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Abstract

We propose a new matrix learning scheme to extend relevance learning
vector quantization (RLVQ), an efficient prototype-based classification al-
gorithm, towards a general adaptive metric. By introducing a full matrix
of relevance factors in the distance measure, correlations between different
features and their importance for the classification scheme can be taken
into account and automated, general metric adaptation takes place during
training. In comparison to the weighted Euclidean metric used in RLVQ
and its variations, a full matrix is more powerful to represent the internal
structure of the data appropriately. Large margin generalization bounds
can be transfered to this case leading to bounds which are independent
of the input dimensionality. This also holds for local metrics attached to
each prototype which corresponds to piecewise quadratic decision bound-
aries. The algorithm is tested in comparison to alternative LVQ schemes
using an artificial data set, a benchmark multi-class problem from the UCI
repository, and a problem from bioinformatics, the recognition of splice
sites for C. elegans.

Keywords: learning vector quantization, generalized LVQ, metric adap-
tation, generalization bounds

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohonen is a particularly
intuitive and simple though powerful classification scheme [16] which is very
appealing for several reasons: The method is easy to implement; the complexity
of the resulting classifier can be controlled by the user; the classifier can natu-
rally deal with multi-class problems; and, unlike many alternative classification
schemes such as feedforward networks or the support vector machine (SVM),
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the LVQ system is straightforward to interpret because of the intuitive assign-
ment of data to the class of the closest prototype. For these reasons, LVQ has
been used in a variety of academic and commercial applications such as image
analysis, bioinformatics, telecommunication, robotics, etc. [4].
Original LVQ, however, suffers from several drawbacks such as potentially slow
convergence and instable behavior because of which various alternatives have
been proposed, see for instance [16]. Still, there are two major drawbacks of
these methods, which have been tackled only recently.
On the one hand, LVQ relies on heuristics and a full mathematical investigation
of the algorithm is lacking. This problem relates to unexpected behavior and
instabilities of training. It has been shown that already slight variations of the
basic LVQ learning scheme yield quite different results [2, 3]. Variants of LVQ
which can be derived from an explicit cost function are particularly interesting.
Several proposals for cost functions can be found in the literature, one example
being generalized LVQ (GLVQ) which forms the basis for the method we will
consider in this article [21]. Two alternatives which implement soft relaxations
of the original learning rule are presented in [22, 23]. These two approaches,
however, have the drawback that the original crisp limit case does not exist (for
[22]) resp. the discrete limit case shows poor results also in simple settings, see
[9] (for [23]). The cost function as proposed in [21] displays stable behavior and
aims at a good generalization ability already during training as pointed out in
[12]. On the other hand, LVQ and variants severely rely on the standard Eu-
clidean metric and they are not appropriate for situations where the Euclidean
metric does not represent the underlying semantic. This is the case, e.g., for high
dimensional data where noise accumulates and likely disrupts the classification,
for heterogeneous data where the importance and nature of the dimensions dif-
fers, and for data which involves correlations of the dimensions. In these cases,
which are quite common in practice, simple LVQ may fail. Recently, a cost
function based generalization of LVQ has been proposed which allows to incor-
porate general differentiable similarity measures [13]. The specific choice of the
similarity measure as a simple weighted diagonal metric with adaptive relevance
terms has turned out particularly suitable in many practical applications since it
can account for irrelevant or inadequately scaled dimensions. At the same time,
it allows for straightforward interpretation of the result because the relevance
profile can directly be interpreted as the contribution of the dimensions to the
classification [15]. For an adaptive diagonal metric, dimensionality independent
large margin generalization bounds can be derived [12]. This fact is remark-
able since it accompanies the good experimental classification results for high
dimensional data by a theoretical counterpart. The same bounds also hold for
kernelized versions, but not for arbitrary choices of the metric. Often, different
features are correlated in classification tasks. In unsupervised clustering, corre-
lations of data are accounted for, e.g., by the classical Mahalanobis distance [7]
or fuzzy-covariance matrices as proposed, e.g., in the approaches [8, 10]. It has
been shown recently that general metric learning based on large margin prin-
ciples can greatly improve the results obtained by distance-based schemes such
as k-nearest neighbor classifier [24, 25]. For supervised LVQ classification tasks,
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however, an explicit metric which takes into account correlations has not yet
been proposed. Based on the general framework as presented in [13], we develop
an extension of LVQ to an adaptive matrix of relevances which parameterizes
a general Euclidean metric and accounts for pairwise correlations of features.
By means of an implicit scaling and rotation of the data, the algorithm yields a
discriminative distance measure which is particularly suitable for the given clas-
sification task. It can be parameterized in terms of a single, global matrix or
by individual matrices attached to the prototypes. Interestingly, one can derive
generalization bounds which are similar to the case of a simple diagonal metric
for this more complex case. Apart from this theoretical guarantee, we demon-
strate the usefulness of the novel scheme in the context of several classification
problems.

2 Review of LVQ

LVQ aims at approximating a classification scheme by prototypes. Assume
training data (ξi, yi) ∈ R

N × {1, . . . , C} are given, N denoting the data dimen-
sionality and C the number of different classes. An LVQ network consists of a
number of prototypes which are characterized by their location in the weight
space wi ∈ R

N and their class label c(wi) ∈ {1, . . . , C}. Classification is imple-
mented as a winner takes all scheme. For this purpose, a possibly parameterized
similarity measure dλ is fixed for R

N , where λ specifies the metric parameters
which can be adapted during training. Often, the standard Euclidean metric
is chosen. A data point ξ ∈ R

N is mapped to the class label c(ξ) = c(wi) of
the prototype i for which dλ(wi, ξ) ≤ dλ(wj , ξ) holds for every j 6= i, breaking
ties arbitrarily. Hence, it is mapped to the class of the closest prototype, the
so-called winner.
Learning aims at determining weight locations for the prototypes such that the
given training data are mapped to their corresponding class labels. This is usu-
ally achieved by a modification of Hebbian learning, which moves prototypes
closer to the data points of their respective class. A very flexible learning ap-
proach has been introduced in [13]: Training is derived as a minimization of the
cost function

∑

i

Φ(µi) where µi =
dλ

J − dλ
K

dλ
J + dλ

K

(1)

based on the steepest descent method. Φ is a monotonic function, e.g. the
identity or the logistic function, dλ

J = dλ(wJ , ξi) is the distance of data point ξi

from the closest prototype wJ with the same class label yi, and dλ
K = dλ(wK , ξi)

is the distance from the closest prototype wK with a different class label than yi.
Note that the numerator is smaller than 0 iff the classification of the data point
is correct. The smaller the numerator, the greater the security of classification,
i.e. the difference of the distance from a correct and wrong prototype. The
denominator scales the argument of Φ such that it satisfies −1 < µ(ξ) < 1.
A further possibly nonlinear scaling by Φ might be beneficial for applications.

3



This formulation can be seen as a kernelized version of so-called generalized
LVQ introduced in [21].
The learning rule can be derived from this cost function by taking derivatives.
We assume that the similarity measure dλ(w, ξ) is differentiable with respect to
the parameters w and λ. As shown in [13], for a given pattern ξ the derivatives
yield

∆wJ = −ε · Φ′(µ(ξ)) · µ+(ξ) · ∇wJ
dλ

J (2)

where ε > 0 is the learning rate, the derivative of Φ is taken at position µ(ξ),
and µ+(ξ) = 2 · dλ

K/(dλ
J + dλ

K)2. Further,

∆wK = ε · Φ′(µ(ξ)) · µ−(ξ) · ∇wK
dλ

K (3)

where µ−(ξ) = 2 ·dλ
J/(dλ

J +dλ
K)2. The derivative with respect to the parameters

λ yields the update

∆λ = ε · Φ′(µ(ξ)) ·
(

µ+(ξ) · ∇λdλ
J − µ−(ξ) · ∇λdλ

K

)

. (4)

The adaptation of λ is often followed by normalization during training, e.g.
enforcing

∑

i λi = 1 to prevent degeneration of the metric. It has been shown
in [13] that these update rules are valid whenever the metric is differentiable.
This argument also holds for the borders of receptive fields, i.e. an underlying
continuous input distribution, as can be shown using delta-functions [13].
It has been demonstrated in [13] that the squared weighted Euclidean metric
dλ(w, ξ) =

∑

i λi(wi − ξi)
2 with λi ≥ 0 and

∑

i λi = 1 is a simple and pow-
erful choice which allows to use prototype based learning also in the presence
of high dimensional data with features of different, yet a priori unknown, rel-
evance. This measure has the advantage that the relevance factors λi can be
interpreted directly and provide insight into the classification task: Dimensions
with large λi are most important for the classification while very small or zero
relevances indicate that the corresponding feature could be omitted. We refer
to this method as generalized relevance learning vector quantization (GRLVQ)
[15]. Very similar schemes have been motivated heuristically which lack an in-
terpretation of the algorithm as stochastic gradient descent with respect to a
cost function [5]. Alternative choices have been introduced in [13], including,
for example, metrics which take local windows into account, e.g., for time series
data.
Note that the relevance factors, i.e. the choice of the metric need not be global,
but can be attached to single prototypes, locally. In this case, individual updates
take place for the relevance factors λj for each prototype j, and the distance
of a data point ξi from prototype wj , dλj

(wj , ξi) is computed based on λj .
This allows a local relevance adaptation, taking into account that the relevance
might change within the data space. This method has been investigated e.g. in
[11]. We refer to this version as localized GRLVQ (LGRLVQ).
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3 The GMLVQ Algorithm

Here, we introduce an important extension of the above concept, which employs
a full matrix of relevances in the similarity measure. We consider a generalized
distance of the form

dΛ(w, ξ) = (ξ − w)T Λ (ξ − w) (5)

where Λ is a full N ×N matrix which can account for correlations between the
features. Note that, this way, arbitrary Euclidean metrics can be realized by
an appropriate choice of the parameters. In particular, correlations of dimen-
sions and rotation of the axes can be accounted for. Such choices have already
successfully been introduced in unsupervised clustering methods such as fuzzy
clustering [8, 10], however, at the expense of increased computational costs,
since these methods require a matrix inversion at each adaptation step. For the
metric as introduced above, a variant which costs O(N2) can be derived.
Note that the above similarity measure defines a general squared Euclidean
distance in an appropriately transformed space only if Λ is positive (semi-)
definite. We can achieve this by substituting

Λ = ΩΩT (6)

which yields uT Λu = uT ΩΩT u =
(

ΩT u
)2 ≥ 0 for all u, where Ω is an arbitrary

real N×N matrix. Every positive semidefinite symmetric matrix can be written
as the square of some matrix Ω, which is not uniquely defined, in general. As
Λ is symmetric, it has only N(N + 1)/2 independent entries. We can therefore
assume without loss of generality that Ω itself is a symmetric N×N matrix with
ΩT = Ω, i.e. Λ = ΩΩ in the following. This corresponds to the unique positive
root of the matrix Λ. Assuming symmetry of Ω reduces the computational costs
by a factor 2.
Now the squared distance reads

dΛ(w, ξ) =
∑

i,j,k

(ξi − wi)ΩikΩkj (ξj − wj). (7)

To obtain the adaptation formulas we need to compute the derivatives with
respect to w and Ω. The derivative of dΛ with respect to w yields

∇w dΛ = −2Λ (ξ − w) = −2ΩΩ(ξ − w). (8)

Derivatives with respect to a single element Ωlm give

∂dΛ

∂Ωlm
=

∑

j

(ξl − wl)Ωmj(ξj − wj) +
∑

i

(ξi − wi)Ωil(ξm − wm)

= (ξl − wl) [Ω(ξ − w)]m + (ξm − wm) [Ω(ξ − w)]l

(9)

where subscripts l,m specify components of vectors. Thus, we get the update
equations

∆wJ = ε · φ′(µ(ξ)) · µ+(ξ) · ΩΩ · (ξ − wJ )

∆wK = − ε · φ′(µ(ξ)) · µ−(ξ) · ΩΩ · (ξ − wK) .
(10)
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Note that these updates correspond to the standard Hebb terms of LVQ, pushing
the closest correct prototype towards the considered data point and the closest
wrong prototype away from the considered data point. For the update of the
matrix elements Ωlm we get

∆Ωlm = − ε · φ′(µ(ξ)) · (11)
(

µ+(ξ) ·
(

[Ω(ξ − wJ)]m(ξl − wJ,l) + [Ω(ξ − wJ)]l(ξm − wJ,m)
)

−

µ−(ξ) ·
(

[Ω(ξ − wK)]m(ξl − wK,l) + [Ω(ξ − wK)]l(ξm − wK,m)
)

)

.

This update also corresponds to a Hebbian term, since the driving force consists
of the derivative of the distance from the closest correct prototype (scaled with
−1) and the closest incorrect prototype. Thus, the parameters of the matrix
are changed in such a way that the distance from the closest correct prototype
becomes smaller, whereas the distance from the closest wrong prototype is in-
creased. Similar to the case of diagonal relevances [5], matrix updates can be
formulated on heuristic grounds, as well. Such variants will be discussed in
forthcoming publications.
The learning rate for the metric can be chosen independently of the learning
rate of the prototypes. We set it an order of magnitude smaller in order to
achieve a slower time-scale of metric learning compared to the weight updates.
Note that the above update (11) preserves the assumed symmetry of Ω as it is
symmetric w.r.t. exchange of indices l and m. After each update Λ should be
normalized to prevent the algorithm from degeneration. One possibility is to
enforce

∑

i

Λii = 1 (12)

by dividing all elements of Λ by the raw value of
∑

i Λii after each step. In
this way we fix the sum of diagonal elements which coincides with the sum
of eigenvalues. This generalizes the normalization of relevances

∑

i λi = 1 for
a simple diagonal metric. One can interpret the eigendirections of Λ as the
temporary coordinate system with relevances Λii.
Note that

Λii =
∑

k

ΩikΩki =
∑

k

(Ωik)
2
. (13)

So normalization can be done by dividing all elements of Ω by (
∑

ik(Ωik)2)1/2 =

(
∑

i[ΩΩ]ii)
1/2

after every update step.
We term this learning rule generalized matrix LVQ (GMLVQ). The complexity
of one adaptation step is determined by the computation of the closest correct
and incorrect prototypes (O(N2 · P ), P being the number of prototypes), and
the adaptation (O(N2)). Usually, this procedure is repeated a number of time
steps which is linear in the number of patterns to achieve convergence. Thus,
this procedure is faster than unsupervised fuzzy-clustering variants which use
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a similar form of the metric but which require a matrix inversion in each step.
Apart from this improved efficiency, the metric is determined in a supervised
way in this approach, such that the parameters are optimized with respect to
the given classification task.
We can work with one full matrix which accounts for a transformation of the
whole input space, or, alternatively, with local matrices attached to the indi-
vidual prototypes. In the latter case, the squared distance of data point ξ from
a prototype wj is computed as dΛ

j

(wj , ξ) = (ξ − wj)
T Λj(ξ − wj). Each ma-

trix is adapted individually in the following way: Given ξ with closest correct
prototype wJ and closest incorrect prototype wK , we get the update equations

∆ΩJ
lm = − ε · φ′(µ(ξ)) · (14)

µ+(ξ) ·
(

[ΩJ (ξ − wJ)]m(ξl − wJ,l) + [ΩJ (ξ − wJ)]l(ξm − wJ,m)
)

∆ΩK
lm = + ε · φ′(µ(ξ)) · (15)

µ−(ξ) ·
(

[ΩK(ξ − wK)]m(ξl − wK,l) + [ΩK(ξ − wK)]l(ξm − wK,m)
)

.

Localized matrices have the potential to take into account correlations which
can vary between different classes or regions in feature space. For instance,
clusters with ellipsoidal shape and different orientation could be present in the
data.
Note that LGMLVQ leads to nonlinear decision boundaries which are composed
of quadratic pieces, unlike GMLVQ which is characterized by piecewise linear
decision boundaries. This way, the receptive fields of the prototypes need no
longer be convex or even connected for LGMLVQ, as we will see in the exper-
iments. Depending on the data at hand, this effect can largely increase the
capacity of the system.

4 Generalization ability

One of the benefits of prototype-based learning algorithms consists in the fact
that they show very good generalization ability also for high dimensional data.
This observation can be accompanied by theoretical guarantees. It has been
proved in [6] that basic LVQ networks equipped with the Euclidean metric pos-
sess dimensionality independent large-margin generalization bounds, whereby
the margin refers to the security of the classification, i.e. the distance of a given
data point to the classification boundary. A similar result has been derived in
[12] for LVQ networks as considered above which possess an adaptive diagonal
metric. Remarkably, the margin is directly correlated to the numerator of the
cost function as introduced above, i.e. these learning algorithms inherently aim
at margin optimization during training. As pointed out in [13], these results
transfer immediately to kernelized versions of the algorithm where the similarity
measure can be interpreted as the composition of the standard scaled Euclidean
metric and a fixed kernel map. In the case of an adaptive full matrix, however,
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these results are not applicable, because the matrix is changed during train-
ing. Hence a large number of additional free parameters is introduced since the
kernel is optimized according to the given classification task.
Here, we directly derive a large margin generalization bound for LGMLVQ net-
works with a full adaptive matrix attached to every prototype, whereby we
use the ideas of [12]. Thus, despite the large flexibility of LGMLVQ networks,
excellent generalization ability of trained networks can be expected due to an
inherent regularization of the models. Since the function class implemented by
GMLVQ networks is contained in the class of LGMLVQ networks, the bounds
also hold for the simpler case.
We consider a LGMLVQ network given by P prototypes wi. We assume that
all inputs ξ fulfill the condition |ξ| ≤ B for some B > 0, and we assume that
weights are also restricted by |wi| ≤ B. As beforehand, we assume that Λi is a
symmetric positive semidefinite matrix such that the trace is normalized to 1.
We consider the case of a binary classification, i.e. only two classes, −1 and 1,
are present. We refer to prototypes labeled with S ∈ {+,−} by wS

i .
Classification takes place by a winner takes all rule, i.e.

ξ 7→ sgn

(

min
w−

i

{dΛ
i

(w−

i , ξ)} − min
w+

j

{dΛ
j

(w+
j , ξ)}

)

(16)

where dΛ
i

(wi, ξ) = (ξ −wi)
T Λi(ξ −wi) as beforehand and sgn selects the sign

±1 of the real number. A trainable LGMLVQ network corresponds to a function
in the class

F := {f : R
N → {−1, 1} | ∃|wi| ≤ B,∃Λi such that Λi is

symmetric and positive semidefinite with trace 1,
such that f is given by (16)}

(17)

Assume some unknown underlying probability measure P is given on R
N ×

{−1, 1} according to which training examples are drawn. The goal of learning
is to find a function f ∈ F such that the generalization error

EP (f) := P (y 6= f(ξ)) (18)

is as small as possible. However, P is not known during training; instead,
examples for the distribution (ξi, yi), i = 1, . . . ,m are available, which are inde-
pendent and identically distributed according to P . Training aims at minimizing
the empirical error on the given training data

Êm(f) :=
m

∑

i=1

|{yi 6= f(ξi)}|/m . (19)

Thus, the learning algorithm generalizes to unseen data if Êm(f) becomes rep-
resentative for EP (f) for an increasing number of examples m with high proba-
bility, i.e. if we can automatically guarantee a small error on any possible input
to the learned function, given the trained inputs are correct. This bound should
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hold simultaneously for any function f of the class, in particular for the network
trained according to the given sample set.
We will not derive bounds which are directly based on the empirical error Êm(f),
rather, we incorporate the security of a classification in terms of the classification
margin. For a function f as given by (16), we consider the related real-valued
function

Mf : ξ 7→
(

min
w−

i

{dΛ
i

(w−

i , ξ)} − min
w+

j

{dΛ
j

(w+
j , ξ)}

)

(20)

which is obtained by dropping the function sgn. The sign of this real value
determines the output class and the size of its absolute value indicates the
security of the classification, i.e. the margin of the classifier with respect to input
ξ around the decision boundary. The larger this margin, the more robust is the
classification of ξ with respect to noise in the input or function parameters. We
refer to the resulting class of real-valued functions implemented by LGMLVQ
networks by MF .
Assume ρ > 0 estimates the minimum security of the classification. For the
moment, we assume that ρ ∈ (0, 1) is a fixed number which is chosen a priori
independent of the training set and the final LGMLVQ function. Following the
approach [1], we define the loss function

L : R → R, t 7→







1 if t ≤ 0
1 − t/ρ if 0 < t ≤ ρ
0 otherwise

(21)

The term

ÊL
m(f) :=

m
∑

i=1

L(yi · Mf (ξi))/m (22)

accumulates the number of errors for a given data set, and, in addition, also
punishes all correct classifications if their margin is smaller than ρ, i.e. it mea-
sures the classification accuracy and its robustness with respect to noise. The
term ÊL

m(f) is small iff the number of misclassifications is small and almost all
correctly classified points have margin larger than ρ.
It is possible to correlate the generalization error of LGMLVQ networks and this
modified empirical error by a dimensionality independent bound: According to
[1](Theorem 7) the inequality

EP (f) ≤ ÊL
m(f) +

2

ρ
· Rm(MF ) +

√

ln(4/δ)

2m
(23)

holds simultaneously for all functions in MF with probability at least 1 − δ/2,
whereby Rm(MF ) is the so-called Rademacher complexity of the function class
MF .
The Rademacher complexity of a function class measures the complexity of the
class by considering the correlation of outputs of a function of the class on a
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given set of points and random variables. The empirical Rademacher complexity
of the function class MF given m samples ξi, is defined as the expectation

R̂m(MF ) = Eσ1,...,σm

(

sup
Mf∈MF

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σi · Mf (ξi)

∣

∣

∣

∣

∣

)

(24)

where σi are independent {−1, 1}-valued random variables with zero mean. The
Rademacher complexity is defined as the expectation over the samples

Rm(MF ) = Eξ1,...,ξm
R̂m(MF ) (25)

where ξi are independent and identically distributed according to the marginal
distribution of P on the input space.
Using techniques of [1], we will show in the appendix, that the Rademacher
complexity of functions given by a LGMLVQ architecture, Rm(MF ), can be
limited by the term

O
(

P 2B3 +
√

ln(1/δ)√
m

)

(26)

with probability at least 1− δ/2 where P denotes the number of prototypes and
B the size restriction of inputs and prototypes. Thus, the overall inequality

EP (f) ≤ ÊL
m(f) +

1√
m
O

(

P 2B3

ρ
+

√

ln(1/δ)

min{1, ρ}

)

(27)

results which holds simultaneously for all Mf ∈ MF and training data with
probability at least 1 − δ. Since this is valid for all Mf ∈ MF , matrix parame-
ters as well as prototypes can be adaptive. This bound allows to estimate the
deviation of the generalization error of a LGMLVQ network and its result on a
given training set. Obviously, the bound is small for a small number of errors
and a large margin ρ for almost all correctly classified points. Note that the cost
function of LGMLVQ is correlated to the classification error, but it also contains
the margin of a data point as denominator of the summands. Thus, LGMLVQ
aims at an optimization of the margin during training and at a corresponding
simplification of the classifier, such that good generalization can be expected.
Note that this bound is independent of the dimensionality of the data. Thus,
excellent generalization can be expected also for high dimensional settings.
So far, we assumed that the bound ρ for the margin (points with smaller margin
contribute to the error) is fixed a priori. In applications, it is reasonable to
choose ρ based on the outcome of a training algorithm such that almost all
training examples have a margin larger than ρ. For this case, a generalization of
the argumentation is possible which only assumes some prior about a reasonable
range of the margin: Assume the empirical margin can be upper bounded by
C > 0, a naive bound being e.g. the maximum distance of data in the given
training set. We define ρi = C/i for i ≥ 1, and we choose prior probabilities
pi ≥ 0 with

∑

pi = 1 which indicate the confidence in achieving an empirical
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margin of size at least ρi for almost all training data. We define the cost function
Li as above associated to margin ρi and the corresponding empirical error as
ÊLi

m (f). We are interested in the probability

P
(

∃i EP (f) ≥ ÊLi
m (f) + ε(i)

)

(28)

where the bound

ε(i) =
1√
m
O

(

P 2B3

ρ
+

√

ln (1/(piδ))

min{1, ρ}

)

(29)

is chosen according to the inequality (27). We can argue

P
(

∃i EP (f) ≥ ÊLi
m (f) + ε(i)

)

≤
∑

i

P
(

EP (f) ≥ ÊLi
m (f) + ε(i)

)

≤
∑

i

pi · δ = δ
(30)

because the bounds ε(i) are chosen according to equation (27). Thus, posterior
bounds depending on the empirical margin and the prior confidence in achieving
this margin can be derived.

5 Experiments

In the following experiments, we study the performance of matrix relevance
adaptation in the context of several learning problems. We compare global and
local matrix schemes with the corresponding schemes for relevance vectors as
used in GRLVQ, for instance. To this end, we restrict our GMLVQ algorithm
to the adaptation of diagonal matrices. Note that we implement gradient steps
in Ω, while the original GRLVQ scheme corresponds to steepest descent w.r.t.
diagonal elements of Λ = ΩΩ, directly. This slight modification was necessary
in order to allow for a fair comparison of vector and matrix adaptation with the
same learning rates.
As initial metric parameters the matrix Λ is set to be diagonal with Λii =
1/N, i=1, . . . , N . The same holds for local relevance matrices, respectively. To
initialize the prototypes, we choose the mean values of random subsets of data
points selected from each class.

Artificial data

In a first illustrative experiment, the algorithms are applied to two-dimensional
artificial data in a binary classification problem. Each class corresponds to
a cigar-shaped cluster with equal prior weights. Raw data is generated ac-
cording to axis-aligned Gaussians with mean µ1 = [1.5, 0.0] for class 1 and
µ2 = [−1.5, 0.0] for class 2 data, respectively. In both classes the standard devi-
ations are σ11 = 0.5 and σ22 = 3.0. These clusters are rotated independently by
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the angles ϕ1 = π/4 and ϕ2 = −π/6 so that the two clusters intersect. Training
and test set consist of 600 data points per class, respectively. In order to reduce
the influence of lucky set compositions, the experiments are performed on ten
statistically independent data sets. One of these data sets is visualized in Fig.
1(a). It will be used for demonstration purposes in the following.
For training, we use one prototype per class and the following settings: We use
the standard Euclidean metric (GLVQ), an adaptive diagonal metric (GRLVQ),
individual adaptive diagonal metrics for each prototype (LGRLVQ), a global
adaptive matrix (GMLVQ), and individual adaptive matrices for every proto-
type (LGMLVQ). Relevance- or matrix learning starts after an initial phase of
100 epochs of pure prototype adaptation. Training is done for 1000 epochs in
total. In all experiments, the learning rates are chosen differently for prototypes
and metric parameters and are annealed during training. The initial learning
rate ηp(0) for prototypes is chosen as 0.05, the initial learning rate for the met-
ric parameters ηm(0) is set to 0.005. Annealing is performed according to the
following learning rate schedule:

ηp,m(t) =
ηp,m(0)

1 + τ · (t − tstart)
(31)

where tstart denotes the starting epoch for the adaptation, i.e. it is 1 for the pro-
totype adaptation and 100 for the adaptation of matrix elements and relevance
factors. The parameter τ is chosen as 0.0001. The mean classification accuracies
on the training and test sets are summarized in the left panel of Tab. 1. The
position of the resulting prototypes and decision boundaries for the example
data set are shown in Fig. 1 (b)-(f).
The relevance matrix

Λ ≈
(

0.817 0.3867
0.3867 0.183

)

which results from GMLVQ training on the example data set has the eigenvalues
one and zero. The same eigenvalue spectrum is obtained in all runs, i.e. for all
randomly shuffled data sets. It implies that the algorithm determines only one

Table 1: Percentage of correctly classified patters for the artificial data and the
image segmentation data using different LVQ algorithms.

Artificial data
Algorithm Training Test

GLVQ 74.4 74.5
GRLVQ 74.5 74.5
GMLVQ 79.8 79.0
LGRLVQ 81.1 80.8
LGMLVQ 92.1 90.8

Image data
Algorithm Training Test

GLVQ 84.8 83.2
GRLVQ 88.9 88.8
GMLVQ 91.1 90.2
LGRLVQ 91.4 90.0
LGMLVQ 99.1 94.4
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Figure 1: (a) Artificial dataset, (b)-(f) Prototypes and receptive fields,
(b) GLVQ, (c) GRLVQ, (d) LGRLVQ, (e) GMLVQ, (f) LGMLVQ, (g) Training
set transformed by global matrix Ω, (h) Training set transformed by local ma-
trix Ω1, (i) Training set transformed by local matrix Ω2.
In (g), (h), (i) the dotted lines correspond to the eigendirections of Λ, Λ1 and
Λ2, respectively.

new feature to discriminate the data. The respective direction in feature space
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is defined by the first eigenvector of Λ. The corresponding matrix Ω projects
the data onto this 1-dimensional subspace as depicted in Fig. 1(g). Further-
more, this figure displays that class 2 samples spread only slightly around their
prototype in the new feature space. The opposite holds for class 1 samples,
implying large distances of these data points to their prototype. Accordingly,
the classification performance is much better for class 2 samples. This can also
be seen in the receptive fields in Fig. 1(e). On this data set, almost 98% of the
training error goes back to class 1 data.
For local matrix adaptation, the algorithm also tends towards a state with
eigenvalues one and zero for both matrices Λ1 and Λ2. However, for parameter
constellations being close to this extreme state, training samples from the over-
lapping region cause numerical instabilities. These data points result in small
values of |dJ−dK | and, in consequence, lead to large parameter updates in equa-
tions (10) and (11). For this reason, we add the constant term c = 0.0005 to the
diagonal elements of the matrices Ω1 and Ω2 after each update step before the
normalization. This prevents the eigenvalues from reaching the extreme state
and eliminates sudden changes of the performance. Note, that this phenomenon
is due to the specific structure of the considered data set and does not constitute
a general drawback of our method. The resulting local relevance matrices on
the example data set are

Λ1 ≈
(

0.4886 −0.4716
−0.4716 0.5114

)

Λ2 ≈
(

0.7584 0.4114
0.4115 0.2416

)

.

Their eigenvalues read eig(Λ1) ≈ (0.972, 0.028) and eig(Λ2) ≈ (0.986, 0.014) at
the end of training. Figures 1(h) and 1(i) denote the projections of the training
set to the feature spaces which are determined for the two prototypes individ-
ually. One can clearly observe the benefit of individual matrix adaptation: It
allows each prototype to shape its distance measure according to the local el-
lipsoidal form of the class. This way, the data points of both ellipsoidal clusters
can be classified correctly except for the tiny region where the classes overlap.
Note that, for local metric parameter adaptation, the receptive fields of the pro-
totypes are no longer separated by straight lines (Fig. 1(d)) and need no longer
be convex (Fig. 1(f)).

Image Segmentation Data

In a second experiment, we apply the algorithms to the image segmentation data
set provided by the UCI repository [18]. The data set contains 19-dimensional
feature vectors, which encode different attributes of 3×3 pixel regions extracted
from outdoor images. Each such region is assigned to one of seven classes (brick-
face, sky, foliage, cement, window, path, grass). The features 3-5 are (nearly)
constant and are eliminated for this experiment. As a further preprocessing
step, the features are normalized to zero mean and unit variance. The training
set consists of 210 data points (30 samples per class), the test set contains 300
data points per class.

14



w3

d
2 4 6 8 10 12 14 16

−1

0

1

2

(a) Class 3: foliage

w4

d
2 4 6 8 10 12 14 16

−1

0

1

2

(b) Class 4: cement

w6

d
2 4 6 8 10 12 14 16

−1

0

1

2

(c) Class 6: path

Figure 2: Prototypes of 3 classes, identified by the different algorithms.
GLVQ: circle, GRLVQ: square, GMLVQ: diamond, LGRLVQ: triangle (down),
LGMLVQ: triangle (left).
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Figure 3: Evolution of the mean training and test error in the course of (a)
GMLVQ-Training. (b) LGMLVQ-Training.

Each class is approximated by one prototype, respectively. We use the same
learning rate schedule as in the previous experiment, Eq. (31). The initial
learning parameters are chosen as follows: ηp(0) = 0.001, ηm(0) = 0.0001 and
τ = 0.0001. In all experiments, the adaptation of the metric parameters starts
after 200 epochs of pure prototype training, i.e. tstart = 200. We continue
learning until the training error remains constant. In order to reduce the influ-
ence of random fluctuations, we average our results over five runs with varying
initializations. The mean classification accuracies are summarized in the right
panel of Tab. 1. The algorithms based on adaptive distance measures show a
better performance than GLVQ. Remarkably, using different metrics influences
the final location of the prototypes in feature space only slightly. Clear dif-
ferences affect only a small number of features in certain classes. Significant
variations are observed for the GLVQ prototypes, mainly, see Fig. 2.
Figure 3(a) displays the averaged classification errors on training- and test sets
in the course of GMLVQ-Training. The training error always stabilizes after
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Figure 4: Visualization of the global relevance matrix Λ after 1000 epochs
GMLVQ-Training (a) Diagonal elements and eigenvalues (b) Off-diagonal ele-
ments. The diagonal elements are set to zero for the plot.

approx. 1000 epochs. The relevance matrices observed at that point in time
turn out to be very robust with respect to different initializations. In single runs
we observe that the algorithm finally can converge to different local minima of
the cost function when training is continued. One of the matrices after 1000
epochs is visualized in Figure 4. The eigenvalue spectrum shows that the clas-
sifier uses a ten dimensional space to classify the data. The dimension weighted
as most relevant in the original space is feature 16 (hue-mean, see [18]). GR-
LVQ training with identical initializations and learning parameters also weights
the same dimension as most important. However, the relevance profile is much
more pronounced (λGRLVQ

16 ≈ 0.9). The additional consideration of correlations
for the computation of distance values causes a less distinct relevance profile.

The training error during LGMLVQ-training remains constant after approx.
7500 sweeps through the training set (Fig. 3(b)). The test error shows slight
overfitting effects. It reaches a minimum after approx. 6000 epochs and in-
creases slightly in the further course of training. In the following we present
the results obtained after 7500 epochs. At this point, training of individual
matrices per prototype achieves a test accuracy of 94.4%, an improvement of
approx. 4.9% compared to GMLVQ and LGRLVQ. Slightly better performance
could be obtained by an appropriate early stopping scheme using an evaluation
set. We are aware of only one SVM result in the literature which is applicable
for comparing the performance. In [19], the authors achieve 93.95% accuracy
on the test set.
Figure 5 shows the diagonal elements and eigenvalue spectra of all local matrices
we obtain in one run which are also representative for the other experiments.
Matrices with a clear preference for certain dimensions on the diagonal also
display a distinct eigenvalue profile (e.g. Λ1, Λ5). Similarly, matrices with al-
most balanced relevance values on the diagonal exhibit only a weak decay from
the first to the second eigenvalue (e.g. Λ2, Λ7). This observation for diago-
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nal elements and eigenvalues coincides with a similar one for the off-diagonal
elements. Figure 6 visualizes the off-diagonal elements of the local matrices
Λ1,Λ2 and Λ5. Corresponding to the balanced relevance- and eigenvalue profile
of matrix Λ2, the off-diagonal elements are only slightly different from zero.
This may indicate diffuse data without a pronounced, hidden structure. There
are obviously no other directions in feature space which could be used to sig-
nificantly minimize distances within this class. On the contrary, the matrices
Λ1 and Λ5 show a clearer structure. The off-diagonal elements cover a much
wider range and there is a clearer emphasis on particular dimensions. This
implies that class-specific correlations between certain features have significant
influence. The most distinct weights for correlations with other dimensions are
obtained for features, which also gain high relevance values on the diagonal.
It is visible that especially relations between the dimensions encoding color in-
formation are emphasized. The dimensions weighted as most important are
features 11: exred-mean (2R - (G + B)) and 13: exgreen-mean (2G - (R + B))
in both classes. Furthermore, the off-diagonal elements highlight correlations
with e.g. feature 8: rawred-mean (average over the regions red values), feature
9: rawblue-mean (average over the regions green values), feature 10: rawgreen-
mean (average over the regions green values). For a description of the features,
see [18].

Splice Site Recognition

As a second benchmark test, we apply the algorithms to the publicly available
C. elegans data set for the detection of splice sites. The data can be downloaded
at http://www2.fml.tuebingen.mpg.de/raetsch/projects/AnuSplice. The
feature vectors encode a sequence of 50 nucleotides with a potential splice site in
the center, in between the characteristic dinucleotide AG. The classification task
consists in separating sequences containing a splice site from sequences without
a splice site, i.e. a two-class problem is defined accordingly. The 4 nucleotides
are encoded as corners of a tetrahedron in a 3-dimensional vector space. This
realizes equal pairwise distances between the nucleotides. The redundant din-
ucleotide AG in the center of all feature vectors is removed. Accordingly, the
sequence information is represented by a vector in R

N with N = 144. The
data consists of 5 data sets containing 1000 data points for training and 10000
data points for testing, respectively. The sets are not balanced and their com-
position varies slightly. They contain approximately two times more non-splice
site-samples than examples of splice sites.
We would like to stress that our main interest in this experiment is not related
to the biological aspects of the classification problem. We will put emphasis
on the analysis of our method and the comparison of the new algorithm to the
adaptation of relevance vectors.
We choose the simplest setting and approximate each class with one prototype
respectively. The initial learning parameters are chosen as ηp(0) = 0.001 and
ηm(0) = 5 · 10−6. Equation (31) is used for annealing the values during training
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Figure 5: (a) Diagonal elements of local relevance matrices Λ1−7. (b) Eigenvalue
spectra of local relevance matrices Λ1−7.
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The diagonal elements are set to zero for the plot.
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Figure 7: (a) Evolution of the elements of relevance vector λ in the course of
GRLVQ-Training. (b) Evolution of the eigenvalues of relevance matrix Λ in the
course of GMLVQ training.

with τ = 0.0001 and tstart = 50. Hence, the adaptation of metric parameters
starts after 50 epochs of GLVQ training.
In all experiments, GMLVQ turns out to be more robust than GRLVQ. The
learning curves of GRLVQ show strong fluctuations until they finally saturate
at a constant level. The mean test set accuracy in this limit is 86.8%±1.7%. In
earlier states of training the system shows better classification accuracy of above
90%. But GRLVQ performs a very strong feature selection in the further course
of learning and the performance degrades in response to this oversimplification.
Fig. 7(a) displays the evolution of the weight values on one of the five data sets
which is also representative for the other experiments. When the error finally
converges, only three factors remain significantly different from zero. Typical
relevance factors are

λ61,64,72
GRLVQ

≈ (0.03, 0.63, 0.34) .

GMLVQ shows a larger stability during learning. The error curves display
only small oscillations, but indicate slight overfitting effects. In the course
of training, we observe an immediate focus on a single linear combination of
the original features. Fig. 7(b) displays the eigenvalues of Λ as a function of
training time. Except for the first eigenvalue, all other factors begin to decrease
to zero immediately after starting metric adaptation. After approx. 12 000
epochs, the system finally reaches a state with only one eigenvalue remaining.
At this point, the mean classification accuracy is 93.4%±0.28% on the test sets.
Due to these extreme configurations of the relevance matrix, the same accuracy
can be achieved in the 1-dimensional subspace defined by the first eigenvector.
Accordingly, our method allows to reduce the number of features dramatically,
without loosing classification performance.
Fig. 8 visualizes one of the final global matrices Λ. Features in the center display
the highest relevances on the diagonal. This implies that the region around the
potential splice site is of particular importance and mirrors biological knowledge.
Additionally, the classifier considers correlations between different features to
evaluate the similarity between the prototypes and new feature vectors. Similar
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Figure 8: Visualization of the resulting global matrix Λ after GLVMQ-Training.
The diagonal elements are set to zero in (b) and (c).

to the previous experiment, the most significant off-diagonal Λij relate to the
features with the highest diagonal relevances. These correlations result in a
cross-like structure in the visualization of the off-diagonal elements, see Fig.
8(b),(c).
The prototypes can be interpreted as a sequence of 48 nontrivial combinations
of the four bases. They converge after approx. 5000 epochs, independent of the
additional adaptation of a relevance vector or a relevance matrix in the distance
measure. The representatives detected by GMLVQ approximate the data more
appropriately compared to the GRLVQ-prototypes. GRLVQ slightly pushes the
prototypes away from the data, several components leave the boundaries of the
tetrahedron. This effect is even stronger when we train GLVQ with the fixed
Euclidean metric. Fig. 9 visualizes the prototypes identified by GMLVQ on one
data set. All subcomponents of the class 1 prototype are located close to the
origin, the tetrahedron’s center of mass. In this position they have almost equal
distance to the four vertices which represent the bases. On the contrary, the
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Figure 9: Visualization of the resulting prototypes after GMLVQ training. The
plots show the projections of the 3-dimensional elements encoding the separate
components of the sequences, onto the x-y plane. The gray values display the
subcomponent’s position in the sequence, i.e. the distance to the potential splice
site. In the right plot, we labeled the positions relative to the center which are
lying closest to one of the bases.

splice site prototype exhibits a more specific structure. Especially the compo-
nents with high relevance values are located close to one of the corners, i.e. one
of the nucleotides, and allow for a better semantic interpretation.
In accordance with our findings for GMLVQ, localized matrix learning detects
one dominating feature per class. As in our GMLVQ experiments, we train
the LGMLVQ system for 12 000 epochs. Note, that both local matrices are
updated in each learning step. The resulting matrices Λ1 and Λ2 do not show
the extreme eigenvalue settings like the global relevance matrix Λ. But the
error curves indicate overfitting and we do not continue training. The largest
eigenvalues range from 0.71 to 0.79 (Λ1) and from 0.95 to 0.96 (Λ2) in the
different experiments. The diagonal and the off-diagonal elements of the local
matrices show the same characteristic patterns as the global matrix. However,
the values of matrix Λ2 are more distinct. The mean classification accuracy is
slightly better compared to GMLVQ (94.2%± 0.31 %). When we perform the
classification based on the two features defined by the first eigendirections of Λ1

and Λ2, we loose almost no performance and still achieve 94.0%± 0.38% test
accuracy. SVM results reported in the literature even lie above 96% [14, 20]
test accuracy. Note, however, that our classifier is extremely sparse and simple
and still achieves a performance which is only slightly worse.
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6 Discussion

We have proposed a new metric learning scheme for LVQ classifiers which al-
lows to adapt a full matrix according to the given classification task. This
scheme extends the successful relevance learning vector quantization algorithm
such that correlations of dimensions can be accounted for during training. The
learning scheme can be derived directly as a stochastic gradient of the GLVQ
cost function such that convergence and flexibility of the original GLVQ is pre-
served. Since the resulting classifier is represented by prototype locations and
matrix parameters, the results can be interpreted by humans: Prototypes show
typical class representatives and matrix parameters reveal the importance of
input dimensions for the diagonal elements and the importance of correlations
for the off-diagonal elements. Local as well as global parameters can be used,
i.e. relevance terms which contribute to a good description of single classes or
the global classification, respectively, can be identified. The efficiency of the
model has been demonstrated in several application scenarios, demonstrating
impressively the increased capacity of local matrix adaptation schemes. Inter-
estingly, local matrix learning obtains a classification accuracy which is similar
to the performance of the SVM in several cases, while it employs less complex
classification schemes and maintains intuitive interpretability of the results.
The new class of algorithms drastically increases the number of free parameters
of training, since full N × N matrices are updated. For a global metric, this
corresponds to an adaptive linear transformation of the space according to the
given classification task. For local metrics, every prototype uses its own trans-
formation to emphasize characteristics of the respective classes. In this case,
the receptive fields are no longer separated by planes but quadratic surfaces.
Furthermore, they need not be convex, such that more complex settings can
easily be accounted for. Clearly, straightforward modifications can be consid-
ered which employ class-wise relevance matrices or other intermediate schemes.
Interestingly, only very mild overfitting is observed in our experiments, and ma-
trix adaptation leads to excellent generalization despite the increased number
of free parameters. This effect can be explained by an inherent regularization
which is present in GLVQ adaptation schemes: The margin of the classifier
with respect to training points, i.e. the difference of their distance to the closest
correct versus the closest wrong prototype is optimized. We have rigorously
shown that generalization bounds which do include the margin, but which are
independent of the dimensionality of the input space and the dimensionality of
the adaptive matrices, can be derived. Thus, the extended classification scheme
provides increased capacity without diminishing the excellent generalization ca-
pability of LVQ classifiers.
Due to the large number of parameters, one drawback of the method consists
in computational costs which scale quadratically with the data dimensionality.
Therefore, the method becomes computationally infeasible for very high dimen-
sional data. One possibility is to reduce the number of free parameters of a
given matrix by enforcing e.g. a block or band structure or a controlled, limited
rank. These possibilities are currently investigated in our research groups.
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Appendix

Here we derive upper bounds for the Rademacher complexity of LGMLVQ net-
works. Assume a function class implemented by LGMLVQ networks is given
as above, MF . In analogy to the Rademacher complexity, one can define the
empirical Gaussian complexity, given m samples ξi, as the expectation

Ĝm(MF ) = Eg1,...,gm

(

sup
Mf∈MF

∣

∣

∣

∣

∣

2

m

m
∑

i=1

gi · Mf (ξi)

∣

∣

∣

∣

∣

)

(32)

where gi are independent Gaussian variables with zero mean and unit variance.
The Gaussian complexity is defined as the expectation over the samples

Gm(MF ) = Eξ1,...,ξm
Ĝm(MF ) (33)

where ξi are independent and identically distributed according to the marginal
of P . These quantities are closely related to the Rademacher complexity. Ac-
cording to [1](Lemma 4) and [17], respectively, the inequality

√

π/2 · Rm(MF ) ≤ Gm(MF ) (34)

holds.
Our aim is to upper bound the Rademacher complexity Rm(MF ) with proba-
bility at least 1 − δ/2 whereby Mf has the form

Mf (ξ) =

(

min
w−

i

{dΛ
i

(w−

i , ξ)} − min
w+

j

{dΛ
j

(w+
j , ξ)}

)

(35)

As beforehand, we assume that |ξ| ≤ B, |wi| ≤ B, Λi is symmetric and pos-
itive semidefinite with trace 1, and we assume that P prototypes are present.
Because of equation (34), we can substitute the Rademacher complexity by the
Gaussian complexity. The empirical Gaussian complexity and the Gaussian
complexity differ by more than ε with probability at most 2 exp(−ε2m/8) ac-
cording to [1](Theorem 11), i.e. they differ by no more than

√

8/m · ln(4/δ) with
probability at least 1 − δ/2. Thus, it is sufficient to upper bound the empirical
Gaussian complexity of LGMLVQ networks.
Note that

R̂m

(

∑

i

Fi

)

≤
∑

i

R̂m(Fi) (36)

holds for all function classes Fi due to the triangle inequality. Further, the
empirical Gaussian complexity does obviously not change when multiplying a
function class by −1. Thus, we can upper bound Ĝm(MF ) by twice the com-
plexity of a function class of functions of the form

ξ → min
wi

{dΛ
i

(wi, ξ)} (37)
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where the minimum is taken over at most P terms.
The function which computes the minimum of P values,

(a1, . . . , aP ) 7→ min{a1, . . . , aP } (38)

is Lipschitz continuous with constant
√

8P , as can be seen as follows: Obviously,
|min{a, 0} − min{a′, 0}| ≤ |a − a′|. Further, min{a, b} = min{a − b, 0} + b.
Hence, by induction, |min{a1, . . . , aP } − min{a′

1, . . . , a
′
P }| ≤ 2|aP − a′

P | +
|min{a1, . . . , aP−1} −min{a′

1, . . . , a
′
P−1}| ≤ . . . ≤ 2|a1 − a′

1|+ . . . + 2|aP − a′
P |.

Thus, |min{a1, . . . , aP } − min{a′
1, . . . , a

′
P }|2 ≤ 4

∑

ij |ai − a′
i| · |aj − a′

j | ≤
8P

∑

i |ai − a′
i|2.

Because of [1](Theorem 14), we find

Ĝm(Φ ◦ F) ≤ 2L
∑

i

Ĝm(Fi) (39)

for every Lipschitz continuous function Φ on a real vector space with Lipschitz
constant L and a function class F contained in the direct sum of the classes Fi.
Thus, because of the Lipschitz continuity of the function min, it is sufficient to
upper bound the empirical Gaussian complexity of function classes of the form,

ξ 7→ (ξ − w)tΛ(ξ − w) = ξtΛξ − 2ξtΛw + wtΛw . (40)

This decomposes into a linear function

ξ 7→ −2ξtΛw + wtΛw (41)

and a quadratic form

ξ 7→ ξtΛξ =
∑

ij

Λijξiξj . (42)

According to [1](Lemma 22), the empirical Gaussian complexity of linear forms
ξ 7→ wtξ can be upper bounded by

2C1C2√
m

(43)

where inputs are restricted to |ξ| ≤ C1 and weights are restricted to |w| ≤ C2.
Note that inputs to the LGMLVQ network and prototypes have length at most
B, further, the sum of eigenvalues of every matrix Λi of the LGMLVQ network
is 1. Thus, functions of the form (41) correspond to linear functions with inputs
restricted to B + 1 and weights restricted to 2B + B2. Functions of the form
(42) can be interpreted as linear functions with enlarged inputs which size is
restricted by B2, and weights restricted by 1, since the Frobenius-norm of the
matrix is given by the sum of squared eigenvalues in this case.
Collecting all inequalities, we can finally upper bound the Rademacher com-
plexity of LGMLVQ networks by

√

π/2 ·
(

√

8/m · ln(4/δ) + 36 · P 2 · 2√
m

·
(

(B + 1)(2B + B2) + B2
)

)

=
1√
m

· O
(

√

ln(1/δ) + P 2B3
)

. (44)
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