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we compute the derivatives

∂dΛL
∂wL,r

= −2 ·
N∑
n

M∑
m

ΩmrΩmn(xn − wL,n)

= −2
[
Ω>Ω

]
r
(x−wL) (9)

∂dΛL
∂wL

= −2Ω>Ω(x−wL) (10)

γ+ =
∂µ

∂dΛJ
=

2dΛK
(dΛJ + dΛK)

2
(11)

and

γ− =
∂µ

∂dΛK
=

−2dΛJ
(dΛJ + dΛK)

2
. (12)

Here, L ∈ {J,K} and the index J (K) refers to

the closest correct (wrong) prototype wJ (wK) as

introduced in Eq. (2).

For the closest correct prototypewJ and closest

wrong prototypewK one obtains an update of the

form

wnew
J = wJ + α1 · γ+ · 2Λ(x−wJ) (13)

wnew
K = wK + α1 · γ− · 2Λ(x−wK) (14)

The corresponding matrix update reads

∂dΛL
∂Ωmn

= 2
N∑
i

(xn − wL,n)Ωmi(xi − wL,i)

= 2 [Ω(x−wL)]m · (xn − wL,n) (15)

∂µ

∂Ωmn

=

(
γ+ ∂dΛJ

∂Ωmn

+ γ− ∂dΛK
∂Ωmn

)
Ωnew

mn = Ωmn − α2 ·
∂µ

∂Ωmn

(16)

After each update step, the transformation matrix

Ω is normalized such that∑
i

Λii =
∑
mn

Ω2
mn = 1 (17)

Note that the learning rates α1 and α2 can be cho-

sen independently. In particular, we set α1 � α2

which implies that changes of the metric occur

on a slower time scale than those of the proto-

types. This setting has proven advantageous in

many implementations of matrix relevance learn-

ing [5, 23, 36].

In all practical examples considered in the fol-

lowing, we apply a learning rate schedule of the

form

α1(t) =
αstart
1

1 + (t− 1)∆α1

(18)

and

α2(t) =


αstart
2

1+(t−tM )∆α2
for t ≥ tM

0 otherwise

(19)

Here, t corresponds to the current epoch, i.e.

sweep through the data set, and αstart
1,2 denotes

the initial learning rates. Non-zero relevance up-

dates are performed only after the first tM epochs

of prototype training. The computational costs

scale linearly with the number of prototypes l,

the dimension of the data N , the target dimen-

sion M and with the number of training exam-

ples n in each epoch O(lMNn). Initial posi-

tions wi(t = 0) of the prototypes are determined

by randomly selecting 1/3 of the available fea-

ture vectors in class c(wi) and taking the re-

spective mean. Hence, prototypes are initially

close to the class-conditional means in the train-

ing data, but with small deviations due to the

random sampling. Relevance initialization is done
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by generating independent uniform random num-

bers Ωij ∈ [−1, 1] and subsequent normalization

according to Eq. (17).

3.1. LiRaM LVQ with Localized Dissimilarities

For full rank matrices the Localized Gen-

eralized Matrix Learning Vector Quantization

(LGMLVQ) was introduced and discussed in [36].

It is based on the concept of localized matrices

Ωi individually adapted for each prototype or for

each class, flexibly increasing the complexity of

the LVQ system. The concept of LiRaM LVQ

can also be expanded to the use of localized rect-

angular matrices, representing several local linear

projections. The global combination of these local

linear patches by means of charting is discussed

in [6, 11].

In this contribution, we will investigate the use

of localized matrices in combination with a global

linear dimension reduction. This can be achieved

by expanding the definition of the dissimilarity

measure Eq. (4) with the combination of two ma-

trices:

d2ML (wL,x) = (x−wL)
>Ω>Ψ>

LΨLΩ (x−wL).

(20)

Here Ω ∈ IRM×N performs the dimension reduc-

tion with target dimension M , while the ΨL ∈

IRM×M attached to the prototypes wL define a lo-

calized dissimilarity measure in the transformed

space. Consequently the visualizations corre-

spond to nonlinear rather than piecewise linear

decision boundaries in the M -dimensional space.

In the experiments we also used class-wise dissim-

ilarities Ψc with c ∈ {1, . . . , C} attached to the

prototypes wL with label c(wL) = c, which may

be interesting in a setting with more than one pro-

totype per class. In the following we will address

this algorithm as Localized LiRaM LVQ (LLiRaM

LVQ).

The prototype update reads:

∂d2ML
∂wL

= −2Ω>Ψ>
LΨLΩ(x−wL)

> (21)

∂µ

∂wL

= γL
2 · ∂d

2M
L

∂wL

(22)

wnew
L = wL + α1 ·

∂µ

∂wL

(23)

with L ∈ {J,K} and

γJ
2 =

∂µ

∂d2MJ
=

2d2MK
(d2MJ + d2MK )2

, (24)

γK
2 =

∂µ

∂d2MK
=

−2d2MJ
(d2MJ + d2MK )2

. (25)

Furthermore, we obtain

∂d2ML
∂Ω

= 2 ·Ψ>
LΨLΩ(x−wL)(x−wL)

> (26)

∂µ

∂Ω
= γK

2 · ∂d
2M
K

∂Ω
+ γJ

2 · ∂d
2M
J

∂Ω
(27)

Ωnew = Ω− α2 ·
∂µ

∂Ω
. (28)

The localized dissimilarities ΨL are updated ac-

cording to:

∂d2ML
∂ΨL

= 2 ·ΨLΩ(x−wL)(x−wL)
>Ω> (29)

∂µ

∂ΨL

= γL
2 · ∂d

2M
L

∂ΨL

(30)

Ψnew
L = ΨL − α3 ·

∂µ

∂ΨL

. (31)
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The matrix Ω can be used to transform the data

points and prototypes into a lower dimensional

space. In the transformed space the prototypes

and the local matrices ΨL define the nonlinear

decision boundaries. In section 5 we will show

some example visualizations of the LLiRaM LVQ.

4. A Classification Problem

As an illustrative example, we study the perfor-

mance of the LiRaM LVQ algorithm on the im-

age segmentation data set as provided in the UCI

repository [1].

There, 19-dimensional feature vectors have

been constructed from regions of 3 × 3 pixels,

randomly drawn from a set of 7 manually seg-

mented outdoor images. The features encode

various attributes of the example patches, which

have to be assigned to one of the following 7

classes: brickface, sky, foliage, cement, window,

path, and grass. The provided data set consists

of 210 feature vectors for training, with 30 in-

stances per class. The test set comprises 300

instances per class, i.e. 2100 samples in total.

We refer the reader to [1] for the details. In

the data as provided by the UCI repository, fea-

tures 3, 4 and 5 (region-pixel-count, short-line-

density-5 and short-line-density-2) display zero

variance. Hence, we omit these features and con-

sider only the remaining 16 features. After a z-

transformation, each feature displays zero mean

and unit variance in the data set.

We apply in the following the LiRaM LVQ al-

gorithm with global matrix Λ and parameters

αstart
1 = 0.01, ∆α1 = 0.0001, αstart

2 = 0.001,

∆α2 = 0.0001 in the schedule (18), matrix adap-

tation begins in epoch tM = 100. Similar settings

have proven successful in previous applications of

the original GMLVQ algorithm to the data set

[36].

4.1. Performance Dependence on M

We first study the simplest GMLVQ classifiers

with only one prototype per class. For several val-

ues of M , we perform LiRaM LVQ on the given

training set of 210 example data and observe the

evolution of training and test accuracies with the

number of epochs. In order to obtain reliable re-

sults and as an indication of the robustness and

convergence properties we present averages and

standard deviations with respect to 10 different

random initializations of the prototypes and ma-

trix Ω.

Fig. 1 shows averaged learning curves for the

example cases M = 2 and M = 16. We dis-

play the training and test accuracies averaged

over 10 random initializations of the algorithm

and the estimates of the corresponding standard

errors are on the order 0.01 for M = 2 and be-

low 0.005 for M = 16. Note that training and

test accuracies can display a weak maximum in

the course of learning. Therefore, for each M , we

determine the number of epochs that yields the

best mean training accuracy and display the cor-
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Figure 1: Left panels: learning curves of LiRaM LVQ with one prototype per class for M = 2 (top)

and M = 16 (bottom) when applied to the UCI image segmentation data set. Right panels: diagonal

elements, eigenvalues and off-diagonal elements of the matrix Λ as obtained in a single run. The

diagonal elements are set to zero for the plots.

responding test accuracy in the right panel of Fig.

1. The non-monotonic behavior could be cured by

means of a proper regularization of GMLVQ by

adding a penalty term to the cost function, see

[37]. The additional application of this technique

effects that the eigenvalues of Λ converge to 1
M
.

Hence, the regularization prevents the algorithm

from oversimplifying the classifier, and the com-

putation of distance values is finally based on M

features. Here, we resort to the above described

early stopping technique for simplicity. We would

like to point out that it relies only on the observed

training accuracy and does not make use of test

set information.

Fig. 1 also displays the relevance matrices

and their eigenvalue spectra corresponding to the

early stopping performances. In the case M = 16

we observe that only about 9− 10 eigenvalues re-

main significantly different from zero. Even GM-

LVQ with unrestricted rank results in an effective

low-dimensional representation of the data. One

would expect that LiRaM LVQ with large enough

M already yields the same performance as the

unrestricted variant. Fig. 2 shows that this is in-
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Figure 2: Performance of the LiRaM LVQ (upper panel) and GMLVQ with successive matrix reduction

following Eq. (8) (lower panel) using one prototype per class as a function of M for the UCI image

segmentation data set. We display the test accuracy on average over 10 random initializations, also

given as a numerical value. The light shading corresponds to the interval from worst to best accuracy,

the darker area marks the standard deviations.

deed the case. Only for small M we observe a

clear dependence of the test accuracy on the rank

of Ω, while all M ≥ 5 display essentially the same

performance. In the extreme case M = 2 we ob-

serve a significant drop of the generalization abil-

ity due to the serious restriction to only two non-
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Figure 3: UCI image segmentation data set. Left panel: test accuracy obtained by LDA as described

in the text. Right panel: test accuracies for the 1-NN classifier using the PCA-based transformation

to M dimensions (solid lines). In addition, the results after transforming the data with Ω as obtained

in LiRaM LVQ, the dotted lines mark the average over 10 random initialization as in Fig. 2.

2 5 12 16
80

82

84

86

88

90

92

94

A
cc

ur
ac

y 
(%

)

M

86.6

90.8 91.1 91.1

0 500 1000

0.7

0.8

0.9

1

epoch

ac
cu

ra
cy

 

 

Training
Test

Figure 4: UCI segmentation. Left panel: test accuracies achieved by LiRaM LVQ with 2 prototypes per

class (3 in class 5) for different values of M ; other details as in Fig. 2. Right panel: the corresponding

learning curves for M = 2, i.e. mean training and test accuracy vs. the number training epochs.

zero eigenvalues of Λ. At the same time, the out-

come of training displays a large variability: ran-

dom initializations of Ω can lead to the selection

of very different transformation matrices as re-

flected in the increased standard deviation. Many

nonlinear dimension reduction methods such as

t-distributed Stochastic Neighbor Embedding (t-

SNE) do not lead to a unique solution, a data set

may be visualized differently by the same tech-

nique in different runs. It can be argued (see e.g.
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[41]) that this effect is desirable since it mirrors

different possible views of the given data and the

ill-posedness of the problem of dimension reduc-

tion. Auxiliary information in the form of class

labels can be useful to shape the problem in such

settings and to resolve (parts of) the ambiguities

inherent in the problem. However, if the intrin-

sic dimension of the data is larger than the target

dimension some ambiguities may not be resolved.

Additionally, we investigate the performance of

the full matrix system reducing the rank after

training with Eq. (8) using only the firstM eigen-

values and eigenvectors. The lower panel of Fig.

2 shows the test accuracies using the M = 16 ma-

trices and the canonical representation with M

eigenvectors for different values of M . As ob-

served before, keeping less than the 5 eigenvalues

in the successive restricted GMLVQ (lower panel

of Fig. 2) results in a decrease of the classifica-

tion accuracy. The drop of accuracy is especially

significant when eigenvectors with relatively large

eigenvalues are omitted. Just using the eigenvec-

tors of the two largest eigenvalues for example

shows a mean test accuracy which is 11 % smaller

than the corresponding LiRaM LVQ result for

M = 2. Despite the computation time and mem-

ory efficiency, the limited rank version yields bet-

ter preservation of the classification performance

in the restricted setting than the heuristic dimen-

sion reduction after training omitting eigenvectors

with eigenvalues significantly different from zero.

4.2. Comparison with Other Methods

Here we compare the LiRaM LVQ scheme with

frequently used standard procedures of compara-

ble complexity. Note, that the complexity of Li-

RaM LVQ can be easily adapted by the number

of prototypes. GMLVQ with only one prototype

per class appears to be similar in spirit to the

well known Linear Discriminant Analysis (LDA)

[12, 17, 3]. In this method, a Multivariate Nor-

mal density (MVN) is fitted to the observed data

in each class, here we consider a pooled estimate

of the covariance matrix. Given the density es-

timates, the best linear decision boundaries are

constructed in order to approximate Bayes opti-

mal classification [12]. The well known 1-NN clas-

sifier serves as a second reference: Based on the

standard Euclidean distance measure, any feature

vector is simply assigned to the class of the clos-

est labeled example [12]. For the given data set,

the extension to K-Nearest-Neighbor schemes dis-

plays only a weak dependence on K and results

will not be presented here.

The most common strategy for dimension re-

duction is Principal Component Analysis (PCA).

In order to compare with LiRaM LVQ, we ap-

ply PCA to the entire data set and obtain a low-

dimensional representation in terms of the first

M principal components. The projected training

data is then used in LDA or serves as the reference

set of the 1-NN classifier. In the case M = 16,

the full data set is employed without performing

12



1 3 5 7 9 11 13 15
0

0.5
Λ diagonal elements

1 3 5 7 9 11 13 15
0

0.5

1
Λ eigenvalues

Λ (Acc 90.3 %)

 

 

5 10 15

5

10

15

−0.2 −0.1 0

(a) M = 2

1 3 5 7 9 11 13 15
0

0.5

1
Λ diagonal elements

1 3 5 7 9 11 13 15
0

0.5

1
Λ eigenvalues

Λ (Acc 93.9 %)

 

 

5 10 15

5

10

15

−0.1 0

(b) M = 16

Figure 5: Diagonal elements, eigenvalues, and off-diagonal elements of an example relevance matrix in

LiRaM LVQ with two prototypes per class and three in class 5. Other details as in Fig. 1, right panels.

The diagonal elements are set to zero for the plots.

a PCA.

In Fig. 3, the achieved test accuracies are dis-

played for several values of M . For large enough

dimension M , the principal components capture

all relevant information and the performance of,

both, LDA and 1-NN is comparable to that of the

LiRaM LVQ prescription. This finding is consis-

tent with the M -dependence discussed in the pre-

vious section.

Significant differences can be observed for small

M : The dimension reduction by PCA (or any

other unsupervised technique) does not take into

account label information and may focus on fea-

tures with large variation but little relevance for

the classification. Therefore, the subsequent su-

pervised training does not reach the quality of the

LiRaM LVQ scheme even with only one prototype

per class. Here, the complexity of the system is

similar but the identification of a suitable low-

dimensional representation is directly guided by

the classification, which facilitates superior per-

formance. This is easily demonstrated by replac-

ing the PCA based transformation by the matrix

Ω obtained in LiRaM LVQ see Eq. (6). Now, the

simple 1-NN system performs significantly bet-

ter, as displayed in the left panel of Fig. 3. The

idea of determining a discriminative transforma-

tion directly within the KNN classification scheme

has been put forward in [44], there without con-

sidering dimensional reduction. A more detailed

comparison of Large Margin Nearest Neighbor

(LMNN) with LiRaM LVQ is given in [7].

LiRaM LVQ with several prototypes per class

and a global relevance matrix can implement
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piecewise linear decision boundaries, the complex-

ity of which can exceed that of LDA or similar

methods significantly. In previous applications of

unrestricted GMLVQ to the UCI image segmen-

tation data it has proven advantageous to assign

3 prototypes to class 5 (window) and 2 prototypes

to all other classes. Fig. 4 shows that this setting

improves the classification accuracies in compar-

ison to the above studied case of a single pro-

totype per class, cf. Fig. 2. As expected, the

improvement is particularly pronounced for small

M . In Fig. 5 we visualize typical properties of

the relevance matrices obtained in the extreme

cases M = 2 and M = 16. Note that even the

unrestricted matrix displays only three non-zero

eigenvalues. The increased complexity due to the

larger number of prototypes facilitates good per-

formance in spite of a very simple implicit repre-

sentation of the data. The use of more eigendi-

rections could be enforced by means of a matrix

regularization scheme suggested in [37]. We will

address this issue in forthcoming studies.

5. Visualization of Classification Schemes

The LiRaM LVQ prescription with M = 2 or

M = 3 can be readily employed as a tool for the

visualization of labeled data sets. In contrast to

many standard methods, the tasks of identifying

an appropriate subspace and implementing the

actual classification is addressed in a single train-

ing phase. Supervised dimension reduction has

drawn some attention recently, some of the meth-

ods have been mentioned in the Introduction. We

explain two of these methods in the next section

in more detail and will compare example visual-

izations of different data sets thereafter.

5.1. Local Fisher Discriminant Analysis

A supervised linear dimension reduction tech-

nique named Local Fisher Discriminant Analysis

(LFDA) [39] was recently introduced as a com-

bination of the well known Fisher Discrimi-

nant Analysis (FDA) [16] and the unsupervised

Locality-Preserving Projection (LPP) [24]. FDA

works particularly well, when each class can be

modeled as an unimodal Gaussian. It is based on

the within-class and between-class scatter matrix

and finds a transformation matrix T , such that

the between-class scatter is maximized, while the

within-class scatter is minimized. This optimiza-

tion problem can be solved by means of a gener-

alized eigenvalue problem [18]. Furthermore the

between-class scatter matrix has a rank limited

to the number of classes minus one (c− 1). This

implies that FDA can find at most c−1 meaning-

ful features, which constitutes a serious restriction

in practice. LPP on the other hand is an unsu-

pervised dimension reduction technique based on

pairwise affinities Ai,j ∈ [0, 1] between data points

xi and xj. The aim is to find a transformation

matrix T such that local neighborhoods are pre-

served in the embedding space.

The LFDA efficiently combines the ideas of
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both methods and facilitates the dimension re-

duction of multi-modal labeled data by maximiz-

ing the between-class separability, while preserv-

ing the local structure within classes. The local

within-class and local between-class scatter matri-

ces S(w) and S(b) are defined using pairwise affini-

ties of the data:

S(w) =
1

2

n∑
i,j=1

W
(w)
i,j (xi − xj)(xi − xj)

> (32)

S(b) =
1

2

n∑
i,j=1

W
(b)
i,j (xi − xj)(xi − xj)

> (33)

where n denotes the number of samples and

W
(w)
i,j =

Ai,j/nl if yi = yj = l

0 if yi 6= yj

(34)

W
(b)
i,j =

Ai,j(
1
n
− 1

nl
) if yi = yj = l

1/n if yi 6= yj

. (35)

The value nl denotes the number of samples from

class l. Therefore, LFDA aims at finding a trans-

formation matrix T , such that nearby data pairs

of the same class are also close in the embedding

and data points of different classes are separated

from each other. Similar to FDA also LFDA pro-

jection can be computed analytically by solving a

generalized eigenvalue problem:

T = argmax
T∈IRN×M

[
tr
(
(T>S(w)T )−1T>S(b)T

)]
. (36)

In contrast to FDA the LFDA does not have

the same rank limitation. Therefore a dimen-

sion reduction to arbitrary dimensions is possible.

However, the embedding crucially depends on the

computation of the pairwise affinities. In [39] four

definitions of the affinity matrix are given. In the

following experiments we use the ”local scaling“

method, which is also used in the provided imple-

mentation1. Here the density of the data is taken

into account in a heuristic manner: a local scaling

based on the k-th nearest neighbor is included. In

the experiments we tried different values of k to

find good visualizations.

5.2. Neighborhood Component Analysis

Recently, a supervised dimension reduction

method called NCA has been introduced [20]. It

aims in the maximization of the expected number

of correctly classified samples by a stochastic vari-

ant of the nearest neighbor classifier. Therefore,

NCA seeks a transformation matrix TNCA such

that the between-class separability is maximized:

TNCA = argmax
T∈IRN×M

 n∑
i=1

∑
yj=yi

pi,j
(
TT>) (37)

where

pi,j(U) =


exp{−(xi−xj)

>U(xi−xj)}∑
k 6=i exp{−(xi−xk)>U(xi−xk)}

if i 6= j

0 if i = j

.

Thus, similar to LFDA, nearby data pairs from

the same class should be close in the embedding

space. This ensures that also multi-modal struc-

ture of the data can be preserved. However, the

optimization problem is non-convex and there is

1MATLAB implementation LFDA: http://sugiyama-

www.cs.titech.ac.jp/∼sugi/software/LFDA/
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no guarantee that the global optimum can be ob-

tained. The optimization was proposed as a gra-

dient ascent method and we use the provided im-

plementation2 for the experiments. Note, that

NCA needs to compute the pairwise dissimilar-

ities between samples of the same class in every

step. Although LiRaM LVQ also follows a gra-

dient procedure it computes only the dissimilari-

ties with respect to the prototypes in every step.

Since the number of prototypes per class is usu-

ally much smaller than the number of samples,

the computational costs per gradient step are sig-

nificantly lower than for NCA. In the implemen-

tation a Polack-Ribiere flavour of conjugate gra-

dients is used to compute search directions, and a

line search using quadratic and cubic polynomial

approximations. There is mainly one parameter

to change: l the length of the run. It corresponds

to the maximum number of line searches.

Figure 6 displays the running times of NCA and

the proposed LVQ variants in dependence on the

number of training samples. We run the exper-

iments on the same machine3 using matlab im-

plementations. We used differently sized subsets

of the seven class segmentation data set, which

is investigated in the following section and re-

duce the dimension to M = 2. Furthermore we

compare different parametrizations of the models.

For NCA we show the running times for different

2MATLAB implementation for NCA:

http://www.ics.uci.edu/∼fowlkes/software/nca/
3Quadcore: Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
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Figure 6: Runningtimes of NCA and the LiRaM

LVQ variants in dependence of the number of

training samples. Details can be found in the text.

numbers of line searches l and for the LVQ vari-

ants we vary the number of prototypes per class

abbreviated by ”ppc“. It can be seen that the

computation time grows linearly with the num-

ber of training samples using the LVQ approaches,

while the complexity of NCA grows quadratically.

5.3. The segmentation data set

The above discussed UCI segmentation data

may serve as a first illustrative example. From

the 10 independent runs performed with M = 2

to obtain the results displayed in Fig. 2 (single

prototype per class) and Fig. 4 (several proto-

types per class), we have selected the runs that

achieved the best training accuracy in order to

achieve the most discriminative visualization. As

mentioned above, the actual outcome can depend

on the random initialization of the GMLVQ sys-
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Figure 7: Visualizations of the UCI segmentation data set aquired by the different methods. For the

sake of clarity we display only 50 examples per class. Detailed explanation can be found in the text.
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tem, see Figs. 2 and 4 for the range of observed

accuracies. With a single prototype per class, a

maximum classification accuracy of 88.4% on the

entire data set is achieved. The use of 2 proto-

types per class (3 in class 5) yields a best accuracy

of 90.4% on the entire set. The use of several pro-

totypes with LLiRaM LVQ enhances the accuracy

by realizing more complex piecewise linear deci-

sion boundaries.

Furthermore we trained the LLiRaM LVQ un-

der the same conditions ten times on the training

set of the segmentation data and used the result-

ing transformations and prototypes to visualize

the data. The run showing the best performances

is shown in Fig. 7 with the quality given in Table

1. The mean accuracy over all runs on the train-

ing data is 85% with a standard deviation (STD)

of 0.04 with one prototype per class and class-wise

dissimilarities Ψc. LLiRaM LVQ implements non-

linear decision boundaries, which shows already

good accuracies using one prototype per class.

With this particular data set using more proto-

types does not improve the classification signifi-

cantly.

Next, we employ the implementation of LFDA

and NCA from the original authors with default

parameters and tried a range of k and l ∈ [1, 30].

We observed, that both methods crucially depend

on the parameter used. The accuracy on the

training set measured by an 1-NN classification

on the embedding aquired by LFDA, for exam-

ple, ranges from the best accuracy 83.7% with

k = 2 and the worst accuracy 66.6% with k = 25.

For NCA the worst accuracy of 56.2% is observed

with l = 1 and with l ≥ 16 the training accu-

racy reaches 90%. The number of protoytpes and

the initialization in the LiRaM LVQ setting is less

crucial with respect to the classification accuracy.

Fig. 7 displays the visualizations with best clas-

sification performance on the segmentation data

set aquired by the different techniques explained

above. This multi-class problem allows for very

good classification performance already in two di-

mensions. The localized variant of LiRaM LVQ

can realize more complicated non-linear decision

boundaries than the global version. However,

overfitting effects become possible: For one pro-

totype per class we observe an improvement al-

though empty cells appear in the tessellation.

With two prototypes per class no further improve-

ment is observed. In all visualizations the classes

”sky“ and ”grass“ can be separated quite well.

For the other classes the visualizations differ in ar-

rangement and shape of the clusters. The LiRaM

LVQ visualizations show equal or superior qual-

ity compared to the other methods. An overview

of the visualization quality of the different meth-

ods on the data sets can be found in Table 1. The

classification accuracy in the original space is usu-

ally larger, than the accurcy in the low-dimension

space after transformation. However, the num-

bers show, that in most cases the supervised di-
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Table 1: Classification and 1-NN accuracies (in %) on the visualizations of the data sets.

method / data set acc. training acc. test

Segmentation data

LiRaM LVQ 7P (classification accuracy) 92.9 88.0

LiRaM LVQ 7P (1-NN acc. on embedding) 85.7 87.0

LiRaM LVQ 14P (classification accuracy) 91.9 90.3

LiRaM LVQ 14P (1-NN acc. on embedding) 88.6 87.5

LLiRaM LVQ (classification accuracy) 89.0 85.7

LLiRaM LVQ (1-NN acc. on embedding) 88.6 87.4

LFDA (1-NN acc. on embedding) 83.7 85.8

NCA (1-NN acc. on embedding) 90.0 87.1

Colorado data 2D

LiRaM LVQ (classification accuracy) 83.0 80.0

LiRaM LVQ (1-NN acc. on embedding) 79.6 84.6

LLiRaM LVQ (classification accuracy) 78.7 73.8

LLiRaM LVQ (1-NN acc. on embedding) 79.9 83.7

LFDA (1-NN acc. on embedding) 50.4 61.1

NCA (1-NN acc. on embedding) 81.5 89.7

Colorado data 3D

LiRaM LVQ (classification accuracy) 88.9 86.3

LiRaM LVQ (1-NN acc. on embedding) 93.3 96.4

LLiRaM LVQ (classification accuracy) 87.7 85.8

LLiRaM LVQ (1-NN acc. on embedding) 92.8 96.1

LFDA (1-NN acc. on embedding) 89.6 93.8

NCA (1-NN acc. on embedding) 92.6 95.5

mension reduction was able to preserve high accu-

racies even in the reduced spaces. We would like

to point out once more, that the computational

effort for NCA is much larger than for the LiRaM

LVQ variants. NCA computes all pairwise dis-

tances, while the LVQ approaches are based on

a small number of prototypes. In particular for

large data sets the computational effort may be

reduced significantly compared to NCA.

5.4. High Dimensional Gene Expression Data

Discriminative visualization can be particularly

useful in the context of medical data. Here we

apply the LiRaM LVQ algorithm to two gene ex-

pression data sets which were recently analyzed

by Faith, Mintram, and Angelova in [15].

The first set concerns small round blue cell

childhood tumors, and we refer to it as SRBCT

[15]. It comprises cDNA microarray expression

levels of 50 pre-selected genes in 83 different sam-

ples [27]. The target classification assigns every
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Figure 8: Two-dimensional, visualizations of the SRBCT data set (left column) and the NCI data

(right column) obtained by the different variants of LiRaM LVQ explained in the text.

sample to one of 4 tumor types.

We will refer to the second data set as NCI. It

contains gene expression data from 60 cell lines

from the National Cancer Institute anticancer

drug screen [34]. Again 50 genes have been pre-

selected and samples are to be assigned to one of

8 different types of tissue.

For details of the data sets we refer to [15] and

references therein. The authors present a method

termed Targeted Projection Pursuit (TPP) and

compare it with several existing techniques, in-

cluding Multi-dimensional Scaling (MDS) [14],
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Figure 9: Two-dimensional, visualizations of the SRBCT data set (left column) and the NCI data

(right column) obtained by LFDA and NCA. Detailed explanation can be found in the text.

VizStruct [45], a dendrogram based method [13],

and Projection Pursuit [29]. TPP is demon-

strated to outperform most of these methods or

to achieve at least comparable performance on the

above data sets. The employed data sets as well

as source codes of TPP implementations are pub-

licly available [15].

First, we apply LiRaM LVQ with one prototype

per class to the SRBCT data set. Results pre-

sented here are obtained after 1000 epochs with

respect to the entire data set of 83 samples. We

observe almost no variability with respect to ran-
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dom initializations of the system. A typical out-

come is displayed in Fig. 8 (top row left panel) the

obtained 2D visualization perfectly separates the

four classes. Error free visualizations were also

obtained by Faith et al., see [15] for comparison.

The analogous application of LiRaM LVQ to

the NCI 8-class-problem shows slightly larger

variability of results. In 10 runs with different

random initialization we obtain after 1000 epochs

accuracies in the range from 95.1%-100%, with an

average of 97.7%. Fig. 8 (upper row, right panel)

displays a perfectly separating visualization.

For the sake of completeness we show the error-

free example results of the LLiRaM LVQ with one

prototype per class in Figure 8 (bottom row). The

algorithm was trained with the same parameters

as the global version on both, the whole SRBCT

and NCI, data set. Again the four-class prob-

lem SRBCT can be separated in every Run with

random initialization, whereas the training on the

NCI data set shows some variation in classifica-

tion accuracy. In mean we achieved on the NCI

data an accuracy of 94.6% with a standard devi-

ation of 0.02 over the 10 random initializations.

The visualization of these data sets achieved

by LFDA and NCA are shown in Fig. 9. LFDA

was performed on the SRBCT data set with k ∈

[1, 10], all yielding error free visualizations. On

the NCI data set the accuracy varied from 91.8%

achieved with k = 4 to the best accuracy of 96.7%

using k = 1. For the training of NCA on the

SRBCT data set with l varying from one to 10

we observed error free visualizations for l ≥ 3 and

the worst accuracy of 80.7% for l = 1. On the

NCI data set an error free visualization is found

for l ≥ 10 and the worst performance was 59%

observed with l = 1.

In [15], error free visualizations of the NCI

data are obtained by means of TPP in combi-

nation with PCA, Projection Pursuit and subse-

quent LDA or KNN classification. For a visual

inspection of the achieved separation we refer to

Figs. 9 and 11 in [15], which display either slightly

overlapping classes or only very small gaps be-

tween some of them. Other methods considered

in [15] yield less favorable results on this data set.

Most of all, we would like to point out that our

method appears very simple and intuitive com-

pared to many other suggested approaches. How-

ever, it yields comparable or even superior results

at comparably low computational costs.

5.5. Satellite Remote Sensing data

Here we apply the algorithm to a large real

world data set: a multi-spectral satellite image of

the Colorado area, focusing of visualizing the class

structure. Remote sensing spectral images consist

of an array of multi-dimensional vectors (spectra)

assigned to particular spatial regions (pixels) re-

flecting the response of a spectral sensor at var-

ious wavelengths. A spectrum is a characteristic

pattern that provides a clue to the surface mate-

rial within the respective area. The use of these
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Figure 10: Visualizations of a small subset of the Colorado data set aquired by the different methods.

data includes areas such as mineral exploration,

land use, forestry; and many other activities of

economic significance.

We consider a data set that corresponds to an

image taken close to Colorado Springs using satel-

lites of the LANDSAT-TM type. The size of the

image is 1907×1784 pixels, each of which corre-

sponds to an area of 900m2 on the ground. The

spectrum is represented by a 6-dimensional fea-

ture vector. The aim of the classification is to as-

sign each pixel to one of 14 classes, corresponding

to specific surface covers such as different types of

forests, alpine vegetation, water, etc., see [23, 43]

for a detailed description and Table 2 for the list

of classes.

A labeling of the entire image was provided by

experts and serves as the target classification. For

further details of the data set we refer the reader

to [23, 43] where the authors apply scaled Eu-

clidean distance in combination with a Growing

Self-Organized Map (GSOM). Test accuracies in

the range of 90% have been achieved depending
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Table 2: Short description of the different classes

of the satellite image and the number of pixels in

each class.

class ground cover type # pixels

1 Scotch pine 581424

2 Douglas fir 355145

3 Pine / fir 181036

4 Mixed pine forest 272282

5 Supple/prickle pine 144334

6 Aspen/mixed pine forest 208152

7 Without vegetation 170196

8 Aspen 277778

9 Water 16667

10 Moist meadow 97502

11 Bush land 127464

12 Grass/pastureland 267495

13 Dry meadow 675048

14 Alpine vegetation 27556

0 not classified 9

on the specific method in use.

For the following, we selected 2000 examples

per class randomly, used as a training set. We also

give the accuracies evaluated with respect to the

whole data set of 3.402.088 data points. We have

performed 10 runs of LiRaM LVQ with M = 2, 3

and three prototypes per class. After 1500 train-

ing epochs we observe only very little variation

due to the random initialization of the system.

The range of training accuracies is 79.8%-83% for

M = 2 and 87.5%-88.9% for M = 3, respec-

tively. The classifiers with the best training set

performance achieve accuracies on the whole set

of 80.1% (M = 2) and 86.3% (M = 3), see Table

1. In spite of the low-dimensional representation

and the relatively small numbers of prototypes we

achieve very good accuracies. This is consistent

with the analysis in [43] which suggests that good

classification performance requires at least a two-

or three-dimensional representations of the data.

Here, we are mainly interested in the discrim-

inative visualization of the data set. Fig. 10

shows the data globally projected into two and

three dimensions, respectively. We also trained

the Localized LiRaM LVQ on 2000 random sam-

ples from each class with slightly different param-

eters: 300 epochs, learning rates beginning with

αstart=0.001 and ∆α = 0.0001 for the prototypes,

the matrix Ω and the class-wise matrices Ψc re-

spectively. We trained the system with two and

three prototypes per class. The average accuracy

on the training data is 75% with STD 0.03 in

the two-dimensional case with 28 prototypes. In

three dimensions with three prototypes per class

we obtain a mean accuracy of 85.2% and STD

0.02. These results correspond to the findings in

[23] where Generalized Relevance Learning Vector

Quantization (GRLVQ) was applied to the data

set: When pruning to three dimensions a classi-

fication performance of ca. 84% can be achieved,

while dropping further dimensions decreases the

accuracy significantly. The visualizations result-

ing from the best run in two and three dimensions

are shown in Fig. 10 (bottom row). Furthermore,

the confusion matrix for the three-dimensional
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Figure 11: The labels of a section of the Colorado satellite image (left panel) and the classification

result obtained by the best run of LLiRaM LVQ in the 3D case (right panel). Detailed information

about the class-wise accuracies can be found in the confusion matrix Tab. 3.

Table 3: Confusion matrix of the 3D LLiRaM LVQ (Fig. 10 bottom right) on the Colorado data set.

actual class
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

∑
1 460594 612 104 5 2376 458 49 883 4 0 0 1498 0 139 0 466722

2 13642 331530 590 11146 0 841 9 79 8 0 0 0 0 0 0 357845

3 0 9379 155775 17306 0 0 1 0 757 0 0 0 0 0 0 183218

4 0 3742 704 231063 0 596 1 7 90 0 0 0 0 0 0 236203

5 14776 0 11 0 122956 0 7793 0 1 0 0 2989 25239 70 0 173835

6 22880 8618 102 12235 5 203917 7 7980 28 0 0 0 0 0 0 255772

7 521 0 3 3 7337 0 111692 360 3 66 554 23873 31728 0 0 176140

8 18380 0 60 14 41 2340 11 256243 8 1 1597 10277 0 0 1 288973

9 14 1210 23613 479 143 0 46 0 15761 0 0 0 0 116 0 41382

10 3 0 5 7 38 0 12842 0 1 86795 7970 7894 7352 0 0 122907

11 0 0 18 11 0 0 285 11660 0 6508 117212 4352 0 0 0 140046

12 48564 54 38 5 8716 0 24687 566 3 2279 130 216576 10522 0 0 312140

13 2045 0 13 8 2611 0 4063 0 3 1853 0 36 582457 148 1 593238

14 5 0 0 0 111 0 8710 0 0 0 1 0 17750 27083 7 53667

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0∑
581424 355145 181036 272282 144334 208152 170196 277778 16667 97502 127464 267495 675048 27556 9 3402088

class-wise accuracy of the estimation in %
79.22 93.35 86.05 84.86 85.19 97.97 65.63 92.25 94.56 89.02 91.96 80.96 86.28 98.28 0

case containing information about the class-wise

accuracies and misclassification can be found in

Table 3. We also provide the original labeling of

the satellite image and the estimated Labels with

misclassification. The corresponding graphics can

be found in Fig. 11. The projections facilitate a

detailed interpretation and analysis of the data

set. We will present and exploit the obtained in-

sights in a forthcoming study.

We demonstrate the advantages of LiRaM LVQ

and its localized variant over LFDA and NCA:

Fig. 12 shows the best visualizations we could
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Figure 12: Visualizations of a small subset of the Colorado data set aquired by the different methods.

achieve with this methods. We varied the value

k and l in the interval [1, 10] and for LFDA we

achieved the best 1-NN error measures on the vi-

sualizations with k = 6 and k = 9 for 2D and 3D

respectively. While certain classes (e.g. 14, alpine

vegetation) seem to separate well, the overall dis-

criminativity is limited. Only 50.4% accuracy can

be achieved using a 1-NN classifier on the train-

ing data in the two-dimensional case and 89.6%

in the three-dimensional case. For this particu-

lar data set the value of the parameter k has no

significant influence on the quality of the LFDA-

embedding of the training data. The computation

of the 1-NN error on over three million data points

of the test set was not practicable. Therefore we

draw 100 000 points randomly from the test set

and this reduced set serves as approximation of

the test-error. With the best LFDA we observed

61.3% and 93.75% 1-NN classification accuracy on

the reduced test set for two and three dimensions,

respectively. Table 1 shows the detailed compar-

ison. The use of NCA turned out in-practicable
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due to excessive memory use. Therefore, we re-

duced the training set to 900 samples per class.

We tried different values for the parameter l rang-

ing from one to ten. The best results are shown

in Fig. 12 (bottom row) for k = 3 and k = 2 in

the 2D and 3D visualization respectively. On this

data set the best NCA parametrization showed

comparable or even better results than the LVQ

approach. Nevertheless, some patience was neces-

sary to get these results due to the computational

complexity and the variation with respect to the

parameter was huge. In the two-dimensional case

the 1-NN accuracy ranged between 56.43% and

81.49% on the training set and in the 3-dim. case

accuracies between 67.29% and 92.56% were ob-

served. The other methods showed to be faster

and more robust with respect to the parametriza-

tion.

6. Summary and Outlook

In this paper we present the LiRaM LVQ algo-

rithm together with a localized variant, as a mod-

ification of Generalized Matrix LVQ [36]. It em-

ploys rectangular projection matrices to represent

N -dim. feature vectors in an M -dim. space inter-

nally. This makes it possible to limit the rank of

the relevance matrices used in GMLVQ which pa-

rameterize an adaptive distance measure. Obvi-

ous aims are to incorporate prior knowledge of the

intrinsic dimension or to reduce the number of free

parameters while maintaining good classification

performance. In particular for high-dimensional

data sets this can reduce the computational ef-

fort significantly. First we illustrate the approach

in terms of a multi-class benchmark data set and

compare with other methods of similar complex-

ity. We demonstrate that LiRaM LVQ is an effi-

cient method for determining discriminative, low-

dimensional representations of labeled data and

facilitates good generalization behavior. In Li-

RaM LVQ, the search for the appropriate sub-

space is guided directly by the classification per-

formance in a single supervised training phase.

This is in contrast to classical combinations of un-

supervised dimension reduction and subsequent

supervised learning.

A particular attractive application of the con-

cept concerns the visualization of labeled data

sets. Setting M = 2 or 3 in LiRaM LVQ provides

us with a discriminative visualization of the orig-

inal data set. The algorithm results in linear or

piece-wise linear decision boundaries dependent

on the number of prototypes and classes. With

the localized variant LLiRaM LVQ it is possible

to visualize even more complicated non-linear de-

cision boundaries. The key advantage over many

other methods is that the search for the suitable

representation is directly integrated into the su-

pervised training procedure. We demonstrate the

usefulness of this concept in the context of several

real world multi-class problems. Furthermore we

compare the visualizations to some recent state-

27



of-the-art supervised dimension reduction tech-

niques, namely LFDA and NCA. The LFDA ap-

proach provides an analytical solution, but also

depends on the computation of pairwise dissim-

ilarities within samples of the same class. The

results may differ a lot depending on the num-

ber k of neighbors used. For less complex data

sets, like the four class SRCBT cancer data set

error free visualizations are possible. On other

data sets LFDA showed worse results compared

to the other methods. NCA showed good results

in most cases. Its performance is also dependent

on random initialization and the number of line

searches l. NCA is based on the computation

of pairwise dissimilarities which is expensive for

large data sets. The LiRaM LVQ approach dis-

plays in all cases comparable or superior results

on the investigated data sets. The computational

effort depends on the target dimension, the num-

ber of prototypes and the number of samples for

training. Unlike other methods, which require

all pairwise dissimilarities, LiRaM LVQ computes

distances of samples with respect to only a few

prototypes. The observed influence of the num-

ber of protoytpes on the performance is relatively

weak compared to the dependence on the neigh-

borhood parameter in other methods.

The use of local or class-wise transformation

matrices in LLiRaM LVQ allows for more com-

plex decision boundaries. The decision bound-

ary in the low-dimensional space is based on local

matrices attached to the prototypes. Note, that

the dimension reduction itself is done in terms

of a global linear projection. The concept of us-

ing local dissimilarities in combination with non-

linear dimension reduction and visualization was

recently discussed in [11].

In this paper we have not emphasized one par-

ticularly attractive feature of relevance learning:

The resulting transformation and relevance ma-

trices can be readily interpreted and carry impor-

tant information about the structure of the data.

For instance, in the visualization of gene expres-

sion data, Sec. 5.4, we note that several features

(intensities) essentially do not contribute to the

highly discriminative linear combinations defined

by Ω. This type of information provides valid

insights to the application expert and should be

exploited systematically.

In forthcoming projects we will also investigate

several extensions of the method. So far, we only

limit the maximum rank of relevance matrices

by choice of the parameter M , the effective di-

mension of the transformation can become even

smaller. In applications, including visualization,

it can be desirable to fix the rank and to make the

system exhaust the bound. This could be done in

terms of an efficient regularization method which

we developed recently [37]. Most importantly, we

plan to apply the LiRaM LVQ approach in various

application domains, including the ones discussed

above. An example application in the context of
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content based image retrieval is discussed in [7].
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