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Abstract: The vision behind the smart grid promises, among other things, to 
bring more attention to the lower layers of the distribution network where users 
are gradually transforming into prosumers. Independent of this transformation, 
users will expect the same (or higher) level of reliability of the infrastructure. In 
this paper, we consider physical samples from the Dutch medium and low 
voltage network and we perform a topological analysis to assess their 
robustness. We also analyse the robustness of synthetic topologies from the 
literature on complex network analysis. We note how certain topologies are 
more robust than others and how a small increase in network average 
connectivity can highly improve the resilience of the distribution grid against 
random and targeted attacks. 
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This paper is a revised and expanded version of a paper entitled ‘A statistical 
analysis of power grid vulnerabilities’ presented at the 7th International 
Conference on Critical Information Infrastructures Security (CRITIS’12), 
Lillehammer, Norway, 17–18 September 2012. 

 

1 Introduction 

For infrastructure designers and engineers of the previous two centuries, energy was a 
natural monopoly and the most efficient way to operate the power system was through a 
hierarchical system with large generating facilities on top, and a pervasive network of 
cables to transport and distribute the energy to the geographically delocalised end users. 
Such a system called for management of the whole infrastructure by a monopoly or an 
oligarchy of actors. This manner of operating the electricity system together with burning 
fuels with predictable energy output (i.e., coal, oil, gas) have provided a reliable system 
where energy availability is taken for granted. However, limitations of this system 
become particularly apparent at both the household and country levels when energy 
provision is suddenly interrupted with serious consequences, like prolonged blackouts, 
compromised security, and, interruptions in economic output (Anderson et al., 2007). 

Thanks to technological advancements and the introduction of new regulations, there 
is potential for a radical change. From a technological perspective, new energy generation 
facilities (mainly based on renewable sources) are becoming widely accessible at 
industrial and local/residential level; from a communication perspective, the 
pervasiveness of the internet and data connections are basic achievements of the 
information and communication technology (ICT) sector. At the same time, a clear trend 
of market unbundling is emerging (e.g., Cossent et al., 2009) resulting in the addition of 
many new players to the energy sector with the possibility to produce, sell, and distribute 
energy. In such a scenario, new actors, such as those known as prosumers [who are both 
energy producers and consumers (Marnay and Venkataramanan, 2006)], are becoming 
relevant players. Local production and distribution of energy based on renewables, and 
digitalisation of the power infrastructure are pillars of what is referred to as the smart 
grid. The term smart grid is sometimes used to define the new scenario of a grid with a 
high degree of delocalisation in the production and trading of energy; however, this term 
does not yet have a unique and standard definition (Morgan et al., 2009). In this 
developing scenario, the main role of the high voltage grid may change, while the 
distribution grid (i.e., the medium voltage and low voltage end of the power grid) gains 
more and more importance. In fact, the energy interactions between prosumers will 
increase and most likely occur at a rather local level, and thus involve the low and 
medium voltage grids. We use a statistical approach that considers the lower layers of the 
distribution grid in order to study the grid vulnerability properties; in doing so, we 
consider global metrics from the field of complex network analysis. Similar analyses 
have been carried out in the past, but only for the backbone infrastructure (i.e., the high 
voltage grid). Further, following the findings of our previous work on how the 
distribution grid could evolve to accommodate distributed generation (cf. Pagani and 
Aiello, 2012), we analyse the robustness of synthetic topologies and we consider to what 
extent additional connectivity is beneficial for the robustness of the grid. 
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Here, we present a novel study of the resilience properties of the medium and low 
voltage networks using the northern part of the Netherlands as the data source, and we 
compare reliability aspects of these networks with the findings of other studies involving 
the high voltage grid. Moreover, we analyse the reliability of synthetic topologies that 
have proven to be valuable in representing some of the properties of technological and 
social networks that may be used in designs of future topological structures for the smart 
grid. In such a way, complex network analysis becomes not only a tool for analysing 
existing networks, but also a helpful way to design future topologies of the distribution 
infrastructure. This paper is organised as follows: Section 2 introduces complex network 
analysis and considers the adequacy of such a technique for evaluating power grid 
reliability issues. Section 3 presents key literature regarding power grid vulnerability for 
high voltage power grids. Our study of the Dutch medium and low voltage network 
follows in Section 4, while the investigation of the reliability of synthetic topologies is 
discussed in Section 5. Concluding remarks are provided in Section 6. 

2 Complex networks and vulnerability analysis 

2.1 Complex network analysis and applications 

Complex network analysis is a branch of graph theory, which is rooted in the early 
studies of Erdős and Rényi (1959) on random graphs and considers statistical structural 
properties of very large graphs. Although it is rooted in the past, complex network 
analysis is a relatively young field of research. The first systematic studies appeared in 
the late 1990s (Watts and Strogatz, 1998; Strogatz, 2001; Barabási and Albert, 1999; 
Albert et al., 2000); these studies evaluated properties of large networks that represented 
relationships of components of complex systems. Since then, complex network analysis 
has been used in many different fields of knowledge, from biology (Jeong et al., 2000) to 
chemistry (Doye, 2002); from linguistics to social sciences (Travers and Milgram, 1969); 
from telephone call patterns (Aiello et al., 2000) to computer networks (Faloutsos et al., 
1999) and the web (Albert et al., 1999; Donato et al., 2007) to the spreading of viruses 
(Kephart and White, 1991; Colizza et al., 2007; Gautreau et al., 2008) to logistics (Latora 
and Marchiori, 2002; Guimerà and Amaral, 2004; Colizza et al., 2006); as well as  
inter-banking systems (Boss et al., 2004). Manmade infrastructures are interesting to 
study under the complex network analysis lenses, especially when they are large-scale 
infrastructures that grow in a decentralised and independent fashion. This evolution 
process is usually not the result of a global, but rather of many local autonomous designs. 
The power grid is a prominent example. 

2.2 Power grid vulnerability analysis with complex networks 

The power grid is a real network which is characterised by physical constraints and 
physical laws. In a complex network analysis approach, the power grid networks are 
simplified compared to the infrastructure, and they are reduced to mathematical graphs 
where nodes represent substations of the network or transformers, and edges represent 
power lines. Several studies (e.g., Kim and Obah, 2007; Chassin and Posse, 2005) apply 
complex network techniques to the power grid in order to study the reliability of the high 
voltage grid. The reliability is evaluated by identifying the most connected nodes, the 
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probability disruption properties of the network and the key edges that keep the network 
connected. There is a debate about the optimal way to apply complex network analysis to 
investigate power grid vulnerability. Several studies have considered the network without 
physical parameters performing a pure topological study. Other vulnerability studies 
(e.g., Hines et al., 2010) have included comparisons between grid models that are solely 
based on topological properties and grid models that also take into account 
electrical/physical properties. The aim is to assess the goodness of topological analysis in 
power grid vulnerability problems. 

To date, there is no final acknowledgement as to the superiority of one approach over 
the other (i.e., purely topological versus topological metrics enriched with physical 
parameters). The simplicity of the topology-only analysis has the advantage of being 
extremely fast to compute and provides good overall indications. On the other hand, the 
analysis that includes metrics that are enriched with physical parameters is closer to 
reality and to traditional engineering modelling, which has a proven track record of 
success in power systems analysis and management. 

3 Related work 

The main motivation for the studies involving complex network analysis and power grids 
is to determine the resilience and vulnerability of the electrical infrastructure. In fact, the 
behaviour in terms of connectivity of the network is the primary research question when 
nodes or edges are removed, considering mainly random and targeted attacks. Table 1 
shows various resilience analyses based on complex network analysis. In particular, the 
second column contains the metric that is used to assess the reliability of the network. 
The third and fourth columns concern the type of attack, whether on nodes and/or on 
edges. The fifth column indicates the proposed mitigation strategy for improving grid 
reliability. 
Table 1 Comparison of complex network analysis-based studies of resilience analysis and 

grid-reliability improvement 

Work Resilience analysis type Node 
attack 

Edge 
attack 

Grid 
improvement 

Albert et al. (2004) Connectivity loss    
Crucitti et al. 
(2004) 

Efficiency    

Chassin and Posse 
(2005) 

Loss of load probability    

Holmgren (2006) Influence on largest  
component size and path length 

   

Rosas-Casals and 
Corominas-Murtra 
(2009) 

Robustness through mean degree, 
motifs and patch size analysis 

   

Rosas-Casals et al. 
(2007) 

Influence on largest component size    

Solé et al. (2008) Influence on largest  
component size: comparison  

with theoretical results 
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Table 1 Comparison of complex network analysis-based studies of resilience analysis and 
grid-reliability improvement (continued) 

Work Resilience analysis type Node 
attack 

Edge 
attack 

Grid 
improvement 

Crucitti et al. 
(2005) 

Damages and improvements    

Rosato et al. (2007) Nodes disconnection  
and improvements 

   

Pagani and Aiello 
(2011) 

Influence on largest component size    

Rosas-Casals 
(2010) 

Reliability and disturbances    

Bompard et al. 
(2010) 

Unserved energy/load    

Kim and Obah 
(2007) 

Critical path length and  
clustering coefficient 

   

Hines and 
Blumsack (2008) 

Sensitivity    

Wang et al. (2010) Influence on largest  
spanning cluster size 

   

Han and Ding 
(2011) 

Loss of load and failure endurance    

Wang and Rong 
(2009) 

Avalanche size    

Dwivedi et al. 
(2010) 

Flow availability    

Bompard et al. 
(2009) 

Efficiency, net-ability, overload    

Hines et al. (2010) Path length, connectivity loss    
Brummitt et al. 
(2012) 

Overload, cascade effects,  
blackout size 

   

Table 1 provides a general and schematic idea of complex network-based reliability 
analyses in the literature. One of our previous publications provides a more extensive 
analysis of previous complex network analysis-based studies of the power grid (Pagani 
and Aiello, 2013). 

The studies in Table 1 have some similarities and differences. All of the previous 
studies focused on the high voltage grid, including studies that used real samples and 
studies that used blueprint models [e.g., Institute of Electrical and Electronics Engineers 
(IEEE)-bus models]; the only exception to this is our previous work (Pagani and Aiello, 
2011) that focused on the distribution grid. The studies in the table took place in various 
parts of the world: US grid (Albert et al., 2004; Chassin and Posse, 2005; Wang et al., 
2010; Wang and Rong, 2009; Hines et al., 2010; Brummitt et al., 2012), Italian grid 
(Crucitti et al., 2004, 2005; Rosato et al., 2007), French and Spanish grids (Crucitti et al., 
2005; Rosato et al., 2007), northern Dutch distribution grid (Pagani and Aiello, 2011), 
Scandinavian grid (Holmgren, 2006), entire European grid (Rosas-Casals and 
Corominas-Murtra, 2009; Rosas-Casals et al., 2007; Solé et al., 2008), and Chinese grid 



   

 

   

   
 

   

   

 

   

    A complex network approach for identifying vulnerabilities 41    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

(Han and Ding, 2011). Some works also took into consideration the synthetic models 
provided by IEEE that have often been used as guidelines to build actual electric 
infrastructures (Bompard et al., 2010; Kim and Obah, 2007; Hines and Blumsack, 2008; 
Wang et al., 2010; Dwivedi et al., 2010; Bompard et al., 2009; Hines et al., 2010). From a 
temporal point of view, almost all of the studies took place in the second half of the first 
decade of the new millennium; several of the studies indicated that the motivation for the 
research was the improvement in the knowledge and causes of blackouts, especially after 
big events that cut power in US (BBC, 2003b) and Italian (BBC, 2003a) grids. The 
evolution in the way that the analysis of the grid is performed is interesting to consider: 
the initial studies (e.g., Albert et al., 2004) concentrated solely on the topological 
structure of the grid without taking into consideration physical parameters that 
characterise the power lines; later, studies performed extended topological investigations 
where physical parameters of the lines (e.g., impedance) were included so that the 
researcher could obtain a picture that was closer to reality (e.g., Bompard et al., 2009). 
Another aspect that appears in most of the works (Albert et al., 2004; Crucitti et al., 2004, 
2005; Chassin and Posse, 2005; Holmgren, 2006; Rosas-Casals and Corominas-Murtra, 
2009; Rosas-Casals et al., 2007; Solé et al., 2008; Rosato et al., 2007; Pagani and Aiello, 
2011; Hines and Blumsack, 2008; Wang et al., 2010; Han and Ding, 2011) is the 
evaluation of the node degree distribution statistics to investigate the presence of  
power-law probability distribution signs (p(k) ~ k–γ). Generally, the agreement between 
all the works is that the power grids follow an exponential trend that characterises the 
node degree probability distribution. The majority of studies in Table 1 focused on node 
attacks/failures in order to determine the vulnerability of the network; fewer works 
considered attacks/failures of lines and only three studies (i.e., Chassin and Posse, 2005; 
Pagani and Aiello, 2011; Bompard et al., 2010) considered both. Grid improvement in 
order to limit cascade effects and augment reliability is seldom considered. Only four 
studies address this key issue for the infrastructure: Crucitti et al. (2005) and Rosato et al. 
(2007) demonstrated the benefits of including more edges achievable for the high voltage 
power grids of Italy, France, and Spain showing a consistent improvement that just few 
additional lines provided for the Italian grid; Holmgren (2006) proposed a virtual 
scenario of a very simple grid (only nine nodes) where the author analysed the 
infrastructure (two additional lines) and improvement in restoration time after failures; 
Brummitt et al. (2012) applied a sand pile model (cf. Bak et al., 1987) to the South-East 
US grid and the study shows that more connectivity between subnetworks is not always 
beneficial in limiting the spread of cascade effects. All of the studies emphasise that the 
networks have good resilience when failures target random nodes. However, all the 
studies agree on the extreme vulnerability that networks showed towards targeted attacks, 
that is, failures that focus on key nodes such as those with high degree, high betweenness 
values, or elements that manage the highest amount of load or electricity flow. Studies 
that considered topological and physical parameters provided information about the way 
that networks tend to disrupt and spread failures that better reflects reality. However, the 
cross-check between nodes and lines identified as topologically most critical and 
problems actually experienced on the lines by grid operators and power companies is an 
important feature that nobody has studied. Such comparison with the results of the power 
industry would be extremely beneficial for the application of complex network analysis 
in the real power system world. Finally, to the best of our knowledge, all of the studies, 
except for the present one and our previous work (Pagani and Aiello, 2011), focus solely 
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on the high voltage grid. The focus on the high voltage grid is a limit since it ignores the 
grid levels that appear important for the success of the future smart grid that will be 
characterised by local scale generation and distribution. 

4 Vulnerabilities in the Dutch medium and low voltage grid 

In our study of the Dutch medium and low voltage grid, we have considered 11 samples 
that belong to the low voltage network (VLV ≤ 10 kV) and 13 samples that belong to the 
medium voltage network (10 kV ≤ VMV ≤ 20 kV) of the northern part of the Netherlands. 
We have developed two types of representations of each grid sample: a purely 
topological one and a weighted one. For the latter type, the weight on the edges 
represents the physical resistance of the cables, and the weight of a node is the sum of the 
weight of the incident edges on that node (Newman, 2004). Table 2 shows the main 
topological properties of the samples of the Dutch distribution network. The first column 
contains the identifier of the sample, while order and size are reported in the second and 
the third column, respectively. The fourth column shows the average node degree (<k>). 
The fifth column provides a measure of the effort to move in the network by providing 
the characteristic path length (CPL). The sixth column provides a value of the clustering 
of the network (clustering coefficient for the whole network) (γ). The same properties are 
listed for the medium voltage samples too in columns 7 through 12. 
Table 2 Topological properties of the samples of the Dutch distribution grid 

Low voltage samples  Medium voltage samples 
ID Order Size <k> CPL γ  ID Order Size <k> CPL γ 

1 17 18 2.118 3.313 0.00000  1 191 207 2.168 8.990 0.00296 
2 15 16 2.133 3.000 0.00000  2 884 1059 2.396 9.527 0.00494 
3 24 23 2.087 4.228 0.00000  3 444 486 2.189 10.858 0.00537 
4 30 29 1.933 4.449 0.00000  4 472 506 2.144 17.174 0.01360 
5 188 191 2.032 17.878 0.00000  5 238 245 2.059 11.580 0.00000 
6 10 9 1.800 2.223 0.00000  6 263 288 2.190 12.311 0.01118 
7 63 62 1.968 5.404 0.00000  7 217 229 2.111 10.241 0.00140 
8 28 27 1.929 5.000 0.00000  8 366 382 2.087 14.546 0.00000 
9 133 140 2.105 11.366 0.01112  9 218 232 2.128 10.915 0.00000 
10 124 138 2.226 7.070 0.00869  10 201 204 2.030 15.257 0.00166 
11 31 30 1.935 4.357 0.00000  11 202 213 2.109 12.891 0.00140 

       12 25 24 1.920 5.500 0.00000 
       13 464 499 2.151 12.703 0.00036 

4.1 Vulnerability: node failures 

There are basically two ways to perform the analysis on node vulnerability: choosing the 
nodes randomly or using a specific strategy to select the nodes to be removed. We 
consider three policies for node removal: random, highest degree, and highest 
betweenness. The measure that is taken into account is the order of the largest connected 
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component of the network (i.e., the number of nodes composing the biggest connected 
cluster in the network). This value, and its evolution while nodes of the network are 
removed, are computed as a fraction of the original order of the network. 

Figure 1 Resilience for node removal for Dutch medium voltage sample #2, (a) random-based* 
(b) node degree-based (see online version for colours) 

 
(a) 

 
(b) 

Note: *Red line represents the mean over 50 repetitions and whiskers show the standard 
deviation. 

The random removal simulates casual errors. In our previous work (Pagani and Aiello, 
2011), we showed that few samples of the Dutch distribution grid tended to follow a 
powerlaw in the statistical distribution of the node degree, while others exhibited a 
statistical distribution closer to an exponential. Node degree distribution provides a 
statistical representation of the connectivity of the network and several properties arise 
from this characteristic (e.g., resilience to failures, node centrality). As shown in Cohen  
et al. (2000), networks that follow a power-law whose characteristic parameter γ < 3 tend 
to have a high value for the transition threshold at which they disrupt. In the samples we 
analysed, this is true especially for the small samples having a cluster that is 10% of the 
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original network when almost 90% of the nodes are removed. The situation is different 
for samples with higher order, which show a cluster that is reduced to 10% of the original 
when about 40% of the nodes are removed. Figure 1(a) shows the fraction f of the nodes 
removed from the original sample and the effects on the order of the largest connected 
component S relative to the initial order of the graph. Even if the degree distributions for 
samples following a power-law have a parameter γ < 3, the samples show a threshold 
effect that is more similar to networks whose characteristic γ > 3. 

The situation is radically different when targeted attacks are performed, such as the 
node degree-based removal and betweenness-based removal. The main difference 
compared to the random-based removal is the presence of very sharp drops that appear 
when certain nodes are removed, causing a decrease in the order of the maximal 
connected component of up to 40%, as shown in Figure 1(b). By just removing 10% of 
the most connected nodes, one reduces the network to only 10% of its original order. 

Figure 2 Node degree versus betweenness, (a) node degree versus betweenness for Dutch low 
voltage sample #10 (b) node degree versus betweenness for Dutch medium voltage 
sample #3 (see online version for colours) 

 

(a) 

 

(b) 
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The removal of nodes based on the highest betweenness generally shows the same 
behaviour as the degree-based removal. There is not perfect correlation between node 
degree and betweenness in power grids [an example is shown in Crucitti et al. (2004)], 
however, the general tendency is that nodes that have an higher node degree are more 
involved in the shortest paths as shown in Figure 2. Considering the general correlation 
between nodes with a certain degree and their betweenness, it is not surprising that the 
two removal policies have very similar results and shape. The only remark that generally 
differentiates the betweenness-based removal is a slightly higher order of the maximally 
connected component compared to the one obtained with the degree-based removal. In 
addition, the decrease of the order of the maximally connected component tends to be 
slightly smoother than the degree-based one. Figure 3 shows the comparison of the two 
removal policies. 

Figure 3 Resilience for betweenness based (red) and degree based (blue) attacks for Dutch 
medium voltage sample #10 (see online version for colours) 

 

4.2 Vulnerability: edge failures 

Another way to investigate the resilience is to determine which and how many edges 
have to be removed to break the graph into two disconnected components of equivalent 
order (Rosato et al., 2007). To solve this problem, we exploit the spectrum of the 
Laplacian matrix of a graph. 

Definition 1 (Laplacian matrix): Let D = (Dij) be a diagonal matrix with Dii = d(vi) the 
degree of vertex vi in graph G and A the adjacency matrix. The matrix L = D – A is the 
Laplacian matrix of graph G. 

Definition 2 (Adjacency matrix): The adjacency matrix A = A(G) = (ai,j) of a graph G of 
order N is the N × N matrix given by 

( )1 if , ,
0 otherwise.      
⎧ ∈

= ⎨
⎩

i j
ij

v v E
a  

of G, where (vi, vj) is an edge between vertex vi and vj and E is the edge set of G. 

By looking at the second smallest eigenvalue of the Laplacian matrix of the 
corresponding graph and computing the corresponding eigenvector, one has a 
representation of each node of the graph. Each node whose eigenvector component is 
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positive belongs to one sub-graph, while the ones with negative components belong to the 
other sub-graph. The edges that connect nodes belonging to the different sub-graphs are 
the critical edges that, if removed, lead to two different sub-graphs. The more edges 
connect the two sub-graphs, the more robust is the grid. Once the two sub-graphs are 
identified, it is possible to iterate the method on each sub-graph and find again the most 
critical edges. 

Table 3 shows the number and percentage of critical edges for the Dutch samples that 
we analysed. These edges, if removed at the same time, disrupt the network evenly in two 
or more sub-networks. The first column of the table represents the sample identifier, the 
second and fourth column represent the network type, and the third and fifth the number 
of edges to be removed simultaneously to split evenly the network. The absolute numbers 
in the table show that low voltage networks are more prone to edge failure than medium 
voltage networks; in the medium voltage network, twice as many edges must be removed 
before failure takes place. Medium voltage sample #2 is the most reliable against line 
disruption attack and indeed this is an indication of the highly meshed structure of this 
big sample (more than 850 nodes and 1,000 edges). However, the percentage values in 
the table show the opposite pattern. The networks with small size have high scores. The 
opposite pattern may be due to the small size and the small absolute number of nodes on 
a small sized network. 
Table 3 Number of critical edges for Dutch medium and low voltage samples 

ID # Network 
type 

Number of 
critical edges 

% of critical 
edges 

Network 
type 

Number of 
critical edges 

% of critical 
edges 

1 LV 2 11.1 MV 2 1.0 
2 LV 2 12.5 MV 27 2.5 
3 LV 2 8.7 MV 4 0.8 
4 LV 1 3.4 MV 5 1.0 
5 LV 2 1.0 MV 3 1.2 
6 LV 2 22.2 MV 4 1.4 
7 LV 1 1.6 MV 4 1.7 
8 LV 1 3.7 MV 1 0.3 
9 LV 2 1.4 MV 6 2.6 
10 LV 3 2.2 MV 4 2.0 
11 LV 1 3.3 MV 4 1.9 
12 - - - MV 1 4.2 
13 - - - MV 6 1.2 

4.3 Discussion 

The samples we have analysed from the Dutch medium and low voltage grid have a very 
small connectivity in terms of average node degree. In fact, the low voltage samples score 
for the average node degree <k> = 2.009 with variance σ2 = 0.016, while the medium 
voltage samples score <k> = 2.129 with variance σ2 = 0.012. These values are in general 
low, which is not surprising for a physical infrastructure such as the power grid. 
However, these values for the distribution grid are considerably lower than the values 
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found for high voltage grids; for instance, the average degree for the several samples of 
the grids in Europe is <k> = 2.8. Despite such a difference in the average node degree, we 
generally observed a similar behaviour in the way the grids tend to disrupt. For attacks 
that consider nodes, when facing random removal, both medium and low voltage 
networks showed a degradation in the connectivity of the largest connected component 
that slowly decays. The situation was totally different when the attacks targeted nodes 
that have a particular importance in the network: high node degree or high betweenness. 
The removal of just a few nodes (a number of nodes that is less than 10% of the original 
order) disrupted the network: the order of the largest connected component was reduced 
to less than 20% of the initial order of the graph. We also performed a weighted analysis. 
Naturally, there was no change if weights were included or not for random removal. 
Targeted attacks also showed virtually no changes in the way networks disrupt when 
weights were added. The disruption behaviour of the network samples was very similar to 
the unweighted situation: the network suffered deeply from these targeted attacks; a very 
small percentage of removed nodes caused an important loss in the order of the biggest 
component left in the network. However, if one takes a closer look at the disruption 
charts for the same samples, some small differences can be noted. The nodes with the 
highest weighted degree caused bigger damage to the network when removed in the very 
first iteration than nodes with higher degree in unweighted networks. This behaviour is 
shown in Figures 4(a) and 4(b). The situation then changes in the later stages of the 
removal process when a bigger disruption is caused by nodes with higher node degree in 
the traditional sense. Concerning the robustness to edge removal, we note that the 
medium voltage grid to be generally more robust than the low voltage one. This result 
may be related to the more meshed structure of such a layer of the distribution grid. This 
behaviour of the medium and low voltage grid is in line with the findings of Rosato et al. 
(2007) for the high voltage grid. In general, the results for the medium voltage grid were 
closer to those for the high voltage grid in terms of edges that had to be removed 
compared to those for the low voltage grid. 

Figure 4 Resilience for node degree-based removal, (a) medium voltage sample #3  
(b) low voltage sample #10 (see online version for colours) 

 
(a) 

Note: (Un)weighted in (blue) red. 
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Figure 4 Resilience for node degree-based removal, (a) medium voltage sample #3  
(b) low voltage sample #10 (continued) (see online version for colours) 

 
(b) 

Note: (Un)weighted in (blue) red. 

5 Vulnerability of synthetic topologies for the distribution grid 

Most studies that use complex network analysis focus on extracting properties of 
networks arising from natural phenomena and human generated networks to try to 
understand the underlying rules that characterise them. Here, we look at network  
models that have proven to be successful in showing salient characteristics of 
technological networks, social networks, and natural phenomena to identify models that 
are best suited for the next generation distribution infrastructure, from a reliability point 
of view. Previous complex network analysis-based studies on the vulnerability of 
networks and their behaviour when subject to failures have focused mainly on the 
vulnerability of node removal in scale-free and random networks (Albert et al., 2000) or 
with other node degree distributions (Callaway et al., 2000). In this paper, in addition to 
scale-free and random graphs, we also consider small-world and recursive matrix (R-
MAT) models that may provide different properties than previous studies in the literature 
that used big graphs (Albert et al., 2000), especially considering the small order that 
characterises the distribution networks. Further, in our study we consider an analysis of 
the vulnerability on edges attack that has received less attention than node vulnerability 
analysis. 

We stress that these are possible model blueprints in which the future distribution 
grids can be designed. We are aware that other factors (e.g., territory geography, the 
users’ demand of power, and political factors) influence how the grid is designed and 
evolves. 

Next, we provide a brief introduction to the models used in the present study; more 
in-depth presentations are available in other publications [e.g., in Chakrabarti and 
Faloutsos (2006) and Newman (2003)]. The synthetic networks for this study were 
created with C++ ad hoc programmes and the Stanford Network Analysis Project 
(SNAP) (Stanford, 2013). 
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• Random graph. A random graph is a graph that is created by picking each possible 
pair of nodes and connecting them with an edge with probability p. This approach is 
based on the pioneering studies of Erdős and Rényi (1959). The only parameters that 
are required to generate a synthetic random graph are the order and the size of the 
network. 

• Small-world graph. The small-world phenomenon became famous after the works of 
Milgram in the sociological context (Travers and Milgram, 1969) who found short 
chains of acquaintances connecting random people in the USA. More recently, the 
small-world characterisation of graphs has been investigated by Watts and Strogatz 
(1998), and Watts (2003), who showed the presence of the small-world property in 
many types of networks such as actor acquaintances, the power grid and neural 
networks in worms. To generate such networks in addition to size and order a 
probability of rewiring edges is necessary. We choose an intermediate approach 
between the regular lattice (i.e., rewiring probability p = 0) and random graph 
extremes (i.e., rewiring probability p = 1); thus, we choose the rewiring probability  
p = 0.4. 

• Scale-free network based on preferential attachment. The preferential attachment 
model represents a phenomenon in real networks where a fraction of nodes have high 
connectivity while the majority of nodes have a small node degree. This model is 
based on Barabási and Albert’s (1999) observation of a typical pattern that 
characterises several types of natural and artificial networks. The only parameters 
that are needed to generate networks with this model are the order and size of the 
graph to be generated. Networks that are based on this model have scale-free 
properties (Caldarelli, 2007). 

• R-MAT. R-MAT is a model that exploits the representation of a graph through its 
adjacency matrix (Chakrabarti et al., 2004). In particular, it applies a recursive 
method to create the adjacency matrix of a graph, thus obtaining a self-similar graph 
structure. This model captures the community-based pattern appearing in some real 
networks. The R-MAT model requires several parameters. First of all, order and size 
of the network, then the a, b, c, d parameters which represent the probabilities of the 
presence of an edge in a certain partition of the adjacency matrix. The order of the 
graph is chosen so that the nodes are a power of two, in particular, 2n where usually  
n = ⎡log2N⎤. Therefore, for this model, we consider the following values for the 
order: {32, 128, 256} for comparison with the low voltage grids, and {256, 512, 
1,024} for comparison with the medium voltage grids. For the probability 
parameters, b = c since we have an undirected graph. Further, the ratio found 
between a and b is about 3.1, this is the case in many real scenarios, according to 
Chakrabarti et al. (2004). We assume a more highly connected community (a = 0.46) 
and a less connected community (d = 0.22) and a relative smaller connectivity 
between the two communities (b = c = 0.16). 

We analysed the reliability of the topologies just described that have proven to be 
successful in describing the interactions in social or technological complex networks. For 
each topological model, we considered the reliability in terms of random and targeted 
attacks towards nodes of the network. For each sample, we considered several values of 
the order of the graph to have topologies similar to the physical ones in terms of the 
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number of nodes. Following our analysis of the northern Dutch medium and low voltage 
grid (Pagani and Aiello, 2011), we categorised networks as small, medium and large, 
based on their order (Table 4). By considering the disruption behaviour of the synthetic 
networks, we can evaluate which topological model is best to organise the distribution 
grid and how beneficial increased connectivity would be in this respect. 
Table 4 Categories of medium and low voltage network and their order 

Network layer Category Order 
Low voltage Small ≈ 20 
Low voltage Medium ≈ 90 
Low voltage Large ≈ 200 
Medium voltage Small ≈ 250 
Medium voltage Medium ≈ 500 
Medium voltage Large ≈ 1,000 

Source: Based on Pagani and Aiello (2011) 

5.1 Vulnerability: node failures 

An increase in the average connectivity is particularly beneficial in contrasting the 
targeted attacks. Because of space limitations, we only show and describe the biggest 
samples in terms of the order of the graphs. However, the same considerations can be 
extended to the smaller samples generated by the same network generation algorithm. 

Figure 5 shows the resilience behaviour of the synthetic models described above in 
terms of the number of nodes belonging to the giant connected component as a fraction of 
the original order of the network when the networks are subject to random node removal. 

Figure 5 Resilience for random node removal for synthetic networks with order N ≈ 1,000,  
(a) scale-free network based on preferential attachment model (b) R-Mat networks  
(c) random graphs (d) small-world networks (see online version for colours) 

 
(a) 

Note: Green line is the mean over 50 repetitions and the whiskers show the standard 
deviation (blue whiskers <k> ≈ 2, red whiskers <k> ≈ 4, and black whiskers  
<k> ≈ 6). 
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Figure 5 Resilience for random node removal for synthetic networks with order N ≈ 1,000,  
(a) scale-free network based on preferential attachment model (b) R-Mat networks  
(c) random graphs (d) small-world networks (continued) (see online version for colours) 

 
(b) 

 
(c) 

 
(d) 

Note: Green line is the mean over 50 repetitions and the whiskers show the standard 
deviation (blue whiskers <k> ≈ 2, red whiskers <k> ≈ 4, and black whiskers  
<k> ≈ 6). 
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Figure 5(a) shows the disruption behaviour of a network with increasing average node 
degree (i.e., <k> ≈ 2, <k> ≈ 4, and <k> ≈ 6) built using the preferential attachment 
algorithm when nodes are randomly removed. We see a consistent improvement between 
the <k> ≈ 2 and the <k> ≈ 4 situations. The curves with the <k> ≈ 4 and the <k> ≈ 6 are 
almost overlapping until 40% of the initial nodes are removed. In this case, it seems that 
the additional connectivity plays a decisive role only in the late stage of the random 
attack process. 

Figure 5(b) shows the disruption behaviour of three R-MAT networks with increasing 
average node degree subject to random node removal. For this model of network, the 
disruption of the networks with increased connectivity behaves linearly (except in the 
very last part when 70% to 80% of the nodes are already removed). The difference in the 
behaviour of the network is very small, especially when the connectivity reaches <k> ≈ 4 
and <k> ≈ 6. The additional connectivity provides clear benefits in the transition between 
<k> ≈ 2 to <k> ≈ 4, while the benefits of higher average connectivity (i.e., <k> ≈ 6) are 
very thin and only significant when almost all nodes are removed. 

The resilience to random attacks targeting random graphs with increasing average 
node degree is shown in Figure 5(c). One sees for the three connectivity situations a 
linear degradation in the connectivity of the network for the biggest part of node removal. 
Comparing the three connectivity situations one sees that the difference between the  
<k> ≈ 2 and <k> ≈ 4 is significant and reaches a consistent differentiation in the number 
of nodes to be removed of about 25% when the greatest connected component is reduced 
to 10%. The difference between the <k> ≈ 4 and <k> ≈ 6 situations is limited to 10% in 
the latest stage of the attack. 

The small-world networks present the best improvement in reliability against random 
attacks when more connectivity is added. The graphical representation is shown in  
Figure 5(d). The model shows a rapid decrease in the order of the largest connected 
component when the average node degree is just <k> ≈ 2: by only removing 15% of the 
nodes, the biggest connected component reduces to about 10% of the initial order. The 
improvement is remarkable when the number of edges doubles. Instead of following a 
fast decay, the network has a linear disruption until 50% of nodes are removed in the  
<k> ≈ 4 situation and almost 65% of the nodes are removed in the <k> ≈ 6 situation. The 
two most connected networks fall apart in a similar manner since there is no significant 
difference until 45% to 50% of the nodes are removed. 

Figure 6 shows the resilience behaviour of the synthetic models in term of the number 
of nodes belonging to the giant connected component as a fraction of the original order 
of the network when the networks are subject to targeted attacks towards the nodes with 
highest node degree (in decreasing order). 

Figure 6(a) provides the situation for the networks generated with the preferential 
attachment algorithm that are subject to attacks involving nodes with the highest degrees. 
Between the three evolutions with an increasing average node degree of <k> ≈ 2,  
<k> ≈ 4, and <k> ≈ 6, one sees a general improvement in the number of nodes that are 
part of the largest connected component while the average degree increases. Actually, the 
left most curve in Figure 6(a) (i.e., <k> ≈ 2) shows a behaviour that is very similar to 
those presented by the physical samples of the Dutch distribution grid: the removal of 
only a very tiny fraction of the most connected nodes causes the network to fall apart. 
The situation is actually worse for this type of synthetic network given the presence of 
only a few big hubs and the fact that these hubs have the majority of connection that hold 
the connectivity of the network. When the node degree increases to <k> ≈ 4 and <k> ≈ 6, 



   

 

   

   
 

   

   

 

   

    A complex network approach for identifying vulnerabilities 53    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

the disruption is smoother and the degradation in the numbers of the nodes belonging to 
the giant connected component degrades without big discontinuous steps. 

Figure 6(b) shows the resilience to node-based attacks for the R-MAT model. One 
sees an interesting behaviour in comparing the disruption behaviour of the R-MAT model 
with <k> ≈ 2 and the physical samples: the disruption is quite smooth while more and 
more nodes are removed and the removal of a single node causes at most a loss less than 
10% in the giant connected component. It is also remarkable that such discontinuity 
emerges when about 15% of the nodes of the original network are removed. Interestingly, 
there is also a similarity in the behaviour that the disruption has when more connectivity 
is added [see the two right most curves of Figure 6(b)]. In fact, there is only a small 
difference in resilience between the <k> ≈ 4 and the <k> ≈ 6 situations. The additional 
connectivity (from <k> ≈ 4 to <k> ≈ 6) in this model is not particularly beneficial. 

Figure 6 Resilience for node degree-based node removal for synthetic networks with order  
N ≈ 1,000, (a) scale-free network based on preferential attachment model (b) R-MAT 
networks (c) random graphs (d) small-world networks (see online version for colours) 

 
(a) 

 
(b) 
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Figure 6 Resilience for node degree-based node removal for synthetic networks with order  
N ≈ 1,000, (a) scale-free network based on preferential attachment model (b) R-MAT 
networks (c) random graphs (d) small-world networks (continued) (see online version 
for colours) 

 
(c) 

 
(d) 

The randomly created graphs show a disruption behaviour that does not have particular 
discontinuities in the order of the largest connected component. In fact, the decay 
proceeds for a large part of the removal of nodes in an almost linear way, as shown in 
Figure 6(c); for a randomly generated network, the node degree probability distribution is 
Poissonian (Dorogovtsev and Mendes, 2002), this distribution leads to a small probability 
of nodes with high degree. The enhanced connectivity is beneficial and one sees that 
every step of additional connectivity (i.e., <k> ≈ 2, <k> ≈ 4, and <k> ≈ 6) improves about 
0.2 in the fraction of nodes that need to be removed before the connectivity of the largest 
connected component is reduced to 5% of the initial order of the network. 

Considering the small-world model, one sees a very different picture that is similar in 
the <k> ≈ 2 situation to the behaviour that is depicted by the Dutch samples: the removal 
of only 5% of the most connected nodes brings the network to an almost complete  
break-up (the giant connected component is only 10% of the initial order of the network). 
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Figure 6(d) shows the comparison between the disruption behaviour when the networks 
are generated with increasing average node degree. The improvements in robustness that 
are gained by doubling the number of connections are extremely beneficial compared to 
the <k> ≈ 2 situation. Especially, the higher connectivity avoids that the removal of a 
single node causes a sudden drop in the order of the largest connected component. The 
effects of the removal of the top 25% of nodes with high degree have almost the same 
effect on the connectivity of the network when the average node degree is <k> ≈ 4 or  
<k> ≈ 6. This aspect is crucial when considering the trade-off between the costs of a more 
connected infrastructure and the benefits in terms of reliability that such a connectivity 
provides. 
Table 5 Critical edges for synthetic networks with increasing average node degree <k> ≈ 2, 

<k> ≈ 4, and <k> ≈ 6 

Network model Category 

# critical
edges 
with  

<k> ≈ 2 

% of 
critical
edges
with  

<k> ≈ 2

# critical
edges 
with  

<k> ≈ 4 

% of 
critical
edges
with  

<k> ≈ 4

# critical 
edges 
with  

<k> ≈ 6 

% of 
critical 
edges 
with  

<k> ≈ 6 

Scale-free 
network based 
on pref. att. 
model 

LV-small 1 5.3 7 18.9 18 33.3 
LV-medium 1 1.1 37 20.9 55 20.8 
LV-large 1 0.5 83 20.9 140 23.6 
MV-small 1 0.4 101 20.3 210 28.2 
MV-medium 1 0.2 194 19.5 384 25.7 
MV-large 1 0.1 335 16.8 758 25.3 

R-MAT LV-small 2 6.5 10 16.9 9 10.3 
LV-medium 9 7.2 16 6.4 21 5.6 
LV-large 15 5.7 30 6.0 38 5.0 
MV-small 6 2.3 22 4.4 29 3.9 
MV-medium 48 9.2 42 4.2 114 7.5 
MV-large 21 2.0 60 2.9 60 2.0 

Random graph LV-small 2 9.5 9 22.5 20 33.3 
LV-medium 2 2.2 18 10.0 83 30.7 
LV-large 13 6.3 66 16.5 89 14.8 
MV-small 13 5.0 81 16.2 103 13.7 
MV-medium 9 1.7 72 7.2 185 12.3 
MV-large 47 4.6 292 14.6 406 13.5 

Small-world LV-small 2 10.0 10 25.6 15 25.4 
LV-medium 1 1.1 24 13.6 49 18.4 
LV-large 2 1.0 61 15.3 121 20.2 
MV-small 1 0.4 65 13.1 135 18.1 
MV-medium 1 0.2 162 16.2 272 18.2 
MV-large 1 0.1 265 13.3 602 20.1 
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5.2 Vulnerability: edge failures 

To investigate vulnerability to edge attacks, we apply the same procedure described in 
Section 4 to the synthetic topologies generated with increasing average node degree. The 
number of edges that need to be removed for the different models and for each category 
is shown in Table 5. In this table, the first column indicates the synthetic model that was 
used, the second column lists the category that the synthetic network belongs to, while 
the third, fifth and seventh column indicate the number of edges to be simultaneously 
removed to break the network in two sub-graphs when the average node degree is  
<k> ≈ 2, <k> ≈ 4, and <k> ≈ 6, respectively. Columns four, six and eight give the same 
information of the edges to be removed, but consider the percentage of the critical edges 
in relation to the total number of edges. 

Generally, one sees that the more connectivity the network has, the more number of 
edges need to be removed. This is true between the different steps of addition of edges 
that we have considered for the synthetic networks. It is also true for the different six 
categories of networks that we have considered that have an increasing number of nodes 
and edges. When the networks have an average degree that is similar to the Dutch grids 
(i.e., <k> ≈ 2), we got similar results with only a few edges that needed to be removed to 
split the network into two similar halves. In particular, the scale-free network that is 
based on the preferential attachment model and the small-world model had results close 
to those of the low voltage network, while the R-MAT and the random graphs show 
higher robustness that was closer to the results of the medium voltage network samples. 
The same results can be drawn considering the percentage values: in low connectivity 
conditions (i.e., <k> ≈ 2) the values were similar to the Dutch samples, but by just 
doubling the connectivity, the percentages of critical edges increases notably (i.e., more 
edges need to be removed to disrupt the network) with the exception of the R-MAT 
networks. Actually, the addition of even more connectivity (i.e., <k> ≈ 6) did not increase 
substantially the critical edges when considering the percentage. 

5.3 Discussion 

The addition of connectivity is, in general, beneficial to the robustness of the networks. 
Of course, a completely connected network would provide maximum tolerance against 
random and targeted attacks. This is not possible in a physical infrastructure, such as the 
power grid, for both technical and economic reasons. As we have shown in our previous 
work (Pagani and Aiello, 2012), an addition of connectivity in synthetic networks is 
beneficial in influencing the topological parameters that determine the cost of electricity 
distribution. Here, we focus on the benefits for reliability that additional connectivity 
provides, taking into account the trade-off between cost (i.e., adding more edges) of 
connectivity and the benefits of higher reliability. 

In general, the random attacks affect the network in a less disruptive way compared to 
targeted attacks. The reduction in the number of nodes of the biggest connected 
components follows a smooth trend: the removal of each node causes a small amount of 
damage to the connectivity. Between the different synthetic topologies, one notes that in 
small connectivity conditions (i.e., <k> ≈ 2) the model that performs best is the R-MAT, 
while the worst result belongs to the small-world network. Higher connectivity provides 
additional benefits to all of the networks. In particular, we see that all of the models have 
similar performances when the average node degree is <k> ≈ 4 and <k> ≈ 6. For the 
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power-law based models, the disruption behaviour follows a linear trend until the later 
stages of the node removal. For the random graph and the small-world models the trend 
in the later stages is steeper in the effects of node removal on the greatest connected 
component. This behaviour gives slightly better robustness results for the scale-free 
network that is based on the preferential attachment model and the R-MAT model. 

The picture is similar when considering the targeted attacks. We see that topology 
really plays a role in limiting attacks that involve the nodes with highest degree. When 
the average node degree is very low (<k> ≈ 2) the R-MAT model proves to be the best in 
limiting these types of attacks and the resilience is even better than a random graph. In 
particular, in contrast to the small-world model and the scale-free network that is based 
on the preferential attachment model, the R-MAT, and the random graph, do not show 
sudden changes in the order of the largest connected component that are present in the 
other two models where a single removal of a node deeply compromises the connectivity 
of the whole network. The situation changes when considering high degree of 
connectivity. R-MAT is outperformed by the random graph and by the small-world 
network. The robustness of the R-MAT with average node degree <k> ≈ 6 is overtaken 
by both the random graph and the small-world graph, even with a reduced connectivity of 
<k> ≈ 4. However, the model that performs worst in the three connectivity scenarios 
considered is the scale-free network that is based on the preferential attachment model. 
This last statement is not surprising given the already-known vulnerabilities of scale-free 
networks towards targeted attacks (Albert et al., 2000). This last aspect helps to explain 
the poor results of the R-MAT model when higher connectivity is added since RMAT is 
also characterised by power-law in the node degree probability distribution. The 
comparison between the best performing models, the random graph and the small-world 
models, shows that the small-world network is more robust when <k> ≈ 6, and that the 
performance between the two models is very close when the node degree is <k> ≈ 4. It is 
interesting to note how the connectivity plays an important role in determining the 
properties of the small-world model: when <k> ≈ 2 there is basically no redundant 
connectivity locally, the network is basically a ring (no redundant connection between the 
neighbours of a node) with some edges that are rewired. When more connectivity is 
added the importance of neighbourhood start to increase. Further, this kind of model 
avoids the presence of big hubs in the network. 

Comparing the two removal policies for node attacks, we have the same results that 
we have shown for the physical samples: the targeted attacks are much more disrupting 
than the random ones. The only remarkable aspect is the similarity for the small-world 
network and random graph in the disruption behaviour of the largest connected 
component when the average node degree is <k> ≈ 6 and the first 30% of the nodes is 
removed. This is due to the absence of hubs in the network that these two models have; in 
fact, the degree of the nodes in such network models tend to be fairly homogeneous. 

Considering the edge removal process for the various network models, we see that 
when the connectivity is limited (i.e., <k> ≈ 2) the networks become two almost equal 
components when a few edges are removed. Data in Table 5 show that the scale-free 
network that is based on the preferential attachment model and the small-world model 
perform worst, while the random graph and the R-MAT models have more reliability 
against failures in edges. The situation changes when more connectivity is added; the 
scale-free network that is based on the preferential attachment model and the small-world 
model performs better, even at a connectivity of <k> ≈ 4. The large number of edges that 
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need to be removed in the scale-free network that is based on the preferential attachment 
model networks can be intuitively explained through the results obtained in the targeted 
attacks towards the most connected nodes: the network is relatively fragile when a small 
amount of the hub nodes are removed; thus the network reduces its connectivity and 
splits. Here, to split the network, the targets are edges, and most likely those edges that 
keep the connectivity of the network. Therefore, the edges involved are those that have 
the hubs as end nodes and nodes that are not leaves (i.e., nodes with <k> ≈ 1) at the other 
end of the edge. The robustness of the small-world model can be explained in a different 
manner: the network has no big hubs and a lot of connectivity is local between 
neighbours of a node, with only a fraction of edges that are rewired. Therefore, to split 
the network it is sufficient to remove part of the rewired connections (i.e., the shortcuts in 
the network). Considering the percentages in Table 5 one sees how the important leap 
towards more reliability is achieved by the first step in increasing connectivity (<k> ≈ 4), 
while further connectivity is less beneficial (e.g., small-world model); actually, for the 
biggest samples, the percentage figure slightly reduces its value from the <k> ≈ 4 to the 
<k> ≈ 6 situation. 

In the context of real distribution networks, the analysis of synthetic networks needs 
to be considered in providing a high-level perspective on how a distribution grid that is 
based on (or that is reorganised according to) a topological model (e.g., the small-world 
model) with an amount of connectivity (e.g., <k> ≈ 4 or <k> ≈ 6) is beneficial to the 
vulnerability of the grid. 

6 Concluding remarks 

Topological analysis can rapidly give an overview of the possible vulnerability of a large 
network. As a statistical tool, it has limitations: on the one hand, it provides a 
simplification of the system that becomes easily analysable. On the other hand, 
topological analysis leaves out specific aspects of the power grid, like power flows, 
transient dynamics, and physical characterisation of substations. This analysis of the 
robustness of the distribution grid is not meant to be a substitute for current reliability 
assessment methods that are used by distribution companies; instead, it aims to provide a 
rapid and broad perspective of the topic by emphasising the importance of the topology 
of the grid itself. In this paper, we have shown that topology plays an important role in 
the robustness of the network at all power levels, including the medium and low voltage 
levels. By comparing the results obtained in the analysis of the physical networks and the 
results of the synthetic networks with increased connectivity, we see that, in general, 
more edges are beneficial in limiting both node and edge attacks. Further, the choice of a 
specific topology plays a key role in guaranteeing more robustness (cf. the RMAT model 
with <k> ≈ 2 and the physical sample in Figure 1(b) for node removals). Of course, pure 
topology alone is not sufficient for the improvement of the power grid since technical and 
economical constraints play important roles in shaping the grid too. 

In a future energy scenario where energy is produced and consumed locally, the 
distribution infrastructure will need to change, while providing high standards for 
resilience to failures. For current distribution grid network samples, the disruption in 
general follows the results found in the literature for the high voltage grid. We noted a 
general weakness in the link removal for the low voltage grid, where it is likely that many 
small-scale generating facilities will be connected. We have seen how an increment in the 
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average connectivity benefits in contrasting both random and targeted attacks towards the 
most connected nodes. A first investigation regarding the improvements that an increase 
in connectivity from a broad topological perspective might bring to the distribution grid 
is presented in our previous work (Pagani and Aiello, 2012). One can expect a growing 
interest in the evaluation of the reliability of the distribution grid and increasing attention 
to the topology of future networks. In the future, we plan to study the vulnerability of 
other topological models from the complex network literature and perform power flow 
analyses on real and synthetic distribution topologies. The goal is to develop new metrics 
that combine more traditional power design features and topological features to assess the 
reliability of the distribution grid. More efforts are required for optimal smart grid design, 
not only from a topological point of view, but also when taking electrical and power 
system control aspects into consideration to enable the electrical system of the 21st 
century. 
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