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POLICY-BASED SCHEDULING OF CLOUD SERVICES

FARIS NIZAMIC∗‡, VIKTORIYA DEGELER ∗‡, RIX GROENBOOM†, AND ALEXANDER LAZOVIK∗

Abstract. Worldwide accessibility of clouds brings great benefits by providing easy access to resources. However, scheduling
cloud resources for utilization among multiple collaborating cloud users is still often executed manually. To address this problem,
we developed a scheduling service for cloud middleware that guarantees optimal resource utilization in terms of a total number
of used resources in a given interval based on user-defined policies. In the paper, we introduce the scheduling algorithm, describe
its supporting system architecture and provide the evaluation that proves the feasibility of the developed solution. The provided
scheduling algorithm takes into account dependencies between individual services, and can enforce common use of shared resources
that lead to the optimal resource utilization. By assuring continuous schedule optimality, costs caused by unnecessary usage of
additional cloud resources are minimized.
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1. Introduction. Today, Clouds are used for different purposes and have numerous application areas.
Clouds are defined as a large pool of easily accessible virtualized resources (such as hardware, development
platforms and/or services) which can then be dynamically reconfigured to adjust to a variable load, allowing for
optimum resource utilization [1]. One role of Clouds is to influence development process of software as a service.
Currently, software engineering practices are far from ideal, and often the quality of the final product suffers.
Complexity of software development process is still very high, and many processes are still manually executed.
An example of such process is the scheduling of hardware/software resources for multiple collaborating software
engineering teams (e.g., development, system test, user-acceptance test/staging, etc.).

Infrastructures based on Service-Oriented Architecture (SOA) increase the severity of the problem. The
flexible setup of SOA systems, and dependencies on other services, make the deployment of these systems
complex in staged environments. Virtualization can help to reduce the cost of physical hardware, and simulation
of application behaviour can reduce the dependency on back-end systems and external services [5]. These
simulators can be deployed using cloud infrastructures to create a flexible platform to support the software
development and test teams. However, to fully exploit the benefits of virtualization and virtualized services,
one still needs to carefully manage dependencies between different parts of the system to ensure that all services
are in place, resources that are not required are not launched (or being turned down) for optimal resource
usage. Without automated scheduling this task is very complex and error prone, and potential savings cannot
be achieved.

Currently, practice shows that in many large companies that are working with sensitive data, scheduling
of resources is done manually. Nearly half of hundred of surveyed IT executives on Cloud technologies use
manual processes to handle moves and changes in their infrastructure solution for the cloud [3]. For example,
some companies perform their resource allocation and scheduling using collaborative tools, while in others,
more primitive (in terms of automatization support) methods are used. Furthermore, requests coming from
different resource requesters are not handled in a fair and optimal manner. Resource requester can be anyone
requesting cloud resources, for example, a team leader responsible for provisioning of resources needed by their
team members in order to perform their everyday job. Quite frequently, consensus about the actual priorities
for resource utilization is not achieved, and the loudest requester gets a better working environment (set of
hardware resources). This arbitrary decisions lead to a non-optimal resource utilization and therefore, it puts
additional costs on a company. Moreover, as a consequence, various delays in project may potentially occur, with
inevitable frustration in teams, what results in an overall lower quality of a product. For large companies that
are using a huge number of cloud resources, other side-effects such as energy consumption should be mentioned
as well. As an illustration of a possible magnitude of consumption, a Google data centre consumes as much
power as a city the size of San Francisco [6]. Thus, it is also important to have optimal resource utilization in
Clouds in order to be energy efficient to reduce their power consumption.

In this paper, we propose a domain independent policy-based scheduling mechanism for cloud services that
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guarantees optimal resource utilization with respect to a total usage of cloud resources in a predefined time
interval. We propose a novel data model for describing the requests for resource utilization. Several policies
for scheduling are provided, though the developed approach is not limited to presented policies, and can be
easily extended to incorporate other types of constraints. Additionally, in our approach we take into account
dependencies between individual services that are forming a complete system, and present how enforcing of
common usage of shared resources can lead to optimal resource utilization. With the example, we show the
feasibility of our approach and how the reference implementation of our cloud scheduler optimizes a schedule
and makes significant savings of resource usage in a cloud. The scheduler performance is evaluated and it has
been shown that it scales well for a typical size of the resource allocation problems we consider in the paper.

This paper is organized as follows. First, in Section 2, we state the motivation for this work. In Section 3,
we describe overall system architecture and describe its each component in detail. In Section 4, we describe
the logic that resides in the Scheduler component. In Section 5 we present the demonstrating example, and
show the whole workflow, from the request to an optimal schedule. In Section 6, we evaluate and discuss the
performance of the Scheduler. In Section 7, we overview existing approaches to scheduling and allocation of
resources within the cloud environment. Finally, in Section 8, we draw conclusion and discuss potential future
work.

2. Motivation. Consider a scenario where a service provider wants to optimize the usage of the cloud
resources used within software development process of the service it delivers. The service provider has multiple
teams working together in order to bring the new version of the service. The main service is a composition
of other (sub-)services, where all sub-services are separate and independent. In this scenario, there are six
collaborating teams and their roles are the following. Development team is a team responsible for programming
(actual development of the service). Testing team is responsible for quality assurance of the product. Acceptance
testing team is responsible for final approval for software validity before the product is released (or not) to
Production. Performance testing team is a team that ensures that quality of service (QoS) is in satisfactory
limits. Proof of concept (POC) team is a team that does the research on new concepts before decision for the
same to be implemented is made. Finally, Training team is a team that provides a training for employees that
will use the developed service.

Each team has its own needs for resources on which they could deploy appropriate versions of software in
order to perform their tasks. For instance, Acceptance and Performance testing teams need to have resources
that are most similar to one in Production environment and minimal number of resources that can be shared with
other teams. Reason for having high number of resources that are almost a mimic of Production environment
is simple: before exposing developed system to end-users, rigorous tests should be executed on Production-like
environment, that will minimize chance for surprises when the same code goes to Production. Reason to use as
much as possible resources exclusively is that both teams simply do not want to have other teams interfering
their tests. Excellent example of an exclusive resource usage demand is Performance team. In order to have
precise results on on performance tests, they cannot share the same environment with other teams as it may
affect the results of their performance measurements of the service. From the other side, Training team uses
small number of resources for purposes of training of employees. For Training team, performance and accuracy
of data is not particularly important. Therefore, they may share their environment and deployed services with
other teams whenever it is possible. Note that different teams may use different versions of services. For
example, Development team may already work on the second version of Service X while the Performance test
team still executes tests and collects performance data from the previous (“first”) version of the same Service.

For a human, this kind of scheduling is highly time-consuming, error-prone and costly in terms of required
efforts.

3. System architecture. In this section, we describe cloud resources and specifics of requests for the
cloud resources. Moreover, we describe behaviour of the system, system architecture and the responsibilities
and functionality of each component of the system.

3.1. Cloud Resources. A Cloud can be seen as a set of computational and storage resources. In this
work, we will refer to the smallest unit of a cloud infrastructure as a resource, be it CPU, memory or a single,
stand-alone server. Resource is an abstraction that represents one unit/instance of a cloud used as computing
or storage capacity. Resources can be shared or exclusively used, and can have different services deployed onto
them. All resources in a cloud that are available for usage are located in a resource inventory. We assume
that the number of available resources is limited by company’s planned budget for the infrastructure (cloud
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resources). In some cases, companies may want to limit a number of used resources to a number of free cloud
resources offered by cloud resource providers∗. In this work we focus on resource scheduling, and, without loss
of generality, we will use hardware agnostic approach. In other words, in this paper hardware specific details
such as CPU, memory and I/O will not be considered.

3.2. Requests for resources. The request for resource utilization come from resource requesters. To
request the resource, one needs to know which services make a chain needed to fulfil a complete functionality,
what type of resources are required, and for how long and in which way those resources will be used. These
parameters represent input parameters for the scheduling service.

A request for resources is composed out of three following elements: a resource demand, a policy and a
request. A resource demand contains: resource type, required number of resources, and information whether
the resource can be shared or it must be exclusively used (e.g., resource requester needs two instances of Service
X that can be shared or invoked by more internal service consumers). There can be more resource demands
under one request for resources. A policy contains an amount of time for which resource is required, and a
parameter which defines how resource need to be used (e.g., Service X is used for five consecutive days). From
the perspective of Performance test team, one request for resources could be: in order to perform a load test
on Service X which invokes Service Y, we need to demand two resources of types X and Y, which will be used
exclusively for five consecutive days. This request for resource defines dependency between two services and
that way embodies it into a form of request.

3.3. System behaviour. In Fig. 3.1, we propose a system architecture to provide cloud resources to
resource requesters, taking into account the above-mentioned limitations. The sequence of actions and flow
of information is the following. The resource requesters submit their requests to the Resource request Service.
Then, the Scheduler Service is invoked. The Scheduler Service provides an optimized schedule as an output.
The schedule defines which resources are assigned to which time slot. Subsequently, when the Deployer Service
receives the schedule, it physically deploys the services to the resources, per information proposed in the schedule.
After the deployment process is finalized, testing scripts are executed in order to define the status of the services,
or/and to execute the initial preparations of the services. When services are up and running, Distributed
Configuration Service keeps the track of physical locations (endpoints) of the services, and gives an input to
Monitoring Service which shows the current status of each individual deployed service. In case that additional
requests are submitted re-scheduling can be dynamically invoked, while a number of used cloud resources would
stay within the limitations given by resource requester.

3.4. Resource Request Service. Resource Request Service is responsible for communication with Sched-
uler Service and preparation of requests in a form understandable by Scheduler Service itself.

3.5. Scheduler Service. Scheduler Service is responsible for provisioning of fully optimized Schedule as
the output for structured requests for resources as an input. Provided schedule maps the requests for resources
to the available time slots in optimal manner. In the following section, the scheduler service will be described
in more detail.

3.6. Deployment Service. The deployment service is responsible for physical deployment of requested
services to appropriate cloud instances. Input to the deployment service is a previously generated schedule for
requests.

At the heart of the deployment service is Apache Whirr† which in turn relies on the Jclouds library which
specializes in abstracting the connection and deployment to various on-line cloud services like Amazon and
others. Development of Whirr is ongoing and is soon capable of supporting Openstack‡ which is used to create
private clouds.

The goal of the Deployment service is to deploy the requests and configure the services defined to run. For
example, if Service X depends on Service Y, once deployed, Service X should have knowledge of where Service
Y is located. Configuration and scripting is done by relying on Apache Whirr’s module for Puppet§. Using
Puppet, we can easily automate installation and configuration of a wide array of services. Along with Puppet,

∗aws.amazon.com/free
†whirr.apache.org
‡openstack.org
§puppetlabs.com
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Fig. 3.1: System Architecture

Apache Whirr provides modules to directly configure a desired service instead of writing scripts for Puppet. All
modules are available for selection in the deployment service.

Additionally the Deployment service is responsible for updating the Distributed Configuration Service
(DCS). In our setting, we use ZooKeeper¶ as a distributed configuration service. ZooKeeper is a centralized
service for maintaining configuration information, naming, providing distributed synchronization, and providing
group services. The goal of deployer is then to update ZooKeeper entries about exact service location (endpoint)
and the status information. For example, after the Service X is deployed on a Cloud instance, in DCS table
information that Service X can be accessed through certain endpoint is added.

3.7. Distributed Configuration Service. The Distributed Configuration Service (DCS) is responsible
for maintenance of information about the physical location of each cloud instance. Initially, when services on
instances are deployed, it will send the update to DCS which will store the information about its location.
Location information will be represented in form of endpoints that will point to specific instances. Endpoints
are composed of an IP address or a hostname and a port.

The Distributed Configuration Service is implemented as a Zookeeper service, and it uses its built-in support
for group management. A client registers itself in a Zookeeper by creating a so called ephemeral node, that is
automatically removed if the client does not send a heart beat within a given timeout. Zookeeper also provides
features like replication and automatic fail-over. Therefore, clients maintain a TCP connection through which
they:

1. send the requests for update of information about their physical location,

¶zookeeper.apache.org
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2. get the responses which contain the physical location of other clients,
3. send a heart beat (that is also used by Monitoring Service).

If the TCP connection to Distributed Configuration service server breaks, the clients (system component
instances) can connect to a different Distributed Configuration service server (replica) which contains the same
information. This way we implement fault tolerance and avoid to have a single point of failure. While discon-
nected though, such component instances are not visible to other components until they are re-registered within
DSC.

3.8. Monitoring Service. The Monitoring Service is responsible to represent the current state of each ser-
vice deployed on cloud instance (up and running, down, instantiating, deploying, restarting, etc.). Additionally,
information on performance of individual services is being collected.

4. Scheduler Service. The core logic of the system resides in the Scheduler service. It is responsible
for optimization of the total number of resources required to satisfy the requests. The Scheduler service has a
REST interface and is invoked at the beginning of the time interval to be scheduled, with all requests for the
following time interval. The requests are stored and passed in Google Protocol Buffers format‖.

The Scheduler service has two parts: Cloud Schedule Interface (CSI) and Scheduling Core. Scheduling Core
is a domain-independent scheduling algorithm, and can be used within any domain, as long as constraints of
scheduling are specified in similar policy types. CSI is a wrapper on top of Scheduler Core and is specific to the
cloud scheduling optimization problem. The task of this component is to transform cloud schedule requests to
the domain-independent representation within Scheduling Core, and to transform back the resulting schedule
to the required form.

4.1. Cloud Schedule Interface. As input to the optimization task, the Scheduler receives a list of
requests.

Definition 4.1 (Request). A request is a full specification of the number and type of resources needed to
satisfy a certain task, together with the policy of resources usage.

The informal examples of requests may be “five cloud instances are needed for a total of eight hours running
time to execute Services X, Y, and Z”, or “three cloud instances are needed to run continuously for twelve hours
to execute Service K as a shared service”, etc. To satisfy the request, the requested number of resources should
be available for the required amount of time. Partial satisfaction of a request is not possible, since partially
satisfied request means an incomplete task. A request should either be satisfied fully, or not at all.

Thus, to fully define the request, we first need to define its two most important parts: the list of resource
demands, and the execution policy.

Definition 4.2 (Resource demand). A resource demand is the full specification of a resource that is needed
to complete the task, which includes the specification of the type of service which should be running, the number
of services, and whether the service can be shared with other tasks, or must be run exclusively.

The data model uses Google Protocol Buffers format, where all variables in a message are described as a
tuple: “modifier, type, variable name = parameter id”. In the code presented in this paper we omit parameter
id for clarity purposes.

The data for resource demand written as follows:

message ResourceDemand

optional uint32 resId;

optional uint32 number;

optional bool shared;

Here the “resId” uniquely represents the service to run, “number” represents the number of such services
that should be deployed, and a boolean value “shared” tells whether the service can also be used by other
requests, or should be run exclusively by this request.

While by using a list of resource demands, we can specify all the resources that we need, we also should
specify the time frame for them to run, and the execution policy. For example, one task may require for services
to be run for twelve consecutive hours, while another task may require them to run for twenty four hours, while
not caring whether those hours are consecutive, or split apart.

‖code.google.com/apis/protocolbuffers
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In this work we use five predefined types of policies. All policies are formally described below. For all
policies, we define T as the total number of time slots, pij as the scheduled status of request ri at time slot j
(pij = true, if request ri is scheduled for the time slot j, and pij = false otherwise).

Total. The policy has an additional parameter d (“duration”), and assumes that resources should be avail-
able for the total number of time slots, equal to the “duration” value. How the time slots are split over the
whole scheduling period is not important, thus the task can be split, and, for example, it can run on Monday,
Wednesday, Friday, or on Monday to Wednesday.

∀ri, ri.policy = TOTAL :
∑T

j=1 (pij = true) = d

Continuous. This policy is stricter, and guarantees that once the request is started, it will run uninter-
rupted for the required number of time slots, also specified by the parameter d (“duration”).

∀ri, ri.policy = CONTINUOUS : ∃k : 1 ≤ k ≤ T − d+ 1 s.t. ∀j = 1..T : pij = true ⇔ k ≤ j < k + d

Multiple. The policy allows for more than one job to be scheduled within the same request. Each job
must have resources within uninterrupted period of time, but jobs themselves may be split in time, for example,
one job can be executed on Monday, and two more on Thursday. In addition to the d (“duration”) of the job
parameter, the policy also has a n (“number of jobs”) parameter.
∀ri, ri.policy = MULTIPLE : ∀l = 1..n ∃kl : 1 ≤ kl ≤ T − d+1 , ∄(ks, kt) : |ks− kt| < d s.t. ∀j =

1..T : pij = 1⇔ ∃kx : 0 ≤ j − kx < d

Repeat. The policy has two parameters: c (“cycle duration”) and d (“total time to be scheduled within
a cycle”), and assumes that a resource should be available cyclically with a certain periodicity. Example are
regression tests that must be run for an hour every day (to test nightly builds).

∀ri, ri.policy = REPEAT : (
∑c

j=1 pij = d)
∧

(∀j = c+ 1..T : pij = pi,j−c)

Strict. The policy firmly defines the specific schedule for certain resource requests. Thus these resource
requests cannot be moved to different time slots, but the knowledge about them allows Scheduler to schedule
other requests to share resources with the strictly defined requests, whenever possible.

∀ri, ri.policy = STRICT : ∃Fi(t) s.t. ∀j = 1..T : pij = Fi(j))

Thus, the data model to specify the policy is the following:

enum PolicyType

TOTAL;

CONTINUOUS;

MULTIPLE;

REPEAT;

STRICT;

message Policy

required PolicyType type;

optional uint32 duration;

optional uint32 numberJobs;

optional uint32 cycleDuration;

repeated uint32 strictTimeOn;

Now that we have specified both the policy data model and the resource demands data model, we can fully
specify the request:

message Request

required uint32 reqId;

optional Policy policy;

repeated ResourceDemand demand;

Note that each request can contain a list (specified by keyword ‘repeated ’) of different resource demands,
and to satisfy the request, all resource demands must be satisfied at the same moment of time.

In order to create a schedule from requests, besides a list of requests, additional information is also required.
First of all, a number of available time slots over the whole scheduling period should be given (e.g., 24 hours
times 5 working days equals 120 available time slots). Furthermore, the total number of resources available at
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Algorithm 4.2.1 Scheduler Core searching algorithm high-level overview

1: q ← PriorityQueue[search node]
2: q.add(〈0; 0; []〉) //initialise queue with empty schedule
3: while !q.isEmpty do
4: 〈c; t; ps〉 ← q.pop()
5: Rf ← resources s.t. for the next time unit t+ 1: isFeasible(Rf , t+ 1, ps)
6: for rf ← PowerSet(Rf ) do
7: if !isAlternative(rf ) then
8: q.add( 〈c+ cost(rf ); t+ 1; ps+ rf 〉 )
9: end if

10: end for
11: end while

the same time should be specified (e.g., 50 cloud instances). If resources represent a single instance in a cloud,
it is usual for the cloud providers to charge more per instance, if many instances are used at the same time.
Additional costs can be avoided in case we limit our execution by not using more than a certain number of
instances at each moment of time. Thus, the schedule request data model is the following:

message ScheduleRequest

repeated Request reqList;

required uint32 numSlots;

required uint32 numResources;

”reqList” is the list of requests, ”numSlots” is the number of available time slots (usually an hour, but can
also be any other time interval), ”numResources” is the maximum number of resources that can be used at the
same time.

As a result of the Scheduler execution, we obtain a full schedule of requests distributed over available time
slots. For each time slot, the Scheduler presents a list of request IDs to show which requests should run at this
time. The data model for the Scheduler response is the following:

message ScheduledTimeSlot

repeated uint32 reqList

message Schedule

repeated ScheduledTimeSlot schedule

We can optimize the resource usage by maximizing the reuse of shared resources. If requests require same
shared resources, placing them at the same time slots will enable maximum reuse.

4.2. Scheduler Core. The Scheduler Core is the actual implementation of the scheduling algorithm. It is
domain-independent, and can be used for other domains, as long as they can be specified using similar policies as
constraints to the schedule optimization. For example, we also use the Scheduling Core to schedule the working
time of home appliances (such as fridge, boiler, printer, etc.), to reduce the cost of energy consumption [7]. The
Schedule Interface is different for that case, and also transforms that task to the same data structure.

For solving our task, as a searching strategy within the Scheduler Core we implement a priority queue
with Breadth-First Search (BFS) algorithm [8]. Using this algorithm over other possible conventional search
strategies [8] allows us to minimize the search space, since we use the cost of intermediate solution as a prime
factor for search expansion. The high-level overview of the search can be seen in Algorithm 4.2.1. We create a
priority queue with a search node that corresponds to a partially fulfilled schedule. Each search node has the
following structure and is prioritized by its cost:

search node = 〈cost, time units, partial schedule〉
partial schedule is a state matrix partial schedule = T × R, where T ∈ 1..time units, and R is a set

of resources. The matrix shows, for each time slot, in which state the resource was at this time slot. For the
purpose of our paper we treat this matrix as boolean (resource is either scheduled at a time slot, or not), though
in general we assume more possible states for each resource (can be useful in other domains).

The queue starts with empty schedule. During each search step it takes the schedule with the least cost
and tries to add possible distribution of resources to the next time slot.
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Our main contribution to scheduling strategies lies in definition of policies in such a way to drastically
reduce search space. Since we know the constraints that policies impose on a possible solution, we can restrict
in advance many solutions that will violate those constraints at the end. By doing this we prevent many “dead-
end” partial solutions from further expansion, thus saving time. In the algorithm this is defined by two functions:
isFeasible, which prevents from searching all schedules that breach at least one policy, and isAlternative, which
finds if several different partial schedules actually both have the same outcome, which means that we only need
to continue searching one of them, and safely drop all others.

4.3. Feasibility check. We decrease search space by extensive usage of policy restrictions. For example,
if a request has the policy total, it means it should have the available resources for a certain number of time
slots, so we automatically restrict the search space to only those schedules that have this request satisfied for
exactly this number of time slots, and remove those that have a request satisfied for more or less. Because
having a request satisfied for fewer days means the request is not fully fulfilled. While having it satisfied for
more days means we unnecessarily schedule more resources for usage, thus such a schedule is intrinsically not
optimal. Thus, for the resource with a policy total, we have two constraints. The first one is that the current
number of time slots with scheduled resource should not exceed total expected time for resource scheduling. The
second constraint is that the number of time slots left unscheduled should not exceed the difference between to-
tal expected time and current scheduled time. So, for a current time slot t the following formal description holds.

CTOTAL :
∑t

j=1 pij ≤ d
∧

T − t ≥ d−
∑t

j=1 pij

For the continuous policy, while searching for the optimal schedule we remove all partial schedules that
assume a number of continuously used slots not equal to the total number of required time slots. All restrictions
of the policy total are also applied to the policy continuous.

CCONTINUOUS : CTOTAL

∧

(pit = 0)⇒ ((
∑t

j=1 pij) = 0 ∨ (
∑t

j=1 pij) = d)

For multiple the total uninterrupted time should be divisible to the duration of one job. For example, if a
job lasts two hours, and we found a partial schedule that proposed to schedule the request for three hours, we
can immediately see, that one hour the request will unnecessarily occupy resources. Restrictions of the policy
total are applicable here as well.

CMULTIPLE : CTOTAL

∧

(pit = 0)⇒ ((
∑t

j=1 pij) mod d = 0)

Repeat policy is checked as total within the first cycle, and for all time slots after the first cycle, the full
periodicity is applied.

CREPEAT : (t ≤ c)⇒
∑t

j=1 pij ≤ d
∧

T − t ≥ d−
∑t

j=1 pij ; (t > c)⇒ (pit = pi,(t−c))

Strict policy does not need any feasibility checking, because it is already strictly defined. On the other
hand, there is only one way to satisfy a strict policy, which means it does not add complexity to the search space.

CSTRICT : pit = Fi(t)

4.4. Alternatives check. Let us say that we have two different partial schedules for a request with a
“total” policy. If the total cost of these two schedules is the same (which may be or not be the case, depending
on sharing resources with other requests), for the purpose of finding the schedule for the next time period those
two schedules for this request are identical, as both schedules assigned the same number of time slots for a
request. Which means we should only continue searching one of the schedules, and we can safely drop the other,
as it will not produce better result. Similar techniques can be used for other policies as well.

We can only drop one of two partial schedules if (1) they have the same total cost; (2) they have the same
number of scheduled time slots; (3) for each request we determine that both schedules arrive to the same current
situation. The way to determine it differs per policy.
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For the total policy only the number of already assigned time slots matters, but not their exact position.
For example, if after 30 time slots we determine, that both schedules schedule a certain request for 6 times,
we can regard them as the same for this request, no matter when were the exact times when this resource was
scheduled. The continuous policy and the multiple policy are the same as total, we only check the total assigned
time slots. The additional restrictions to the schedule are already checked at the feasibility check point, so we
already know that both schedules are feasible.

We can only regard two schedules for a request with the repeat policy as similar in case the distribution of
the assigned time within a cycle is completely the same. The reason is the distribution may matter later in the
schedule, but it cannot be changed, once created during the first cycle. So two schedules for the request with
repeat policy are regarded as the same when they really have the same assignment distribution within a cycle.

Finally, the strict policy is always the same, because there is only one way to satisfy this policy.

5. Demonstrating example. In order to show that Scheduler provides optimization, we have defined a
demonstrating example that represents a common situation for companies developing software as a service. Let
as assume that International Phonebook Company has five different teams that work on development of one
product, Phonebook Service (see Fig. 5.1), and one team that provides training to employees.

Phonebook service

Search service Parser service
Phone provider 

service

Fig. 5.1: Phonebook Service

Phonebook service is composed out of three independent services: Search service, Parser service and Phone
provider service. Each service provides unique function. Search service takes free form text (name, surname,
address) as an input and forwards it to Parser service. Parser service parses the free form text and formats
it to XML form, so values of a name, a surname and an address are assigned to corresponding XML fields.
Subsequently, Parser service forwards the XML formatted input to Phone provider service which forms a query
based on the XML input and returns a phone number as an output to the Search service. Set of these services
provides the full functionality of Phonebook service, and that is, for a set of user inputs (name, surname, address)
it provides a corresponding phone number. That way, one request embodies a specification of needed complete
working environment that provides the full functionality of the system. Also, one request links more services
and that way implicitly defines dependencies among them. List of the requests for resources required by each
of the teams is presented in Table 5.1.

Table 5.1: List of requests

Request Dev. Test UAT Perf. Train. POC

Shared? Y N Y N Y N Y N Y N Y N
Search Service v1 8 8 4
Search Service v2 4 4 4
Parser Service v1 4 4 1
Parser Service v2 2 2
Parser Service v3 2

Phone Provider Service v1 2
Phone Provider Service v2 1 1 2 1

Duration (hours) 72 2 48 24 2 24
Cycle duration - 24 - - - -
Number of jobs - - - - 6 -

Policy Cont. Repeat Cont. Cont. Multi Total
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Each team has different needs for resources. Those needs are reflected in description how and how long
resources will be used; if resources can be shared with other teams or not, and if they need to be used contin-
uously, repeatedly or if some other policy should be implemented. For example, Performance team needs to
run their tests without interruption (continuously) in order to reach wanted load, while testing team wants to
run their regression test repeatedly after every deployment of a new build. According to those requirements,
scheduling of resources needs to be done. In most cases, scheduling is done manually by person responsible
for scheduling of environments (environment administrator). Manual scheduling usually leads to non-optimal
usage resources and it is something that we want to avoid.

Given the total of 120 hours (5 working days 24 hours each), and the limit of maximum 25 simultaneously
used resources, schedule for one working week produced by the Scheduler is the following.

Table 5.2: Optimized schedule

Mon Tue Wed Thu Fri

Development 20:00-23:59 00:00-23:59 00:00-23:59 00:00-19:59
Test 22:00-23:59 22:00-23:59 22:00-23:59 22:00-23:59 22:00-23:59
UAT 00:00-23:59 00:00-23:59

Performance 00:00-23:59
Training 08:00-19:59

POC 20:00-23:59 12:00-23:59 20:00-23:59 20:00-23:59

Total number of used resources provided by this schedule is 1680 server-hours, and it is optimal in regard to
number of resources used in one working week. Every other schedule would lead to less or in best case equally
good solution.

6. Evaluation. Finding the optimal schedule is an expensive task in terms of computational resources, as
it is NP-hard problem [16]. While the current scheduler is designed to schedule the reasonably low and stable
number of requests (such as a request per software engineering team), the number of time slots of the schedule
can and expected to be reasonably high. Nevertheless, we also ensured that the Scheduler can sustain a certain
level of demand increase, and remain practical for higher number of requests.

As the scalability is important characteristic of the cloud computing, the performance evaluation in this
section investigates the ability of the scheduler to scale with the increase in the number of time slots, and also
shows the usability of the scheduler with the increase in the number of requests.

6.1. Number of time slots. In many situations the scheduling of resources in a cloud should be done
on an hourly basis. Thus, if we take into account a working week, the number of time slots can be up to 40
(8 hours times 5 days). Thus the ability of the scheduler to scale with respect to time slots is important. We
performed an experiment to run the Scheduler with 5 randomly generated requests and schedule them on a
period from 5 to 50 time slots. The results can be seen in Fig. 6.1. As can be seen, even the scheduling for 50
time slots takes only about 2.8 seconds. Given into account that this scheduling is done for the distribution of
resources over the full coming week, the performance is within perfectly acceptable bounds.

6.2. Number of requests. The number of requests causes much bigger strain on a scheduler, because
at each time slot it needs to regard 2nReq possibilities. As mentioned before, the scheduler is optimized to
work well and to find optimal solution under small and stable number of requests. However, since we assume
the possibility of requests increase, we implemented the dynamic relaxation of the optimality requirement, and
instead we try to search fast for a “good enough” solution. The dynamic relaxation is done by implementing
a gradual approach in the following way: if the number of requests is higher than a certain predefined number
(in the experiment it was set to 8), the requests are split on several groups. We run the Scheduler for the first
group, obtain the optimal schedule for this group, and than freeze the already scheduled requests in their time
slots, and begin to schedule a second group, taking into account the already scheduled requests, and so on. Note
that while this approach is ”greedy”, thus not guaranteed to return the optimal solution for the full number of
requests, the returned solution is still effective enough, because if the next group of requests contains resources
that can be shared with those in the previous groups, this situation is always detected and it automatically gives
preference to those time slots that allow for maximum sharing of resources with already scheduled requests.
Figure 6.2 shows the time needed to schedule up to 100 requests.
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Fig. 6.1: Scheduler performance based on the number of time slots.

Fig. 6.2: Scheduler performance based on the number of requests.

7. Related work. The problem of scheduling of cloud resources has been addressed in a number of
papers. We present some of the related work and compare it to our approach. Cloud scheduler described
in [9] manages user-customized virtual machines in response to a user’s job submissions. Its main motivation
is to provide computing resources to the research community. Similarly, in [10], solution is oriented toward
the same application area by providing a scheduling scheme for scientific applications which require large-
scale computing resource for long term execution period. Contrary to this, the motivation of our work is
to provide scheduling mechanism for highly demanding requests for resources of multiple collaborating teams
inside software development companies. Moreover, our scheduler guarantees optimality of schedule in regard to
number of used resources for a defined interval of time, that was not tackled neither in [9] nor in [10]. In [11],
different metrics such as the change of load are used to dynamically schedule cloud resources. By real-time
monitoring of performance parameters of virtual machine, scheduling of cloud resources is being done using
ant colony algorithm to bear some load on load-free node. On the other hand, our scheduler as an input has
user-defined metrics, such as resources specification, requested usage duration and policies.

Scheduling of grid applications on clouds is presented in [12] where not only resource demands are taken
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into account, but also software requirements of the applications. This approach is similar to ours in sense
of taking a content of resources into consideration. Difference is that our approach is focused on service-
oriented systems, whereas in [12] they are using grid application of image processing. Besides that, we introduce
dependencies among services and the way to manage them. Work done in [13] proposes a scheduler which makes
scheduling decision by evaluation the entire group of tasks in job queue. The preliminary simulation results
show that scheduler can get shorter ”make span” for jobs and achieve better balanced load across all the
nodes in the cloud. Instead, our scheduler enables control of maximum number of used resources per a given
interval of time. Additionally, there are two papers, [14] and [15], which are focusing on inter-cloud scheduling
(scheduling for cloud federations). That is completely different problem, but both papers provide useful insight
into specifications, scheduling, and monitoring of services. There are a couple of industry white papers that
present how usage of cloud resources can support Agile Software development [2], [4]. The main idea of these
papers is that realization of automated builds, testing and production deployment in clouds can accelerate
feedback mechanism that is crucial for Agile software development methodology. Current implementations
presented in these papers are quite promising and it is left to us to research how this developments can be
exploited.

8. Conclusion and future work. Proper scheduling of Cloud resources used in development process for
software as a service can save time, effort and money. In this work, we have developed a scheduling mechanism
of a Cloud middleware that guarantees optimal resource utilization in terms of total number of used resources
in a given interval of time. In addition to optimization, our Scheduler provides fair scheduling for multiple
collaborating cloud users that have highly demanding requests for cloud resources. We introduced dependencies
between individual services and introduced the way how those services can be composed. By forming data
models with user-defined inputs for scheduler, we have developed scheduling policies and created a good basis
for additional extensions. We have shown that with our solution, cloud resources are used in optimal manner.
This implies that beside making additional resources free for use, possibility of occurrence of project delays, the
most expensive event in software development, is minimized. Additionally, by limiting maximum number of
used resources, free usage of some resources on a cloud can be enabled without risk of having unwanted costs.

We have left enough space for additional improvements in future work. First of all, system can be enriched
by taking into account priorities between different requests. Definition of priorities would give additional
possibility for distinction of requests coming from different teams which have different importance in a certain
time intervals. The model could be additionally improved by introducing reconfigurability of system parameters
(e.g. time slot size, earliest start time of request, etc.), and expanding existing policies. Moreover, introduction
of simulated services could eliminate a need for some of exclusively used resources. Furthermore, the load of the
cloud resources should also be taken into account to fine-tune the scheduler. Finally, to multiply effect, future
work should tackle efficient model for resource scheduling for geographically distributed software development
teams working around-the-clock.
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