17Collaborative Software Architecting through
Knowledge Sharing

Peng Liang, Anton Jansen, Paris Avgeriou

Abstract: In the field of software architecture, there hagrba para-

digm shift from describing the outcome of the aietting process to
documenting architectural knowledge, such as desapisions and ra-
tionale. Moreover, in a global, distributed settisgftware architecting

is essentially a collaborative process in whichrisigaand reusing archi-
tectural knowledge is a crucial and indispensitag.pAlthough the im-

portance of architectural knowledge has been razedrfor a consider-

able period of time, there is still no systematiogess emphasizing the
use of architectural knowledge in a collaboratieatext. In this chap-

ter, we present a two-part solution to this problamollaborative archi-

tecting process based on architectural knowledgeaanaccompanying
tool suite that demonstrates one way to supponpitbeess.

Keywords: Software Architecture, Collaborative Architectingrchi-
tecting Process, Architectural Knowledge, Knowle®jearing, Colla-
borative Software Engineering.

17.1 Introduction

According to a recent paradigm shift in the fiefdsoftware architecture 0
the product of the architecting process is no lorgdy the models in the
various architecture views, but the broader notibArchitectural Know-

ledge (AK) 0 the architecture design as well asdixsign decisions, ratio-
nale, assumptions, context, and other factorsttigatther determine archi-
tecture solutions. Architectural (design) decisians an important type of
AK, as they form the basis underlying software @edture 0. Other types
of AK include concepts from architectural desigrg(ecomponents, con-
nectors) O requirements engineering (e.g., ris@acerns, requirements),

people (e.g., stakeholders, organization structuaes), and the devel-
opment process (e.g., activities) 0.

The entire set of AK needs to be iteratively pragtljcshared, and con-
sumed during the whole architecture lifecycle byumnber of different
stakeholders as effectively as possible. The stdélels in architecture
may belong to the same or different organizaticshianlude roles such as:
architects, requirements engineers, developersntaiaérs, testers, end
users, and managers etc. Each of the stakeholdsrkisfher own area of
expertise and a set of concerns in a system bewglabed, maintained or
evolved. The architect needs to facilitate the admitation between the
stakeholders, provide AK through a common langufageommunication
and negotiation, and eventually make the necesfesign decisions and
trade-offs.

However, in practice, there are several issueshimater the effective
stakeholder collaboration during the architectingcpss, which diminish-
es the quality of the resulting product. One okthproblems is the lack of
integration of the various architectural activitigsd their corresponding
artifacts across the architecture lifecycle 0. @ilfferent stakeholders typi-
cally have different backgrounds, perform discratehitectural activities
in a rather isolated manner, and use their own Akhan models and
suite of preferred tools. The result is a mosaiadtivities and artifacts ra-
ther than a uniform process and a solid product.

This chapter focuses on how to integrate stakehaslpecific approach-
es and tools related to the individual architecttjvities. We propose a
two-part solution to this problem: a process andaaoompanying tool
suite. The first part integrates requirements esgging (RE) and the vari-
ous architecting activities (e.g., analysis, sysitheevaluation, mainten-
ance etc.,) and their consumed and produced AKyedlsas the related
stakeholders, into a single process model basdbeoprinciple of sharing
AK. Note that we have decided to take RE into antoeven though it is
technically not part of the architecting procebsytare closely intertwined
and affect one another 0.

The second part is the Knowledge Architect tootesthat supports the
collaborative architecting process by realizing angkgrating different
tools that correspond to the various activitieshef process. The tool suite
demonstrates one way to support the process, whiderived from the
requirements of our industrial partner; there ateioways to support the
same activities depending on the organizationdtdmain, and the specific
project at hand. Currently, the tool suite consiétdhe following tools: the
Document Knowledge Client supporting architectstingi an architecture
document; the Excel and Python Plug-ins suppodiygiem analysts per-
forming quantitative architectural analysis; theoiihedge Repository act-

ing as the central location to store all the refévaK; the Knowledge Ex-
plorer allowing other stakeholders to search, iospand trace AK; the
Knowledge Translator translating AK from one langeido the other for
easy understanding. An important feature of thé sate is that the indi-
vidual tools share their AK for specific activitilsrough a central know-
ledge repository, thus providing traceability oetWK and automated
checking across a wide range of architecting disavi

Sect. 17.2 of this chapter discusses collaboratisoftware architecting
and the role of AK. Sect. 17.3 presents the intedrgrocess for colla-
borative architecting, while Sect. 17.4 introduties accompanying tool
suite. Sect. 17.5 elaborates on the details o&lotiation by applying the
process and tooling, exemplified through a runrexgmple. The paper
ends with a discussion on related work, followedbgclusions and direc-
tions for future work.

17.2 Theoretical Background

17.2.1 Collaboration in Software Architecting

Architecting is an inherently collaborative procéstween architects and
several stakeholders, who have various concernsiamgboints. Software
architecture:

e Allows stakeholders to work together, communicategotiate, and
eventually agree upon the architectural decisimksrationale O.

e Defines the partition of both the technical arcttilee and the organiza-
tional teams building the system 0.

e Resolves errors and deals with risks throughousyiséem 0.

e Documents the explicit AK of the organization ahd project to facili-
tate future evolution 0.

In 0 the authors of five industrial architecturesiga methods propose a
common model for architecting, comprised of thneedamental architect-
ing activities: architectural analysis, syntheais] evaluation. They identi-
fy the problem of lack of integration between thastvities and their cor-
responding artifacts and they propose to deal thighproblem through the
concept of dacklog a collection of needs, issues, problems, ideag;w
binds the 3 architecting activities together. Thanes the backlog acts as a
central knowledge artifact that is both produced eonsumed by the 3 ac-
tivities, facilitating their integration. In a calborative setting, this integra-
tion problem is aggravated due to the distributidnstakeholders who
have different backgrounds and expertise. In oyragch, we also pro-

pose knowledge sharing as a promising solutionabu larger scale: an
elaborate set of AK is shared and reused acrosprtposed architecting
process. The shared AK provides a common languaigéhé distributed
stakeholders to communicate, reason, and ensurectirecerns are being
addressed.

The general goals of collaboration in software pegring identified in
0 include: Driving convergence towards a final architecturedastesign,
“Managing dependencies among activities, artifaats] organizations
“ldentifying, recording and resolving errors” and #&eording organiza-
tional memory. We specialize these goals for collaborationrchiecting
and restate them as follows:

e Producing an integrated and consistent architeatoseiment that has
emerged from iterative stakeholder negotiation agréements.

e Managing the dependencies and establishing trditgadninong archi-
tecting activities, artifacts and involved staketeok.

e ldentifying, recording and resolving architectucahflicts, risks, incon-
sistency, and incompleteness.

e Recording the knowledge which is relevant to theolharchitecting
process.

To evaluate how the proposed process and toolaehirese goals, we
revisit them in the Conclusions section.

17.2.2 Knowledge Management for Collaborative Architecting

A distinction is often made in KM between two typ#dknowledge Qacit
(personalized) knowledge that resides in peopl&adh versusexplicit
knowledge that is codified in some form. The latseoften further charac-
terized as documented or formalized knowledge. Dmued knowledge
is expressed in natural languages or drawings, W.grd and Excel docu-
ments that contain architecture description andyaizamodels. Formal
knowledge is expressed (or annotated) in formajdages or models with
clearly specified semantics. Typical examples & thrm include AK on-
tologies 0 or AK domain models 0 that formally deficoncepts and rela-
tionships (e.g.Pesign Decisiorrelated toConcerr). They aim at provid-
ing a common language for unambiguous interpratabiyp stakeholders.
Formal AK can better facilitate activities for aiteltctural collaboration
than documented or tacit AK 0. However, formal AHKtals additional
cost and effort 0.

Based on the knowledge types, Hansen et al. ¢falsdif in two strate-
gies Ocodification aims at codifying knowledge and making it avaiabl

for anyone through knowledge repositoripsrsonalization helps people
to communicate knowledge instead of storing it.FBKIM strategies are
employed in software engineering activities 0 nresiearch and industry
practice has been associated with codification dewsersonalization has
been given less attention. In this chapter, we pdiatus on codified AK

in collaborative architecting. Personalization lsoavaluable, and will be
further investigated in our future work.

17.3 A Process for Collaborative Software Architecting

The architecting process involves several stakehmsldiue to its cross-
cutting nature from requirements to implementatibor large projects,
several teams may work simultaneously on diffeparts or in different
development stages of the whole system, and exehafgrmation. AK is
the most important part of the exchanged infornmagiad is of paramount
importance to the architecting process.

To investigate the role of AK in the architectinggess, we have close-

ly co-operated with our industrial partner, Astr@ime Dutch radio astron-
omy institute), which develops large and compleftvsare systems for ra-
dio telescopes. What makes these systems intagdstim a collaborative
AK perspective is: (1) the development consortiwonsisting of multiple
international partners, (2) the long developmemietiof nearly a decade,
(3) the long required operational lifetime of aade20 years.
In this context, we first identified and descriltbé requirements to man-
age AK in the architecting process of Astron thitoagnumber of use cas-
es using our earlier work 0. We subsequently ifiedtithe AK needed to
execute these use cases and expressed this knewtedgdomain model
0. Using both the domain and the use cases, weedeaind generalized a
collaborative architecting process that integraiesdifferent architecting
activities. To support this general process withgiron, we developed a
tool suite, which is presented in Sect. 17.4.

Fig. 17.1 illustrates this derived process in tewhsctivities and AK
produced and consumed. Furthermore, it visualihesctose interaction
between architecture (solution space) and requin&r(problem space), as
they are closely intertwined 0. Every architectiactivity can provide
feedback to the RE activity, as new insights, asgliduring architecting,
lead to a better understanding of the problem domitiis noted that the
AK-based architecting process is not sequential,highly iterative and
incremental: achieving an acceptable architecteqeires an iterative de-
sign and evaluation process that allows refinentenaddress new re-

guirements and trade-offs. The architecting adtisitand the related RE
activity are briefly described as follows:

Problem space | | Solution space

\ Architect, Designer,
Architecture reviewer

3. Evaluate solutions
Architect, Analys & Choose one
Designer, Progrd -

Choice +
Rationale

Requirement
engineer,
Customer,

2. Propose
solutions
Ercer N

3 | ——

Problem
0. Requirements Decizzl;stz ics
engineering P

Issues
Requirements
Drivers
Risks
Concerns

the architecture
description

Evaluation &
Modified
1. Scope Description Architect, Designer,
£\ _problem space Architecture reviewer
Ia——
Requirement engineer

Legend
Architectural
T AKtew)

Fig. 17.1. The architecting process from an AK perspective

Architecture
Architect, Analyst, Designer,

(0) Reguirements engineering. This activity fuels the architecting
process with different elements (e.g., requiremethisers, decision
topics, risks, and concerns) from the problem sp@ibese form the
main input for the activity of scoping the problespace. Require-
ments engineers, customers and end-users areltgtsikaholders.

(1) Scope problem space. The architect selects the architecturally signif-
icant elements from the problem space and dighksn into a con-
crete problem. To put the problem in perspectiveaase (e.g., from
technical aspects) of the problem is describededs Whis scoping is
needed, as the problem space is usually too begebly forcing the
architect to focus only on the key issues. Typstakeholders of this
activity are: architects, analysts, designers, eglirements engi-
neers.

(2) Propose solutions. The architect uses the existing architecture de-
scription and the problem of the previous steporider to come up
with one or more solutions that (partially) addréss problem. Archi-

tects, analysts, designers, and programmers a@ahgbakeholders in
this activity.

(3) Evaluate solutions & choose one. The architect evaluates the solu-
tions, and makes a design decision by selectinghgrite proposed
solutions (according to the evaluation resultsk @Rcisions may en-
tail making one or more trade-offs and is accomgatuy the appro-
priate rationale. Architects, designers, and agchitre reviewers are
typical stakeholders of this activity.

(4) Evaluate architecture & modify the architecture description.
Once a solution is chosen, it is integrated inaftehitecture and the
whole architecture is evaluated. Based on the atialu results, the
architecture description has to be modified toecflthe new status.
Architects, designers, and architecture reviewees tgpical stake-
holders.

The collaboration activities in architecting takgace in two dimen-
sions: horizontally and vertically. Horizontal addoration occurs between
sequential software development activities, whiah be in the macro- or
micro-level of the software development phases, &gm RE to archi-
tecting (the macro-level), or within architectinthg micro-level) from
architectural analysis to architectural synthdsiiorizontal collaboration,
the output, of one activity becomes the input fog subsequent activity,
e.g., the output of the RE activity (i.e., a regnients specification), acts
as the input of the architecting activity. On thiees hand, vertical collabo-
ration happens when different people work on thmesaoftware develop-
ment activity, e.g., several designers make a a#&ggam using a UML
tool collaboratively in the design activity 0. Ihig chapter, we cover the
RE and architecting activities in both collaboratidimensions. The next
section elaborates on the tool suite that suppbetslifferent parts of this
process, and emphasizes on the various collaborasipects.

The proposed process is meant to be generic ensmughat it can be
customized and adapted into specific architectinggsses used in organ-
izations. As an example, we describe how it cambpped to the genera-
lized model of architecting proposed in 0 architest analysis maps to the
scoping of the problem space (activity 1); architesd synthesis maps to
proposing solutions (activity 2); architectural kexsion maps to evaluat-
ing alternative solutions and selecting the optiora (activity 3), as well
as evaluating the architecture with the integratesign decisions (activity
4). The advantage of this general applicabilityhiat it does not conflict
with established architecting processes in therorgéions. The disadvan-
tage is that it does not contain enough detailset@pplied on its own; it
has to be refined before it can be applied in pract

17.4 The Knowledge Architect Tool Suite

To support the collaborative architecting processcdbed in the previous
section, we implemented the Knowledge Architect K& tool suitefor
creating, using, translating, sharing, and managidg The process itself
is described in a generic way and does not deleedetails about the var-
ious aspects of collaboration, as it is meant tabéroadly applicable as
possible. On the contrary, the KA tool suite estajpecialized support for
integrating the various process activities and stppy collaboration be-
tween the stakeholders. In specific, the tool suif@ements the following
features to serve the collaboration purposes:

e A centralknowledge hublin a large project, multiple stakeholders are
involved in the different process activities angitglly manage and
maintain their part of the relevant AK. The knowdechub is critical for
gathering all the AK in one resource, and providamginterface to all
involved stakeholders to manage and evolve it;

e Traceability managementn a collaborative architecting process, AK
entities are produced by various stakeholders. eBfaitity needs to be
established between these collaboratively prodacefthcts (e.g., a re-
quirement leads to a design decision and when baages the other
needs to be updated). This is of paramount impoetaluring the archi-
tecture iterations, but also for the architectwa@ion;

e Knowledge translation among different stakeholddrgpically stake-
holders come from different backgrounds and haed thwn perspec-
tives on architecture, usually limited to individueK entities (see Fig.
17.2). Effective knowledge translation (dashed vasrdn Fig. 17.2)
enables various stakeholders to understand eaehald speak through
a “common language”. Furthermore, knowledge trdizgigrovides the
ability to present the “big picture”, and espegidhe complex relation-
ships between different parts of the knowledge;

e Automated checkindifferent stakeholders working at varied actisti
and at different times may touch upon the sameelated AK entities.
Automated checking may help to identify the comdljdnconsistencies,
and incompleteness in the collaboratively produs&dentities. Espe-
cially, when the amount of knowledge increases, tyjoe of automated
support is the only way to effectively manage it.

' Part of the tool suite can be downloaded from:Hgiparch.cs.rug.nl/griffin

Stakeholder A .

Stakeholder C

Relevant AK

Stakeholder B Stakeholder D
Legend R
% AK | —= | Translated | »
entity Relationshim AK entity | Translation Stakeholder's
Stakeholder —— T perspective

Fig. 17.2. AK sharing from the perspectives of different sfaglders

Currently, the tool suite consists of 6 tools, whare presented in Fig.
17.3: Knowledge Repository, Document Knowledge i@/iExcel Plug-in,
Python Plug-in, Knowledge Explorer, and KnowledganrElator. The fig-
ure illustrates how these tools are mapped ontaathbitecting process
and its associated activities (see Fig. 17.1).

Horizontal collaboration

/ Feedback loop
Ny TT N
‘ ‘ . Evaluate architecture &
Requirements ‘ Scope problem ‘ F’rop_ose ‘ Evaluate solutions & | modify the architecture
engiﬂie””g ‘ space salu‘t:‘ans Chogsg one description
0 Document 1 Document ‘ 2 Document Document Document
:ﬂ Knowledge Knowledge Knowledge Knowledge Knowledge
Client | Client || Client | | Client [| Client
\ ‘ \ | \
‘ Excel Plug-in : | Excel Plug-in : | Excel Plug-in
Vertical ‘ ‘ ‘
collaboration ‘ ‘ ‘
‘ Python Python ‘
Plug-in ‘—ﬁ Plug-in
\ \ \

(

Knowledge Explorer ‘

Evolution, find & search, traceability)
T

Knowledge Repository

Knowledge Translator ‘

Legend e ¢ Architecting
activities

)

Fig. 17.3. Mapping the KA tool suit onto the requirementsiaegring and archi-

tecting activities

A brief outline of each tool is provided here. A maelaborate descrip-
tion is presented in the next subsections, whike ékact details can be
found in 0. In short, these tools are the follovging

e Knowledge Repository is at the heart of the tool suite: a central loca-

tion, which provides various interfaces for otheol$ to store and re-
trieve AK.

e Document Knowledge Client is a Word plug-in that supports capturing
(annotating) and using (storing and retrieving frima Knowledge Re-
pository) AK within architecture and requirementdments inside Mi-
crosoft Word.

e Analysis Model Knowledge Clients support capturing (annotating) and
using (storing and retrieving from the KnowledgepBstory) AK of
gquantitative analysis models. This type of analgsiscerns the investi-
gation of alternative architectural solutions bylivding (scenario-
based) quantifications of one or more quality ltties of these solu-
tions. Specifically, two knowledge clients are deped (Excel and Py-
thon Plug-in):

e Excel Plug-in supports capturing and using AK of quantitativalgsis
models inside Microsoft Excel 0.

e Python Plug-in supports capturing AK from quantitative analysisdm
els described in Python.

e Knowledge Explorer analyzes the relationships between AK entities.
provides various visualizations to inspect AK eesitand their relation-
ships.

e Knowledge Trandator (semi-)automatically translates the formal AK
based on one AK domain model into the AK based rastheer, so that
various stakeholders can understand each other thiegruse different
AK domain models to document AK.

We have mentioned before that the KA tool suite tuai#t in the con-
text of the Griffin projectfor use within our industrial partner: Astron.
Therefore certain tools of the suite are aimedeggrating with the tools
already used at Astron. In particular this coversrivsoft Word for archi-
tecture documentation, Microsoft Excel and Pythamarrchitecture analy-
sis models. This is only one way to support thdiggcting activities (see
Fig. 17.3); various other tools could be poteniallilt on the same under-
lying ideas of annotating AK on documentation andlgsis models.

In this section, we first introduce these toolgluding the motivations
of (why) and functions provided by (what) theselsotn the next section,
we present the RE and architecting activities aokaboration perspective
by using these tools in a concrete running example.

* GRIFFIN: a GRId For inFormatloN about architecturknowledge,
http://griffin.cs.vu.nl/

t

17.4.1 Knowledge Repository

The Knowledge Repository, as depicted in Fig. 1lis4 central location
for storing and retrieving AK across a wide ranfarchitecting activities.

The tool makes heavy use of technologies develtgrettie semantic web.
For example, the open source RDF store Sesarused for storing and
querying AK, while OWL (Web Ontology Language) isedl for modeling

AK domain models. The Knowledge Repository API pdeg the inter-

faces to communicate with all the Knowledge Cligfi@®cument Know-

ledge Client, Excel and Python Plug-ins) to stbeednnotated AK into the
repository. The Query Engine is used to query tHeeAtities and their re-
lationships in the repository, and visualize thenthie Knowledge Explor-
er. The Knowledge Translator performs the automaginslation. All the

surrounding tools are described in the remainirrgqfethis section.

Document
Knowledge Excel Plug-in
Client
(Sesame OWL/RDF Store)
Knowledge | Python
Explorer l Query Engine Repository API Plug-in
Domain OWLim Engi
Protégé Model im Engine || Knowledge
Translator
Knowledge Repository

Legend

) — 15

Tool Component Data flow File

Fig. 17.4. The Knowledge Repository with other tools in th& ool suite

17.4.2 Document Knowledge Client

The Document Knowledge Client is a plug-in to captand use explicit
AK inside Microsoft Word 2003. Various AK domain aels can be dep-
loyed in the Knowledge Repository for different isséstakeholders), who
annotate the AK using the AK domain models theyuaderstand. Hence,
the tool can be reused with other AK domain modEhe tool offers three
basic functions:

* http://www.openrdf.org/

AK capturing: Knowledge can be captured in a Word documenteby s
lecting a piece of text and right clicking and ckiog the appropriate op-
tion from the pop-up menu. When adding a new AKtgna menu ap-
pears which allows the user to provide additiomébrimation about the
entity, e.g.Name Type StatusandConnections

AK traceability: The relationships among AK entities compriseicalt
traceability information in collaborative architag. For example, to find
out “who (stakeholders) are concerned with a designsitati The AK
traceability can be easily created or removed lprygw menus in the Doc-
ument Knowledge Client.

Design maturity assessment: One of the advantages of formalized (an-
notated) AK is automatic reasoning support basetherunderlying for-
mal models. The Document Knowledge Client suppiitsarchitect in as-
sessing the completeness of the architecture géseri Based on the AK
domain model, the tool performs model checks usmgformity rules to
identify incomplete parts.

17.4.3 Excel Plug-in

The Excel Plug-in implements a domain model fornjative architec-
ture analysis models in Microsoft Excel. The toappgorts analysts in
making the AK produced during architecture analgsiplicit. The aim is
to facilitate the sharing of AK to other analystslahe analysis results in a
transparent manner to other stakeholders. The dffets the following
three basic functions:

AK capturing: The major part of the AK of an architectural s
model in Excel is found in the cells. Often labglgrounding the cell de-
note the semantic meaning of a cell. The tool alewalysts to make spe-
cial annotations to cells. For reviewing purpogshbs, tool also tracks the
review state of each cell and allows for comments.

AK traceability: An important feature of the tool is that it ipedle of
automatically inferring the dependencies among dbiis (AK entities).
Hence, the traceability relationships between AKtiels are automatically
captured.

AK visualization: To facilitate manual verification, the tool ofea vi-
sualization of the AK dependency graph, which cpomds to the cells in
the Excel worksheets.

17.4.4 Python Plug-in

Similar to the Excel Plug-in, the Python Plug-iroyides functionality to

codify the AK of analysis models. In this case, #malysis models are ex-
pressed using the Python programming language. Bethexcel and the
Python Plug-in assume quite similar domain modeénce, the concepts
and functionality discussed in the previous secalso apply here.

17.4.5 Knowledge Explorer

Typically, the size of an AK repository will be csiderable containing
thousands of AK entities. Finding the right AK éptior even worse a
number of related AK entities, from such a big edlion is not trivial.
Hence, there is a need for a tool to assist incek an AK repository.
The Knowledge Explorer can support users in viguadi AK entities and
their relationships. Fig. 17.5 presents a scrednshthe tool. It provides
search functionality on the left hand side. Theiltesy AK entities of this
search action are shown in the list on the lefidhside. The results can be
filtered using the drop down box on the left, thgreeducing the size of
the found results. The filtering is based on tipetgf the AK. The availa-
ble options are taken from the used AK domain mddeuble clicking on
one of the search items results in illustratinguenber of related AK enti-
ties in columns.

File Edit View Draw Help

Al "4 Pillars
Quick_Decision

Quick Decision for Prog Alternative

|Quick Decision for Proe Decision_Topic

\All User Interaction Concern

Products Dispatch Quick_Decision Decision_Topic [ectsion

IProvide Basic Logistic: S

|Quick Decision for Pro 185 Quick Decision 184 Uwr Requirement

IProduction Process Ex - . Risk

luick Decision for Cont for User of Specification of

Production Plant Healtt Reviewers

Configuration and Conti _ Ahmad 5

\Goal of Scheduler Anton

|Quick Decision for Det: - Auke

|Quick Decision for Use l D 1 85 Hubert

e Name: Quick Decision for User Specification of Observation i

Flexibilty NodeName: http:/iwww.archium.net/AstronGriffin# Marcel

oot QUICK_DECISION_OF_USER_SPECIFICATION_OF_OBSERVATION_185 prareo =

Quick Decision for Goal Notes: Depth

Configuration of Instrus

ILOFAR Concurrency Fe|

IMAC System full contrd Context: v 9 (ORI

Sharing of Re . .o

ovsorvation priory - Observation specifications are entered in an observation type specific user Direction

[Soat o Confguration interface. The user (scientist) enters observation specifications in terms ::;n

|Availability of support of the required end product; these are further processed into settings for

[Quick ecisionfor Date the relevant components in the observation. The generation of those settings Showe

[Availability of Instrume is based on intelligent code in observation tree templates.

ISequencing of sub-obs,

Data Processing

IConfiguration and Conti

Concurrent Multiple Ob/ _ | I | I

1| D

Fig. 17.5. The screenshot of the Knowledge Explorer

17.4.6 Knowledge Translator

The purpose of the Knowledge Translator is to teaaghe AK in various
AK domain models from one to the other and vicesaem his allows vari-
ous users to understand the AK codified in differdK domain models.
This is critical for stakeholders from differentdigrounds to understand
each other in a collaborative architecting procéss.example, a require-
ments engineer and an architect use different Akalp models to pro-
duce and consume requirements (part of AK), butl tedhave a common
understanding. Currently, we employ the core mguieposed in O as a
central model for the AK translation by an indir&einslation approach O.

The AK translation can be done manually or autoradlti. Both ways
have their respective advantages and disadvantegganslation cost and
quality, and stakeholders can select an appropni@ener by trading off
guality and cost in their own context. The initidst-benefit analysis
about the AK translation cost and quality has baeestigated in O.

17.5 Collaboration within the Process with KA

In this section, we present the collaboration waitthie proposed architect-
ing process, as it is supported by the KA toolesuite discuss both hori-
zontal and vertical collaboration and demonstragmt through a running
example. The context of this running example odg#s from the archi-
tecting process used at our industrial partnerrois{see Sect. 17.3). In
their projects, there is a large and complex bddknowledge that needs
to be shared frequently among the distributed sialkiers. However, the
different backgrounds and expertise of these stallers restrains them
from achieving a common understanding and thusensthe integration
of collaborative architecting activities. We haveried closely with As-

tron for the software architecture of two projetitat concern the next
generation of radio telescopes. The stakeholdexdvied with the archi-

tecting process in these projects include end-ugmmientists), require-
ments engineers, architects, analysts, designdrarahitecture reviewers.

17.5.1 Requirements Engineering

Horizontal Collaboration

In a traditional software development scenariogguirements engineer
produces the software requirements specificatioam document, e.g., in a
Word file. The requirements engineer subsequerghyers the require-

ments documentation to the architect for the agchire design. Within
this process, the requirements engineer, archigct,other related stake-
holders will closely interact with each other. Thilbse interaction is
needed to ensure common document understandingndliate require-
ments 0 and improve the architecture design, ktc, distributed devel-
opment environment or in a long-term developmenjget, this intensive
interaction between the requirements engineer hadatchitect is quite
challenging. The geographical distance betweervbeactors hinders ef-
fective interaction, while staff reassignment itoag-term project would
result in knowledge vaporization 0. In such cafies,Knowledge Reposi-
tory acts as the project requirements knowledgtecethe repository pro-
vides valuable requirements information accordimgstablished AK do-
main model§ and it helps the architect to understand the ireoqents
correctly and unambiguously.

Running example: a requirements enginéspecifies the requirements
(includingarchitectural significant requirementsoncernsandrisks, etc.,)
in the requirements document through discussioh witstomers. After-
wards, the requirements engineer uses the Docukmawledge Client to
annotate the knowledge about requirements in thaumbent, e.g., The
user (scientist) uses these interfaces to proposkespecify observatioris.
(an AK entity of concepRequiremen}s and ‘This flexibility is of great
importance especially for the high performance agtlons’ (an AK ent-
ity of conceptConcern3. In the end, all the annotated AK entities are
stored into the Knowledge Repository. The architetteves the require-
ments information from the Knowledge Repositoryy agopes the prob-
lem (architectural analysis) by choosing only thehdecturally-significant
ones (e.g., scoping thdecision topicdrom therequirements The archi-
tect subsequently stores the newly produced AKtiestinto the Know-
ledge Repository for further collaboration.

The whole collaboration process is illustrated iig. B7.6. The numbers
in this figure represent the actions sequence.KA¢ool suite offers fea-
tures to support these collaboration activities. &le, the design ma-
turity assessment function based on formal AK calp lthe architect to
find out whether all theequirementdiave been considered or not. Another

4 If there is no explicit specification, we assurhattthe AK domain model em-
ployed in various requirements engineering anditciing activities for pro-
ducing and consuming AK is the same one, so thagtakeholders can com-
municate the AK in a common language.

5 The collaboration between other stakeholderssis atitical, e.g., between the
telescope user and requirements engineer, but eus fon the requirements en-
gineer and architect in the scope of this chapter.

example is that the traceability of formal AK caglhthe architect to trace
from the design space (e.gdasign decisionback to the original cause in
the problem space (e.g.requirement

Document use
Knowledge
Client

use

1

2
Requirement: annotate

store Knowledge
(produce AK) | Repository | (consume AK)
engineering)

document (Requirements
Requirements Architect

Engineer

4
annotate Architecture
(Scope problem document

space)

(produce AK)

Legend s

action

Documenﬁ ‘ Tool ‘

Fig. 17.6. AK sharing process between requirements enginekaechitect

Vertical Collaboration

The typical scenario in RE is that all the systeéakeholders can propose
their individualrequirementsconcerns andrisks from different perspec-
tive and at different levels (business goals, pecodeatures, user require-
ments, etc.,) Inevitably, there are always cordli@.g., conflict business
goals, concerns) and mismatch (e.g., no user mgemts relating to a
product feature) in the candidate requirements. ddiaboration among
all the requirements stakeholders is needed to forotear and unambi-
guous requirements specification using negotiaéind reaching compro-
mises. Another situation is that different requiesnts engineers work on
the requirements specification for different pdrthe system at same time.
In this case, they also have to understand theireegents, which have
been elicited and documented by other requiremeamgimeers for consis-
tency. Hence, collaboration among these requiresnengineers is a ne-
cessity to achieve a coherent and consistent eageints specification.
Running example: CustomerA specifies the requirementhe flow of
information, either control or monitoring metricis, in the vertical direc-
tion.”, and then the requirements engineer uses the DecuKnowledge
Client to annotate thisequirementand store this AK entity into the Know-
ledge Repository. CustomBruses the Document Knowledge Client to re-
trieve the latestequirementdrom the Knowledge Repository. After this,
CustomenB finds out that theéequirement‘The flow of information in the
vertical directiori is not desirable. The customer wanfEhe flow of in-
formation is in the horizontal directidnin this situation, Customds adds
his/her requirement, annotates, and stores thisregent as a conflict re-

quirement with the requirement proposed by Custofndiventually, the
requirements engineers will try to negotiate arsbie the conflict with
all the other requirements stakeholders (e.g.utiinoroting) or just inquire
the high level project decision maker to choose one

17.5.2 Scope Problem Space

Horizontal Collaboration

“Scope problem space” is the first activity in thechitecting process,
aimed at refining the problem space by selectimgaifchitecture signifi-
cant problem elements. The results of this actiaity a set odirchitectural
significant requiremenise.g.,problem cause anddecision topis, which
are further used in the following activity to pradualternative architec-
tural solutions The architect uses the Document Knowledge Cligran-
notate thesarchitectural significant requirementsvhich he/she has iden-
tified, using the AK domain model, and stores thieto the Knowledge
Repository. After this, the analyst can retrievis tAK from the Know-
ledge Repository, understand it based on the AKailormodel, and pro-
posealternative architectural solutions

Running example: An architect analyzes aarchitectural significant
requiremente.g., In this (data) view on the system software, wedau
the control over the data processing pipelifeand gets alecision topi¢
e.g., 'the control method over the data processing pigsljrwhich has to
be addressed by design decisionAfter that, the architect annotates and
stores thiglecision topidnto the Knowledge Repository. Tlecision top-
ics can be retrieved by the analyst from the Knowleldgpository for fur-
ther collaboration, e.g., in the proposing soluiawtivity.

17.5.3 Propose Solutions

Horizontal Collaboration

Once the scoping of the problem space is compledeaaclearer picture of
the problem at hand is created, the architect taefine one or more al-
ternative solutions to (partially) address the pgpb These alternatives
need to be shared in some shape or form, e.gg asiaxtual description,
figures, presentation, or a conversation, in otdelbe evaluated. For im-
portant decisions, the alternatives are shared thithstakeholders: (1) to
validate whether the alternative is indeed addngsthe problem (2) to
create understanding and support among the stalexisofor the choice
made in the next step.

Furthermore, thinking up alternative solutions ofieads to new in-
sights in the problem space. For example, it isumatommon to find re-
guirements unclear on key aspects or find out @hparticular concern is
being overlooked. Hence, close collaboration witkguirements engineer
(and perhaps other stakeholders as well) is netedsatt out these aspects.

Running example: Following the running example from the previous
activity, the analyst retrieves thikecision topicfrom the Knowledge Re-
pository, and proposes sevemdternative architectural solutionse.g.,
“use real-time control methtyd‘ use batch contréland “use real-time or
batch control depending on the data characteristisier this, the analyst
annotates thesalternative architectural solutions the architecture doc-
ument and stores these newly produced AK entitigs the Knowledge
Repository. The architecture reviewer retrieves therespondingcon-
cerns decision topi¢ and itsalternative architectural solutionffom the
Knowledge Repository. Based on this AK, the revieeealuates thel-
ternative architectural solutionagainst related useoncerns It is noted
that there is a bidirectional traceability relagbip created automatically
between alecision topicand analternative architectural solutigras dic-
tated by the relationships in the AK domain modléith the bidirectional
traceability relationship, when the architect ctemg@removes, modifies)
the decision topicthen the analyst will be notified to reconsidees alter-
native architectural solutionghich have been proposed.

Vertical Collaboration

For two reasons the proposed alternatives need &hared among archi-
tects as well. Firstly, sharing alternatives ameagh other inspires archi-
tects to consider new solution directions. Often takes the form of crea-
tively combining existing alternatives into a neweo Secondly, this
sharing prevents architects from redoing work alyedgone by their peers.
For analysts, sharing the alternatives is imporgsntvell. The analysis of
different experts has to be reconciled to evalaaimgle alternative. How-
ever, this requires a shared understanding amangrtalysts what this al-
ternative exactly entails. Consequently, the kndgéeof what these alter-
natives are should be shared.

Running example: The analysts use the Knowledge Explorer to find
out what kind of assumptions their fellow analykesse made in their
analysis about the alternatives. Based on this letgye, they can update
their own analysis models. Software architects staare a software archi-
tecture document to facilitate vertical collabavati Using the Document

Knowledge Client, an architect can trace frolexision Topido the pro-
posed alternatives and read their description.

17.5.4 Evaluate Solutions & Choose One

Horizontal Collaboration

The horizontal collaboration in this activity takpkce between the soft-
ware architect/analyst and other stakeholderswilves sharing four dif-
ferent types of AK. The first type is the evaluaticriteria that should be
used to judge the various alternative solutions.irAportant criterion is
the extension to which a proposed alternative Eoluaddresses the de-
fined decision topic. In addition, the captured@ans during RE provides
good candidates for evaluation criteria. Additiohatizontal collaboration
with the requirements engineers is needed wheevakiation criteria are
not clear.

The second type is the relative importance of foeeanentioned crite-
ria. Typically, there are differences among how stekeholders perceive
the importance of the criteria. Hence, the archites to reach an accepta-
ble compromise, and through horizontal collaborgticommunicate this
compromise to the stakeholders.

The third type is the perceived pros and cons of @ternative, i.e., the
ranking of each proposed alternative solution @ndéfined criteria. Often
conflicts arise among stakeholders due to diffezerio the perception of
these pros and cons and their associated likeliaoddstrength. Since this
knowledge forms the basis of the rationale of thaaz, it is of paramount
concern to reach consensus among the stakehololsus these properties.
One of the goals of analysts is providing detaifddrmation about these
properties in an objective manner to facilitate tfainking.

The fourth type is the choice made among the altenes. The asso-
ciated rationale is based on the three earlieodhired elements. In prac-
tice, only this last element is typically communé@zh In this situation, the
rationale and the three other elements are onedhahen asked for.

Running example: In the previous step, thredternative architectural
solutionswere proposed and documented in a documerste ‘real-time
control methot] “use batch contrbland “use real-time or batch control
depending on the data characteristicn this step, the architect writes
down the choice made (e.g., for the use real-tiamrol method) and pro-
vides a small explanation for this choice, e.glueng costs by not requir-
ing additional storage. Selecting this piece of #sd pressing the add KE
button of the Document Knowledge Client adds the &s aDecisionto
the Knowledge Repository. To provide traceabilibg architect relates the

newly createdecisionKE to the choserlternative Indirectly, this also
relates theDecision to the other considered alternatives through their
commonDecision Topic

To provide rationale, the tool suite provides twmians. The first one is
found in the Document Knowledge Client and allotes &rchitect to relate
an analysis result from one of the Analysis Modiéi@s (Excel and Py-
thon Plug-ins) as either Rro or Conto anAlternative For example, the
predicted cost of the real-time alternative. Theose option is to use the
Knowledge Explorer to find suitable concerns (ecgst) that could be an
evaluation criterion.

Vertical Collaboration

Among analysts the vertical collaboration for tativity mostly consists
of unifying the analysis results of different exgsein one consistent pic-
ture. In this way, evaluating the alternatives loees relatively easy. Ver-
tical collaboration among architects is about thevidedge sharing cover-
ing the aforementioned four AK types, since it lidsstknowledge that
makes up the reasoning behind the architecture.

Running example: To present an objective basis for decision making
analysts make a four column table in the architectlocument with the
first column being the criteria used and the othbree columns
representing the three alternatives considered.rdWe present for each
criterion the analysis result for each alternatildsing the Document
Knowledge Client, the analyst creates the tracialiietween the docu-
ment and his/her quantitative analysis from PytborExcel. By sharing
this document with other analysts, each adding then row, a complete
unified picture for the evaluation is created. Aretts use a similar ap-
proach.

17.5.5 Evaluate Architecture & Modify the Architecture
Description

This evaluation activity is similar to the previoesaluation activity, but
has a larger scope. The previous activity focusethe evaluation of alter-
native architecture solutions while this activityakiates the entire archi-
tecture with the incorporated new design decisagen solution). Con-
sequently, the collaborations through AK sharinghafse two evaluation
activities are quite similar. Hence, we do not eggbem again. We focus
on the activity “modify the architecture descriptio

Horizontal Collaboration

Collaboration in this activity happens between sedjal activities, i.e.,
horizontal collaboration from architecture deseaptto detailed design. In
this collaboration, the Knowledge Repository casoahct as the hub in
which the architects and designers share the aoture description in-
formation.

Running example: An architect makes design decisiofiuse real time
control during data taking and processingnnotates, and stores this AK
entity into the Knowledge Repository. A designeriezes the latestle-
sign decisiondrom the Knowledge Repository and makes a detailled
sign which is based on thaesign decision

Vertical Collaboration

Based on the evaluation results, an architect riesdihe design and doc-
uments the outcome of design, using natural largwagpecial notations
(e.g., Architectural Description Language or UMh)d document. The ar-
chitecture description can be completed by a siagthitect in a small
project, but for a large project, several archgegill be working together
for the various parts of the system. The collabhonadamong them is essen-
tial to produce an integrated and consistent archite document in the
end. The Knowledge Repository acts as the hub ichwéll the architects
share the architecture description information weiich other.

Running example: One of the useconcernsabout the system is stated
as ‘Performance issue is in a higher priority than castthis systeih
Architect A makes adesign decisiorio address thisoncernas ‘use real
time control during data taking and processingnd annotates and stores
this AK entity into the Knowledge Repository. Artgit B makes another
design decisiorto address the sanmncernas ‘limit the data payload
during data taking and processihgannotates, and stores this AK entity
into the Knowledge Repository as well. Archit€rtetrieves the lateste-
sign decisiongrom the Knowledge Repository and uses the desigturi-
ty assessment function provided by Document Knogde@lient to verify
the architecture design. The design maturity assmsisfunction detects
that these twalesign decisionaddress the sanm®ncernand are actually
in conflict with each other. Therefore, ArchiteCttries to negotiate with
ArchitectsA andB to come up with a singlgesign decisiore.g., ‘Use real
time control during data taking and processin@ther defects or weak

points can also be detected by the design matasggssment, such as in-
completeness. Archite«@ annotates the newesign decisiorand stores
(updates) the Knowledge Repository for further amtiration with other
architects.

17.5.6 Feedback Loop

Feedback can be provided from any architectinyiégtio the RE activity,
as for example new useoncerns solutionsand design decisionpose
newrequirementsArchitecting is a highly iterative process. Irckatera-
tion, the requirements are revisited until all #rehitectural significant
requirementsare satisfied and atisks are mitigated. The Knowledge Re-
pository is the central storage of AK produced linaativities, and sup-
ports feeding this knowledge back to the RE agtivit

Running example: An example of collaboration that concerns provid-
ing feedback to RE is the following: the architewtkes adesign decision
“use SAS (a software package for data visualization)data observa-
tion”, annotates, and stores tlissign decisiointo the Knowledge Repo-
sitory. A requirements engineer retrieves thesign decisiorfrom the
Knowledge Repository and finds that thissign decisiomesults in a new
requirement‘the data observation should be visualized in GUhe re-
guirements engineer annotates and stores this q@atiuced requirement
into the Knowledge Repository. In this way, (othegjjuirements engi-
neers can retrieve the updated requirements frerKitowledge Reposito-
ry and validate the consistency between the newinegent and the exist-
ing ones.

17.5.7 Architectural Knowledge Translation

AK translation is a common function in all actiesi (both RE and archi-
tecting), since the involved stakeholders typicakbg different AK domain
models to produce and consume the AK. It is comparto human lan-
guage translation, were people from different coestspeaking different
languages try to communicate. A translator is nddde effective com-
munication between them, as he or she translabes éme language to
another and vice versa. The quality of the traisiadepends on the quali-
ty of the translator, i.e., how correctly the tiater can translate know-
ledge. In AK translation, various translation methiccan be employed
with their specific advantages and disadvantagpsru#ng on the transla-
tion context (humber of involved AK domain modelsdaAK entities,
etc.,) 0.

Running example: A requirements engineer working at brarcbf As-
tron uses the AREL AK domain model 0 to annotatevkedge aboute-
quirementse.g., ‘The user (scientist) uses these interfaces to p®pond
specify observatioris(an AK entity of AREL conceptFunctional re-
quiremeny, and ‘The new user (scientist) shall know how to useetlies
terfaces to propose and specify observations io@di (an AK entity of
AREL conceptNon-functional requiremenht These two AK entities are
subsequently stored into the Knowledge Repositényarchitect working
at branchB of Astron uses the LOFAR AK domain model O to aone
and produce AK. In particular, the architect uges concepRequirement
from the LOFAR AK domain model to retrieve all thexjuirements infor-
mation from the Knowledge Repository which has bpesduced by the
requirements engineer of brandhDue to the different requirement con-
cepts being used by the AK producer (requiremenggneer at branci)
and consumer (architect at branBly knowledge translation is needed.
The Knowledge Translator uses the defined AK conoggpping relation-
ship to translate AK entities. For example, the AREK conceptFunc-
tional requirementandNon-functional requiremerdre both thesubClas-
sOf the LOFAR AK conceptRequirement Using this relationship, the
Knowledge Translator translates the two AK entit@sotated in the
AREL domain model into the AK entities in the LOFA®dmMain model
and stores translated AK entities into the KnowteBgpository. After this
translation, the architect at branBhcan retrieve all the requirements in-
formation from the Knowledge Repository.

17.6 Related Work

Computer Supported Co-operative Work (CSCW) invgaife engineering

comprises all software engineering methods, noamd,tools that support
teamwork flexibly and effectively 0. CSCW concetdsaon improving the

efficiency of groupware 0 for software developmédnfocuses on the ver-
tical collaboration in the software developmergdifcle, e.g., the collabo-
ration among requirements engineers or among dersig®ne such exam-
ple is ProjectlT-Studio, an integrated environmetitat supports

collaborative RE by combining wikis with CASE todisr requirements

specification and validation 0. This tool can assisn-technical stake-
holders during the requirements specification aglg hequirements engi-
neers for a seamless integration with dedicatedCREE tools. ProjectIT-

Studio fosters the stakeholders’ involvement inatmrative RE from a

socio-technical perspective. Another example isUML profile UML-G

for co-operative UML modeling in the design acimvil. It supports soft-
ware modeling by explicitly representing sharedadavles and actors in
co-operative sessions. UML-G stresses the sharindesign outcomes
(i.e., models), but does not pay attention to #timnale underneath the de-
sign.

A CSCW approach for architecting was proposed md@ressing the
collaborative architecture modeling of complex comgnt-based systems.
A collaborative modeling tool was provided for thechitecture design
team in which several architects design architecaa-operatively. Mul-
tiple architects are able to concurrently acceslsmaanipulate the software
architecture information stored in a server machirtee shared software
architecture information in this tool is mostly tdesign artifacts (e.g.,
components, data flows, external entities, ethgré is no support to store
information about design decisions and rationale.

Similarly, Maheshwari and Teoh implemented a wegelzaool for col-
laborative software architecture evaluation, sugpgrthe Architecture
Tradeoff Analysis Method (ATAM) 0. They argue tihé ATAM method
has its limitations in an increasingly globalizedtware industry in which
the distribution of development teams is extensiveeir web-based tool
provides a mental mapping from the physical wooldhte internet world.
For example, their tool set provides communicatamis, such as chatting,
brainstorming, voting tool, etc. The tool set afgovides some assistant
tools for ATAM, such as Utility Tree Viewer/EditoFeatures Evaluator,
etc., Most of the knowledge exchanged by their &l is personalized
knowledge, which is often difficult to understang users who come from
different backgrounds.

Farenhorst et al. use wikis to support collaborataemmmunication, and
consensus decision making in the architecting m®oé distributed devel-
opment by sharing AK 0. They suggested that, fecessful AK sharing,
it is necessary to tailor the types and contemiloffor sharing according
to the concrete architecting process 0. Their Wiockises on personalized
(e.g., by using yellow pages) and documented AKretdn formal AK.

PAKME (Process-centric Architectural Knowledge Mgement Envi-
ronment) is a web-based tool aimed at providingakadge management
support for the architecting process 0. PAKME fasusn various colla-
borative features (e.g., collaborative decision imgk for distributed
stakeholders involved in the architecting procgssbnaging codified AK
(pattern, decision etc.,) and personalized AK (@onimanagement, online
collaboration, etc.,) Other related work on AK shgrand reusing can be
found in the SHARK workshop series 0.

17.7 Conclusions and Future Work

AK is widely accepted and recognized to be of panamh importance for
the success of software architecting. Howevercttiaboration among the
stakeholders involved in the architecting procedsindered by the lack of
integration of architecting activities and the esponding AK. This has
severe implications for the quality of both thelatecting process and the
product. This chapter presented a collaborativéitating process and
the accompanying tool suite that integrate the itcting activities
through AK sharing.

The process and the accompanying tool suite adthestur goals of
collaboration in software architecting identifiedS$ect. 17.2.1:

(1) Using the central Knowledge Repository and Knowge@gjent tools,
an integrated and consistent architecture documemtbe produced
through stakeholders collaboration;

(2) Using various AK domain models to capture (anngtéi€ in the
Knowledge Clients, dependencies and especiallyeataility among
architecture artifacts can be effectively managedhie Knowledge
Repository;

(3) Using the functions provided by the Knowledge Qliemls (e.g., de-
sign maturity assessment of the Document Knowlediijent), the
architectural conflicts, risks, inconsistency andompleteness can be
identified, recorded and resolved based on the dbmelationships
defined in the AK domain model and semantic webrgfice;

(4) Using the central Knowledge Repository, all thewlealge which is
relevant to the whole architecting process (AKleisorded.

Although the proposed approach (process and tat#)swas derived
from a specific organization, it is generally applile to other organiza-
tions: as explained in Sect. 17.3, the proposethlmmiative architecting
process is orthogonal to current architecting pgses. Due to its generic
nature, it has to be adapted and customized intex&ting architecting
process before it is put into practice. For theoagganying tool suite,
some general tools (Knowledge Repository, Docurdgrwledge Client,
Knowledge Explorer, and Knowledge Translator) carabjusted and em-
ployed to the architecting processes mentioned ealsince they follow
closely the proposed process. The Excel and Pyiog-ins have been
developed according to Astron’s needs, and can balysed if other or-
ganizations have similar needs (quantitative amglys

The KA tool suite has been used and (empiricalgljdated in two in-
dustrial case studies at Astron for quantitativalysis of architecture de-
sign 0 and enrichment of architecture documentdlioim O the tool suite

was deemed effective for facilitating AK sharing feerification and vali-
dation of quantitative architectural solutions.Olwe proved that the tool
suite helps to partially address the shortcomiriggiorent architecture do-
cumentation approaches of large and complex systems

In the future, the integrated collaborative arattitey process with the
tool suite should be further validated in a largetustrial project with a
cost-benefit analysis. The tool suite needs touptadr improved with re-
spect to its usability and scalability. Finally, wkan to extend this suite
with other tools for a wider application of AK sy (e.g., UML/ADL
modelers, Email Plug-in, and other quantitativelysis tools).

Acknowledgments

This research has been partially sponsored by thtehDJoint Academic
and Commercial Quality Research & Development (Jaat) program on
Software Engineering Research via contract 63840&L.GRIFFIN: a
GRId For inFormatloN about architectural knowledgke authors would
like to thank Astron for their support and accesshe LOFAR software
architecture documents.

References

[1] Ali-Babar M, Gorton | (2007) A tool for managinsoftware architecture
knowledge. In: Proceedings of the 2nd Workshop bariig and Reusing
architectural Knowl-edge - Architecture, rationaland Design Intent
(SHARK/ADI 2007), May 20-26, pp 11-17

[2] Ali-Babar M, Gorton I, Kitchenham B (2006) Aadmework for supporting ar-
chitecture knowledge and rationale managementoRa® Management in
Software Engineering, Dutoit AH et al. Editors, 27-254

[3] Avgeriou P, Lago P, Kruchten P (2008) Thirdeimational workshop on shar-
ing and reusing architectural knowledge (SHARK 2008SE Companion,
pp 1065-1066

[4] Avgeriou P, Kruchten P, Lago P, Grisham P, ¥ddr (2007) Architectural
knowledge and rationale: issues, trends, challen®@M SIGSOFT Software
Engineering Notes, (32) 4:41-46

[5] Bass L, Clements P, Kazman R (2003) Softwaohitgcture in practice (2nd
edition). Addison-Wesley Professional

[6] Bhat JM, Gupta M, Murthy SN (2006) Overcomirgguirements engineering
challenges: lessons from offshore outsourcing. |EBEware, (23) 5:38-44

[7] Bischofberger WR, Kofler T, Matzel KU, Schaffé (2002) Computer sup-
ported co-operative software engineering with belysniff. In: Proceedings
of the 7th Conference on Software Engineering Emritents (SEE 1995),
April 5-7, pp 135-143

[8] Capilla R, Nava F, Carrillo C (2008) Effort asfition in capturing architectur-
al knowledge. In: Proceedings of the 23rd IEEE/AQNEernational Confe-
rence on Automated Software Engineering (ASE 2088ptember 15-19, pp
208-217

[9] Capilla R, Nava F, Pérez S, Duefias J (2006)eb-vased tool for managing
architectural design decisions. ACM SIGSOFT SofawBngineering Notes
(31) 5:20-27

[10]de Boer RC, Farenhorst R, Lago P, van VlietGlgrc V, Jansen A (2007)
Architectural knowledge: getting to the core. Imo&edings of the 3rd Inter-
national Conference on the Quality of Software Ataxdtures (QoSA 2007),
July 12-13, pp 197-214

[11]Dings@yr T, Conradi R (2002) A survey of casadges of the use of know-
ledge management in software engineering. InteynatiJournal of Software
Engineering and Knowledge Engineering, (12) 4:324-4

[12]Farenhorst R (2006) Tailoring knowledge sharioghe architecting process,
ACM SIGSOFT Software Engineering Notes, (31) 5:85-1

[13]Farenhorst R, van Vliet H (2008) Experiencethve wiki to support architec-
tural knowledge sharing. In: Proceedings of the \Bfdrkshop on Wikis for
Software Engineering (Wikis4SE 2008), Septembe0 8-1

[14]Ferreira D, da Silva AR (2008) Wiki supportedllaborative requirements
engineering. In: Proceedings of the 3rd Workshokis for Software En-
gineering (Wikis4SE 2008), September 8-10

[15]Guo J, Liao Y, Parviz B (2006) A collaborationiented software architecture
model-ing system — JarchiDesigner. In: Proceedaighe 13th Annual IEEE
International Symposium and Workshop on Engineedh@omputer Based
Systems (ECBS 2006), March 27-30, pp 481-482

[16]Hansen MT, Nohria N, Tierney T (1999) What'suycstrategy for managing
knowledge? Havard Business Review, (77) 2:106-116

[17]Hofmeister C, Kruchten P, Nord RL, Obbink H,rRA, America P (2005) A
general model of software architecture design edrivom five industrial ap-
proaches. Journal of Systems and Software, (8@611P6

[18]Jansen A, Avgeriou P, van der Ven JS (2009)daimg software architecture
documentation. Journal of Systems and Softwaresfded)

[19]Jansen A, Bosch J (2005) Software architecaisra set of architectural design
decisions. In: Proceedings of the 5th Working IBEE Conference on
Software Architecture (WICSA 2005), November 6-0,109-120

[20]Jansen A, de Vries T, Avgeriou P, van Veelerf2d08) Sharing the architec-
tural knowledge of quantitative analysis. In: Prdiegs of the 4th Interna-
tional Conference on the Quality of Software Arebtures (QoSA 2008), Oc-
tober 14-17, pp 220-234

[21]Jansen A, van der Ven J, Avgeriou P (2007) Tagport for architectural de-
cisions. In: Proceedings of the 6th Working IEEEAFConference on Soft-
ware Architecture (WICSA 2007), January 6-9, pps5&4-

[22]Kruchten P (2004) An ontology of architectudasign decisions in software
intensive systems. In: Proceedings of the 2nd Ggem Workshop on Soft-
ware Variability Management (SVM 2004), Decembe, Dp 54-61

[23]Kruchten P, Lago P, van Vliet H (2006) Building and reasoning about arc-
hitectural knowledge. In: Proceedings of the 2n@nmational Conference on
the Quality of Software Architectures (QoSA 20QB)ne 27-29, pp 43-58

[24]Lago P, Avgeriou P (2006) First workshop onrgiigaand reusing architectur-
al knowledge. ACM SIGSOFT Software Engineering $ot81) 5:32-36

[25]Li J, Li T, Lin Z, Mathur AP, Kanoun K (2004) dnputer supported co-
operative work in software engineering. In: Prodegs of the 28th Interna-
tional Computer Software and Applications Confeeef€COMPSAC 2004),
September 27-30, pp 328-328

[26]Liang P, Jansen A, Avgeriou P (2008) Selectinigigh-quality central model
for sharing architectural knowledge. In: Proceeding the 8th International
Conference on Quality Software (QSIC 2008), Audisstl3, pp 357-365

[27]Liang P, Jansen A, Avgeriou P (2009) Sharingh#ecture knowledge
through models: quality and cost. The Knowledge i@gring Review (in
press)

[28]Liang P, Jansen A, Avgeriou P (2009) Knowledgehitect: a tool suite for
managing software architecture knowledge. Techni&®dport RUG-
SEARCH-09-L01, University of Groningen,
http://www.cs.rug.nl/~liangp/download/liang2009 keif

[29]Maheshwari P, Teoh A (2005) Supporting ATAM kvia collaborative web-
based software architecture evaluation tool, SeiesfcComputer Program-
ming, (57) 1:109-128

[30]Nonaka I, Takeuchi H (1995) The Knowledge-ciggtCompany: how Japa-
nese companies create the dynamics of innovatiafor® University Press,
USA

[31]Nuseibeh B (2001) Weaving together requirememd architectures, |IEEE
Computer, (34) 3:115-117

[32]Rubart J, Dawabi P (2004) Shared data modediith UML-G. International
Journal of Computer Applications in Technology,)(3231-243

[33]Rus I, Lindvall M (2002) Knowledge managementsoftware engineering,
IEEE Software, (19) 3:26-38

[34]Tang A, Ali-Babar M, Gorton I, Han J (2006) Arsey of architecture design
rationale. Journal of Systems and Software, (79)792-1804

[35]Tang A, Jin Y, Han J (2007) A rationale-baseché&ecture model for design
traceability and reasoning. Journal of SystemsSuftivare, (80) 6:918-934

[36]Tyree J, Akerman A (2005) Architecture decisiodemystifying architecture.
IEEE Software, (22) 2:19-27

[37]van der Ven J, Jansen A, Avgeriou P, Hamme2@06) Using architectural
decisions. In: Short Papers of the 2nd Internati@umference on the Quality
of Software Architectures (QoSA 2006), July 27-29

[38]Whitehead J (2007) Collaboration in softwaregiaeering: a roadmap. In:
Proceedings of Future of Software Engineering (F@8&7), March 20-22,
pp 214-225

