A Decentralized Scheme for
Fault Detection and Classification in WSNs

Tuan Anh Nguyen and Marco Aiello
University of Groningen
Groningen, The Netherlands
Email: {t.a.nguyen, m.aiello} @rug.nl

Abstract—In pervasive computing environments, a context-
aware application captures the current real-world context and
accordingly controls various embedded devices to achieve the
desired conditions, supporting its users. Context information
is made available and shareable for the application by using
wireless sensor networks (WSNs) thanks to the provision of
sensors and actuators wirelessly interconnected. WSNs are de-
ployed to monitor the phenomena of interests and the reporting
should be as accurate and reliable as possible. However sensor
nodes are usually battery-powered, also they have small memory
and computational capacity as well as limited communication
bandwidth. Such tight resource constraints often hinders the
reliability of the monitoring. Thus sensor data usually suffers
from both discontinuous (random or malfunction) and continuous
(bias or drift) faults. Therefore fault detection and classification is
obvious to ensure the reliability of context information provided.
In this paper we propose a decentralized scheme not only for
fault detection but also for their classification. In our solution,
neighbourhood voting and the ARMA time series forecasting
model are used in combination to detect sensor data faults.
Then, the detected faulty readings are classified based on the
frequency and continuity of fault occurrence and the observable
and learnable patterns that faults leave in the data. Our solution
also uses histogram analysis to improve the overall accuracy. The
proposed solution is the first step of realizing a fault handling
mechanism on sensor nodes so that each node can handle its own
faulty readings locally in a real-time manner instead of depending
on reactions from a base station. Such a decentralized scheme is
in favour to satisfy the requirements of online sensor data fault
tolerance (e.g., scalability and real-timeness).

I. INTRODUCTION

In pervasive computing environments, a context-aware appli-
cation captures the current real-world context and accordingly
controls various embedded devices to achieve the desired
conditions, supporting its users. Context information is made
available and shareable for the application by using a context
management system (CMS). The CMS should be able to
capture various kinds of context required by context-aware
applications and should be able to be deployed easily to various
environments [10]. Thanks to the provision of sensors, actu-
ators, and wireless communication capability, WSNs become
the ideal infrastructure for the context management system.

WSNs monitor the phenomena of interest and are respon-
sible for producing accurate and reliable data about monitored
environments. However, the sensor nodes are deployed in harsh
environments and left unattended after the calibration phase,
what is more, that is the limited capacity and energy source
of wireless sensor nodes. In such conditions, it is inevitable

Kenji Tei
National Institute of Informatics
Tokyo, Japan
Email: tei@nii.ac.jp

that some sensor nodes malfunction, thus WSNs become
unreliable and context information becomes faulty. Therefore,
fault detection and classification are obvious to ensure the
reliability and accuracy of context information provided.

Much research has been focusing on fault tolerance in
WSNs. The fault tolerance mechanisms are generally divided
into two main strands. The first strand of proposed fault
tolerance mechanisms in WSNs is centralized, which takes
advantage of computational capacity of a base station for data
analysis. The disadvantages of this strand lay in its limited scal-
ability in real-time handling distributed sensor data streaming
as well as in necessitating high amounts of communication
with the nodes. The second strand considers decentralization
as its scheme, in which nodes flexibly handle their own
faulty readings locally, in a faster manner, without waiting
for reactions from a base station. Therefore, a decentralized
scheme is in favour to satisfy the requirements of online
sensor fault correction, such as scalability and real-timeness,
maintaining the comparable level of accuracy. When designing
a decentralized technique, the challenge is to process as much
data as possible while keeping the communication overhead,
memory and computational cost low [11].

Motivated by the requirements considered by online sen-
sory data fault correction, we propose a decentralized scheme
not only for fault detection but also for their classification. The
basis of our fault handling research is the possibility to detect
and diagnose faults in sensory readings through the trace they
leave in the data behaviour. This trace forms a visible pattern
that is independent of the underlying cause of the fault [3].
Therefore, we can define a fault as a manifestation of erroneous
readings. We focus on detecting and classifying faults that
occur in sensor readings within data-centric WSNs. In this
type of sensor networks, readings from sensors are spatially
and temporally correlated and the development of faults in
different nodes are uncorrelated.

At the detection phase, our proposed solution is based on
a hybrid approach using a neighbourhood vote technique and
an AutoRegressive—Moving-Average (ARMA) model for time
series data forecasting. Faulty state of a reading is identified
by comparing the reading’s value with 1) the value computed
by neighbourhood voting, and 2) the value predicted with
the ARMA time series forecasting model. Decision on faulty
state can be based on either an intersection or an union
of the two comparisons. Neighbourhood voting technique is
adopted as it does not require a priori knowledge of the
phenomenon. Instead, this technique takes the advantage of

redundancy in measurements of sensor readings. The ARMA
model is chosen because it has been shown to be theoretically
and experimentally a strong candidate for time series predic-
tions [4]. Moreover, the model parameters can be adapted to
the underlying time series in an online fashion, without the
need of storing large sets of past data [6].

At the phase of classification, in order to classify faulty
readings we refer to the frequency and continuity of fault
occurrence and the observable and learnable patterns that faults
leave in the data. Histogram analysis is aslo used in order to
distinguish between bias and drift faults. Our solution is able
to detect and classify faulty sensor readings into four types
of faults, namely, 1) random, 2) malfunction, 3) bias, and 4)
drift. The proposed solution is the first step of realizing a
decentralised fault handling mechanism on each node. Such
a decentralized scheme is in favour to satisfy the requirements
of online sensor data fault tolerance (e.g., scalability and real-
timeness).

II. SENSOR DATA FAULT MODELLING

There is no doubt that faults appear often in sensor data. The
causes of faulty readings could be the tight resource constraints
of sensor nodes, such as battery-powered, small memory
and computational capacity as well as limited communication
bandwidth. As the first step of fault handling process, it is cru-
cial to categorize faults into different sets. By comprehending
the causes, effect, and especially the characteristics of each
fault type, it is possible to propose appropriate fault tolerance
mechanisms to detect, classify, and correct faults of each type.

Fault categorization may vary depending on the points of
view. Literature exists several fault taxonomies [7], [9] formed
using different criteria, such as cause, impact, or duration of
faults. One can also categorize faults based on the layer of the
network stack where the fault occurs. For example, random
noise, malfunctioning or, probably most common, calibration
systematic error may appear at the physical layer. In terms
of duration, faults can be classified as permanent, intermittent
or transient. Ni et al. [7] give extensive taxonomies of faults
that cover definitions, causes, duration and impact of faults.
According to the categorization of the authors, sensor network
faults can be classified into two broad fault types, namely,
1) system faults and 2) data faults. From system centric view
point, faults may caused by calibration, low battery, clipping,
or environment out of range. On the other hand, data faults
comprise stuck-at, offset, and gain faults. These three types
of data faults also are named as short, constant, and noise,
respectively, by Sharma et al. in [9].

Considering the definitions of faults from a different view
point, Baljak et al. [2] propose a complete and consistent
categorization based on the frequency and continuity of
occurrence and observable and learnable pattern that faults
leave in the data. Their approach shares the same point of view
with ours, thus we use these fault taxonomies in our research.
We believe that the categorization is flexible and applicable
to a wide range of sensor readings. The underlying cause of
the error does not affect this categorization, thus it possible to
handle the faults based on their pattern occurrences on each
sensor node. In our model, there are four types of sensor data
faults as follows,

e Discontinuous — Faults occur from time to time, the
occurrence of faults is discrete.

o Malfunction — Faulty readings appear fre-
quently. The frequency of the occurrences of
faults is higher than a threshold 7.

o Random - Faults just appear randomly. The
frequency of the occurrences of faulty readings
smaller than 7.

e Continuous — During the period of checking, a sensor
returns constantly inaccurate readings, and it is possi-
ble to observe a pattern in the form of a function.

o Bias — The function of the error is a constant.
This can be a positive or a negative offset.

o Drift — The deviation of data follows a learn
able function, such as a polynomial change.

Examples of sensor data fault types of temperature readings
form Intel Lab at Berkeley dataset! are illustrated in Figure 1.
More detailed explanations of our fault modelling are pre-
sented in [3].

By comprehending the type of faults, each node is able
to handle its faulty readings appropriately, according to the
type of fault. Random faults can be discarded as they does
not contain any meaningful information. Malfunction nodes
should be removed from the network. Bias and drift faults are
more interesting because they can be corrected if a suitable
fault model learning is applied.

Temp node 01 Temp node 21 - 1

Temp oC
@
S
Temp oC

0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000

(a) Random data fault (b) Malfunction data fault

Temp node 16 Temp node 02 - 2

Temp
o
&

oC
®
3
~

ol L L L L
20000 22000 24000 26000 28000 30000 16000 18000 20000 22000 24000

(c) Bias data fault (d) Drift data fault then malfunction

Fig. 1. Examples of data fault types in temperature sensor readings from
Intel Lab at Berkeley dataset.

III. DISTRIBUTED FAULT HANDLING

Practically, faulty readings are detected and classified at once,
however, to make it more understandable and explainable we
consider the detection and classification as two separate phases.
Our solution uses a combination of neighbourhood voting,
time series data analysis, and histogram analysis techniques for
detecting faulty readings. Details of this hybrid approach for
fault detection are explained in Section III-A below. Regarding
fault classification, we take into account the duration and
continuity that faults produce in sensor readings. In other

Thttp://db.csail. mit.edu/labdata/labdata.html

words, we focus on how long and how often faults appear in
the checking period. The classification algorithm is realized
based on the fault model that we proposed and discussed
in Section II. In the following, we describe in more details
our hybrid solution that can be realized on each sensor node,
providing nodes the ability to not only check the faultiness of
its readings, but also to classify its faults.

A. Hybrid Fault Detection

At the detection phase, a sensor node compares its current
reading’s value with 1) the value computed by neighbourhood
voting, and 2) the expected value previously forecast with the
ARMA time series data forecasting model. The faulty state of
the reading is decided based on either an intersection or an
union of the two comparisons. The former technique would
decrease the fault positive while the latter one decreases the
fault negative. The result of the detection phase is the faulty
state of the sensor readings.

1) Neighbourhood Voting: The basis of our neighbourhood
voting technique is that 1) neighbourhood nodes are deployed
closely together, thus the distance between them is one single-
hop transmission, 2) the nodes monitor the same phenomenon,
and 3) faults at each node develops uncorrelated. In a nutshell,
neighbourhood voting technique expects that the majority of
the sensors report the correct value of the monitored phe-
nomenon, thus a specific node can relay on its neighbours
to check the validity of its reading. With neighbourhood
voting technique, a priori knowledge of the phenomenon is
not necessary. Instead, it takes the advantage of redundancy in
measurements of sensor readings.

In our approach, we define two sensor nodes are neighbours
if they can communicate with each other by using single-hop
transmission. Given a node 5;, its reading r;, the set of its
neighbours is noted by Neighbour(S;). The number of its
neighbours is denoted as |Neighbour(S;)|. The neighbour-
hood voting technique used at each sensor node .S; includes
following steps:

1) Collect the group of readings R =
r[1..|Neighbour(S;)|] from all of its neighbours,
excluding its own reading 7;.

2) Calculate the median of the group, y = {R}% =T.

3) Calculate the difference between r; and 7,

Drif = |7"i — f|

4) Compare the difference D, with a threshold 7, that

can be adjusted but usually set at 7 = 0.2 % 7
e If D, < 7 then r; is a good reading,
e If D,z > 7 then 7; is a faulty reading.

2) Time Series Analysis: Sensor measurements are the
observations of a well-defined phenomenon monitored. The
observations are obtained periodically over time. In addition,
the measurements exhibit temporal correlation between con-
secutive observations. Thus sensor data are good representative
of time series data. Taking this advantage, time series data
analysis could be used for fault detection. The idea is to use
a suitable time series forecasting model to predict the sensor
reading at time ¢ based on ¢t — k previous readings known in
advance. When actual observation at time ¢ is available, it is
compared against its predicted value to determine if it is faulty.

In this paper, we choose the ARMA model for two reasons.
First, the model has been shown to be both theoretically and
experimentally good candidates for time series predictions [4].
Second, model parameters can be estimated using the recursive
least square (RLS) algorithm [1], which allows to adapt the
parameters to the underlying time series in an online fashion,
without the need of storing large sets of past data.

a) Time series data: A Time series (TS) is a collection
of observations made sequentially, usually in time [4]. We
denote a TS as a variable of X as X = (X1, Xa,..., X¢,...)
or X = {X;}4=1,2, .. Given a time series of data {X,}, the
future values of this time series data can be predicted by using
a suitable time serires forecasting model. In our proposal, we
investing the use of the ARMA model for sensor time series
data.

b) AutoRegressive—Moving Average model: The nota-
tion ARM A(p, q) refers to the model with p autoregressive
terms and ¢ moving-average terms. This model contains the
AutoRegressive AR(p) and Moving-Average M A(q) models.
The ARM A(p, q) model is written as

Xi=P1 Xy 1+ 2 Xt =2+ ..+ ¢p Xy
+a; — Orai_1 — Osat —2 — ... — ant_q

ey

where we use the symbols ¢1, @2, ..., ¢p and —0,, =05, ..., —0,
are two finite sets of parameters for AR(q) and M A(p),
respectively, and a; is white noise.

In practice, the autoregressive and the moving average
models of first order (p = 1), (¢ = 1), and of second order
(p =2), (¢ = 2) are of considerable practical importance [4].
Thus in our implementation, we use the ARM A(2,2) model
of second order (p = 2,q = 2).

c) Parameter Estimation: We used the exact maximum
likelihood (ML) computational method [5] to estimate the two
set parameters, ¢1,d2,...,¢p, and —0i, =0, ..., —0,, of the
model using training data.

The parameter estimation phase is performed at a base
station by using traning data from each sensor. After that, the
ARMA model with determined parameters is implemented on
sensor nodes. Practically, estimating parameters before actual
deployment of the sensors is viable because sensor nodes
usually are and should be well calibrated in advance. At the
running time, the base station that collects data from all sensors
can re-perform the parameter estimation periodically for each
sensor and sends the updated parameters to the proper nodes.
By this way, the ARMA model at good sensor nodes can adapt
with the change in the phenomenon monitored.

d) Fault detection: To detect faults in a sensor mea-
surement time series, a sensor node first forecasts its reading
at time t by using the ARMA model. When actual reading is
available, sensor node computes the difference between actual
sensor measurement at time ¢ and its predicted value, and flags
the measurement as faulty if this difference is above a threshold
¢ that is also known as confidence interval and usually set at
95%.

B. Fault Classification Algorithm

Once a sensor node exhibits faulty measurements, the clas-
sification process checks the frequency and continuity of the

occurrence of faults in order to identify the fault type, i.e., ei-
ther random, malfunction, bias, drift, that the node is suffering.
One should notice that while sensor reading is checked for its
faulty state immediately, i.e., right at the time when the reading
is observed, together with the readings from its neighbour,
the classification process runs periodically, i.e., after every
T readings in order to be able to check the frequency and
continuity of the occurrence of faults. The number of readings
T, thus the time interval for fault classification, is adjustable
to meet the requirement of real-timeness. The classification
process is clarified in Algorithm 1. The algorithm takes, as

Algorithm 1 Fault Classification

Input: 1) R[1..T]: vector of T sensor readings
2) S[1..T]: vector of the faulty state of R[1..T]]
Output: C: fault type of sensor node in the interval
1: Compute the occurrences of faults |e,— in R
2: check the continuity
3: if ¢; is discrete then

4: Check the frequency
5. if |g;| > 7 then

6: C = Mal function
7. else

8 C = Random

9: end if

10: end if

11: if €; is continuous then

12: Check the fault function ¢;
13: if ¢; = const then

14: C = Bias

15 else

16: C = Drift

17: end if

18: end if

19: return C

its inputs, the R[1..T] readings within the checked interval
together with the faulty state (i.e., good or faulty) of the
readings. First, the occurrences of faulty readings |¢;| in R are
computed. Next, the algorithm checks the continuity and the
frequency of the occurrences of faults |¢;| in order to classify
the faulty state of the sensor node in the current interval into
one of four fault types (random, malfunction, bias, drift).

e¢) Histogram analysis for checking the constant of
;- The histogram represents the frequency of occurrence by
classes of data [8]. In our case, the histogram shows how faulty
readings distribute. In order to check if the fault type is bias, we
check the histogram of the readings R[1..T']. If the frequency
of occurrence of less than c classes of data is higher than 7,
we say that the fault is bias, otherwise the fault type is drift.
In practice, c usually is 2 or 3, while 7 is assigned by 0.8.

IV. FUTURE WORK

Faults exhibit frequently in sensor data. Faulty readings can
be corrected with fault model learning if faults are detected and
classified properly. By this way, context information provided
by WSNs is more reliable and accurate. As the first steps of
designing an online fault handling framework, in this paper we
propose a decentralized scheme for fault detection and classi-
fication. Our intention is to realize a fault handling framework

on each sensor node so that each node can handle its own faulty
readings locally in real-time manner instead of depending on
reactions from a base station. Such a decentralized framework
is in favour to satisfy the requirements of online sensor data
fault tolerance (e.g., scalability and real-timeness).

Our proposed solution applies both neighbourhood voting
mechanism and time series data analysis in combination to
detect sensor data faults. Sensor reading is compared with
not just the value computed by neighbourhood voting, but
also is double checked with the value previously forecast by
the ARMA time series data model. Then, the detected faulty
readings are classified based on the frequency and continuity of
fault occurrence and the observable and learnable patterns that
faults leave in the data. In addition, histogram analysis checks
the constant of faults, distinguishing bias and drift faults. In
our solution, the ARMA time series forecasting modelling is
chosen as it shows the potential to be a lightweight mechanism,
satisfying the requirements of keeping the communication
overhead, memory and computational cost low. Thus we plan
to implement our hybrid solution and realize it on actual sensor
nodes in order to evaluation our solution in terms of these
important requirements.

REFERENCES

[11 S.T. Alexander. Adaptive Signal Processing: Theory and Applications.
Springer-Verlag New York, Inc., 1986.

[2] V. Baljak, T. Kenji, and S. Honiden. Faults in Sensory Readings:
Classification and Model Learning. Sensors & Transducers, 18:177—
187, 2013.

[3] V. Baljak, K. Tei, and S. Honiden. Classification of faults in sensor
readings with statistical pattern recognition. In SENSORCOMM 2012,
The Sixth International Conference on Sensor Technologies and Appli-
cations, pages 270-276, 2012.

[4] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis:
Forecasting and Control. Wiley.com, 2013.

[5] Y. Bresler and A. Macovski. Exact maximum likelihood parameter
estimation of superimposed exponential signals in noise. Acoustics,
Speech and Signal Processing, IEEE Transactions on, 34(5):1081-1089,
1986.

[6] Y.-A. Le Borgne, S. Santini, and G. Bontempi. Adaptive Model
Selection for Time Series Prediction in Wireless Sensor Networks.
Signal Processing, 87(12):3010-3020, 2007.

[71 K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,
S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava. Sensor
Network Data Fault Types. ACM Transactions on Sensor Networks
(TOSN), 5(3):25, 2009.

[8] K. Pearson. Contributions to the Mathematical Theory of Evolution. II.
Skew Variation in Homogeneous Material. Philosophical Transactions
of the Royal Society of London. A, 186:343—414, 1895.

[9] A. B. Sharma, L. Golubchik, and R. Govindan. Sensor Faults: Detection
Methods and Prevalence in Real-World Datasets. ACM Transactions on
Sensor Networks (TOSN), 6(3):23, 2010.

[10] K. Tei, S. Suenaga, Y. Nakamura, Y. Sei, H. Nakazato, Y. Kaneki,
N. Yoshioka, Y. Fukazawa, and S. Honiden. XAC Project: Towards a
Middleware for Open Wireless Sensor Networks. Designing Solutions-
Based Ubiquitous and Pervasive Computing: New Issues and Trends,
1:214-231, March 2010.

[11] Y. Zhang, N. Meratnia, and P. Havinga. Outlier Detection Techniques
for Wireless Sensor Networks: A Survey. Communications Surveys &
Tutorials, IEEE, 12(2):159-170, 2010.

