
 

17Collaborative Software Architecting through 
Knowledge Sharing 

Peng Liang, Anton Jansen, Paris Avgeriou 

Abstract: In the field of software architecture, there has been a para-
digm shift from describing the outcome of the architecting process to 
documenting architectural knowledge, such as design decisions and ra-
tionale. Moreover, in a global, distributed setting, software architecting 
is essentially a collaborative process in which sharing and reusing archi-
tectural knowledge is a crucial and indispensible part. Although the im-
portance of architectural knowledge has been recognized for a consider-
able period of time, there is still no systematic process emphasizing the 
use of architectural knowledge in a collaborative context. In this chap-
ter, we present a two-part solution to this problem: a collaborative archi-
tecting process based on architectural knowledge and an accompanying 
tool suite that demonstrates one way to support the process. 

 
Keywords: Software Architecture, Collaborative Architecting, Archi-
tecting Process, Architectural Knowledge, Knowledge Sharing, Colla-
borative Software Engineering. 

17.1 Introduction 

According to a recent paradigm shift in the field of software architecture 0 
the product of the architecting process is no longer only the models in the 
various architecture views, but the broader notion of Architectural Know-
ledge (AK) 0 the architecture design as well as the design decisions, ratio-
nale, assumptions, context, and other factors that together determine archi-
tecture solutions. Architectural (design) decisions are an important type of 
AK, as they form the basis underlying software architecture 0. Other types 
of AK include concepts from architectural design (e.g., components, con-
nectors) 0 requirements engineering (e.g., risks, concerns, requirements), 



people (e.g., stakeholders, organization structures, roles), and the devel-
opment process (e.g., activities) 0. 

The entire set of AK needs to be iteratively produced, shared, and con-
sumed during the whole architecture lifecycle by a number of different 
stakeholders as effectively as possible. The stakeholders in architecture 
may belong to the same or different organization and include roles such as: 
architects, requirements engineers, developers, maintainers, testers, end 
users, and managers etc. Each of the stakeholders has his/her own area of 
expertise and a set of concerns in a system being developed, maintained or 
evolved. The architect needs to facilitate the collaboration between the 
stakeholders, provide AK through a common language for communication 
and negotiation, and eventually make the necessary design decisions and 
trade-offs. 

However, in practice, there are several issues that hinder the effective 
stakeholder collaboration during the architecting process, which diminish-
es the quality of the resulting product. One of these problems is the lack of 
integration of the various architectural activities and their corresponding 
artifacts across the architecture lifecycle 0. The different stakeholders typi-
cally have different backgrounds, perform discrete architectural activities 
in a rather isolated manner, and use their own AK domain models and 
suite of preferred tools. The result is a mosaic of activities and artifacts ra-
ther than a uniform process and a solid product. 

This chapter focuses on how to integrate stakeholder-specific approach-
es and tools related to the individual architecting activities. We propose a 
two-part solution to this problem: a process and an accompanying tool 
suite. The first part integrates requirements engineering (RE) and the vari-
ous architecting activities (e.g., analysis, synthesis, evaluation, mainten-
ance etc.,) and their consumed and produced AK, as well as the related 
stakeholders, into a single process model based on the principle of sharing 
AK. Note that we have decided to take RE into account: even though it is 
technically not part of the architecting process, they are closely intertwined 
and affect one another 0. 

The second part is the Knowledge Architect tool suite that supports the 
collaborative architecting process by realizing and integrating different 
tools that correspond to the various activities of the process. The tool suite 
demonstrates one way to support the process, which is derived from the 
requirements of our industrial partner; there are other ways to support the 
same activities depending on the organization, the domain, and the specific 
project at hand. Currently, the tool suite consists of the following tools: the 
Document Knowledge Client supporting architects writing an architecture 
document; the Excel and Python Plug-ins supporting system analysts per-
forming quantitative architectural analysis; the Knowledge Repository act-



ing as the central location to store all the relevant AK; the Knowledge Ex-
plorer allowing other stakeholders to search, inspect, and trace AK; the 
Knowledge Translator translating AK from one language to the other for 
easy understanding. An important feature of the tool suite is that the indi-
vidual tools share their AK for specific activities through a central know-
ledge repository, thus providing traceability of the AK and automated 
checking across a wide range of architecting activities. 

Sect. 17.2 of this chapter discusses collaboration in software architecting 
and the role of AK. Sect. 17.3 presents the integrated process for colla-
borative architecting, while Sect. 17.4 introduces the accompanying tool 
suite. Sect. 17.5 elaborates on the details of collaboration by applying the 
process and tooling, exemplified through a running example. The paper 
ends with a discussion on related work, followed by conclusions and direc-
tions for future work. 

17.2 Theoretical Background 

17.2.1 Collaboration in Software Architecting 

Architecting is an inherently collaborative process between architects and 
several stakeholders, who have various concerns and viewpoints. Software 
architecture: 

� Allows stakeholders to work together, communicate, negotiate, and 
eventually agree upon the architectural decisions and rationale 0. 

� Defines the partition of both the technical architecture and the organiza-
tional teams building the system 0. 

� Resolves errors and deals with risks throughout the system 0. 
� Documents the explicit AK of the organization and the project to facili-

tate future evolution 0. 

In 0 the authors of five industrial architecture design methods propose a 
common model for architecting, comprised of three fundamental architect-
ing activities: architectural analysis, synthesis, and evaluation. They identi-
fy the problem of lack of integration between these activities and their cor-
responding artifacts and they propose to deal with this problem through the 
concept of a backlog: a collection of needs, issues, problems, ideas, which 
binds the 3 architecting activities together. Therefore, the backlog acts as a 
central knowledge artifact that is both produced and consumed by the 3 ac-
tivities, facilitating their integration. In a collaborative setting, this integra-
tion problem is aggravated due to the distribution of stakeholders who 
have different backgrounds and expertise. In our approach, we also pro-



pose knowledge sharing as a promising solution, but at a larger scale: an 
elaborate set of AK is shared and reused across the proposed architecting 
process. The shared AK provides a common language for the distributed 
stakeholders to communicate, reason, and ensure their concerns are being 
addressed. 

The general goals of collaboration in software engineering identified in 
0 include: “Driving convergence towards a final architecture and design”, 
“Managing dependencies among activities, artifacts, and organizations”, 
“ Identifying, recording and resolving errors” and “Recording organiza-
tional memory”. We specialize these goals for collaboration in architecting 
and restate them as follows: 

� Producing an integrated and consistent architecture document that has 
emerged from iterative stakeholder negotiation and agreements. 

� Managing the dependencies and establishing traceability among archi-
tecting activities, artifacts and involved stakeholders. 

� Identifying, recording and resolving architectural conflicts, risks, incon-
sistency, and incompleteness. 

� Recording the knowledge which is relevant to the whole architecting 
process. 

To evaluate how the proposed process and tool achieve these goals, we 
revisit them in the Conclusions section. 

17.2.2 Knowledge Management for Collaborative Architecting 

A distinction is often made in KM between two types of knowledge 0 tacit 
(personalized) knowledge that resides in people’s head, versus explicit 
knowledge that is codified in some form. The latter is often further charac-
terized as documented or formalized knowledge. Documented knowledge 
is expressed in natural languages or drawings, e.g., Word and Excel docu-
ments that contain architecture description and analysis models. Formal 
knowledge is expressed (or annotated) in formal languages or models with 
clearly specified semantics. Typical examples of this form include AK on-
tologies 0 or AK domain models 0 that formally define concepts and rela-
tionships (e.g., Design Decision related to Concern). They aim at provid-
ing a common language for unambiguous interpretation by stakeholders. 
Formal AK can better facilitate activities for architectural collaboration 
than documented or tacit AK 0. However, formal AK entails additional 
cost and effort 0. 

Based on the knowledge types, Hansen et al. classify KM in two strate-
gies 0 codification aims at codifying knowledge and making it available 



for anyone through knowledge repositories; personalization, helps people 
to communicate knowledge instead of storing it. Both KM strategies are 
employed in software engineering activities 0 most research and industry 
practice has been associated with codification 0 while personalization has 
been given less attention. In this chapter, we mainly focus on codified AK 
in collaborative architecting. Personalization is also valuable, and will be 
further investigated in our future work. 

17.3 A Process for Collaborative Software Architecting 

The architecting process involves several stakeholders due to its cross-
cutting nature from requirements to implementation. For large projects, 
several teams may work simultaneously on different parts or in different 
development stages of the whole system, and exchange information. AK is 
the most important part of the exchanged information and is of paramount 
importance to the architecting process. 

To investigate the role of AK in the architecting process, we have close-
ly co-operated with our industrial partner, Astron (the Dutch radio astron-
omy institute), which develops large and complex software systems for ra-
dio telescopes. What makes these systems interesting from a collaborative 
AK perspective is: (1) the development consortium consisting of multiple 
international partners, (2) the long development time of nearly a decade, 
(3) the long required operational lifetime of at least 20 years. 
In this context, we first identified and described the requirements to man-
age AK in the architecting process of Astron through a number of use cas-
es using our earlier work 0. We subsequently identified the AK needed to 
execute these use cases and expressed this knowledge in a domain model 
0. Using both the domain and the use cases, we derived and generalized a 
collaborative architecting process that integrates the different architecting 
activities. To support this general process within Astron, we developed a 
tool suite, which is presented in Sect. 17.4. 

Fig. 17.1 illustrates this derived process in terms of activities and AK 
produced and consumed. Furthermore, it visualizes the close interaction 
between architecture (solution space) and requirements (problem space), as 
they are closely intertwined 0. Every architecting activity can provide 
feedback to the RE activity, as new insights, acquired during architecting, 
lead to a better understanding of the problem domain. It is noted that the 
AK-based architecting process is not sequential, but highly iterative and 
incremental: achieving an acceptable architecture requires an iterative de-
sign and evaluation process that allows refinement to address new re-



quirements and trade-offs. The architecting activities and the related RE 
activity are briefly described as follows: 

 

 
Fig. 17.1. The architecting process from an AK perspective 

(0) Requirements engineering. This activity fuels the architecting 
process with different elements (e.g., requirements, drivers, decision 
topics, risks, and concerns) from the problem space. These form the 
main input for the activity of scoping the problem space. Require-
ments engineers, customers and end-users are typical stakeholders. 

(1) Scope problem space. The architect selects the architecturally signif-
icant elements from the problem space and distills them into a con-
crete problem. To put the problem in perspective, a cause (e.g., from 
technical aspects) of the problem is described as well. This scoping is 
needed, as the problem space is usually too big, thereby forcing the 
architect to focus only on the key issues. Typical stakeholders of this 
activity are: architects, analysts, designers, and requirements engi-
neers. 

(2) Propose solutions. The architect uses the existing architecture de-
scription and the problem of the previous step, in order to come up 
with one or more solutions that (partially) address the problem. Archi-



tects, analysts, designers, and programmers are typical stakeholders in 
this activity. 

(3) Evaluate solutions & choose one. The architect evaluates the solu-
tions, and makes a design decision by selecting among the proposed 
solutions (according to the evaluation results). The decisions may en-
tail making one or more trade-offs and is accompanied by the appro-
priate rationale. Architects, designers, and architecture reviewers are 
typical stakeholders of this activity. 

(4) Evaluate architecture & modify the architecture description. 
Once a solution is chosen, it is integrated in the architecture and the 
whole architecture is evaluated. Based on the evaluation results, the 
architecture description has to be modified to reflect the new status. 
Architects, designers, and architecture reviewers are typical stake-
holders. 

The collaboration activities in architecting takes place in two dimen-
sions: horizontally and vertically. Horizontal collaboration occurs between 
sequential software development activities, which can be in the macro- or 
micro-level of the software development phases, e.g., from RE to archi-
tecting (the macro-level), or within architecting (the micro-level) from 
architectural analysis to architectural synthesis. In horizontal collaboration, 
the output, of one activity becomes the input for the subsequent activity, 
e.g., the output of the RE activity (i.e., a requirements specification), acts 
as the input of the architecting activity. On the other hand, vertical collabo-
ration happens when different people work on the same software develop-
ment activity, e.g., several designers make a class diagram using a UML 
tool collaboratively in the design activity 0. In this chapter, we cover the 
RE and architecting activities in both collaboration dimensions. The next 
section elaborates on the tool suite that supports the different parts of this 
process, and emphasizes on the various collaboration aspects. 

The proposed process is meant to be generic enough so that it can be 
customized and adapted into specific architecting processes used in organ-
izations. As an example, we describe how it can be mapped to the genera-
lized model of architecting proposed in 0 architectural analysis maps to the 
scoping of the problem space (activity 1); architectural synthesis maps to 
proposing solutions (activity 2); architectural evaluation maps to evaluat-
ing alternative solutions and selecting the optimal one (activity 3), as well 
as evaluating the architecture with the integrated design decisions (activity 
4). The advantage of this general applicability is that it does not conflict 
with established architecting processes in the organizations.  The disadvan-
tage is that it does not contain enough details to be applied on its own; it 
has to be refined before it can be applied in practice. 



17.4 The Knowledge Architect Tool Suite 

To support the collaborative architecting process described in the previous 
section, we implemented the Knowledge Architect (KA): a tool suite1 for 
creating, using, translating, sharing, and managing AK. The process itself 
is described in a generic way and does not delve into details about the var-
ious aspects of collaboration, as it is meant to be as broadly applicable as 
possible. On the contrary, the KA tool suite entails specialized support for 
integrating the various process activities and supporting collaboration be-
tween the stakeholders. In specific, the tool suite implements the following 
features to serve the collaboration purposes: 

� A central knowledge hub. In a large project, multiple stakeholders are 
involved in the different process activities and typically manage and 
maintain their part of the relevant AK. The knowledge hub is critical for 
gathering all the AK in one resource, and providing an interface to all 
involved stakeholders to manage and evolve it; 

� Traceability management. In a collaborative architecting process, AK 
entities are produced by various stakeholders. Traceability needs to be 
established between these collaboratively produced artifacts (e.g., a re-
quirement leads to a design decision and when one changes the other 
needs to be updated). This is of paramount importance during the archi-
tecture iterations, but also for the architecture evolution; 

� Knowledge translation among different stakeholders. Typically stake-
holders come from different backgrounds and have their own perspec-
tives on architecture, usually limited to individual AK entities (see Fig. 
17.2). Effective knowledge translation (dashed arrows in Fig. 17.2) 
enables various stakeholders to understand each other and speak through 
a “common language”. Furthermore, knowledge translation provides the 
ability to present the “big picture”, and especially the complex relation-
ships between different parts of the knowledge; 

� Automated checking. Different stakeholders working at varied activities 
and at different times may touch upon the same or related AK entities. 
Automated checking may help to identify the conflicts, inconsistencies, 
and incompleteness in the collaboratively produced AK entities. Espe-
cially, when the amount of knowledge increases, this type of automated 
support is the only way to effectively manage it. 

 

                                                      
1
 Part of the tool suite can be downloaded from http://search.cs.rug.nl/griffin 



Stakeholder A Relevant AK Stakeholder C

Stakeholder B Stakeholder D

1

2

3

AK 

entity

Legend

Stakeholder’s 

perspective

Relationship Translation

3
B

3
D

Stakeholder

Translated 

AK entity

 
Fig. 17.2. AK sharing from the perspectives of different stakeholders 

Currently, the tool suite consists of 6 tools, which are presented in Fig. 
17.3: Knowledge Repository, Document Knowledge Client, Excel Plug-in, 
Python Plug-in, Knowledge Explorer, and Knowledge Translator. The fig-
ure illustrates how these tools are mapped onto the architecting process 
and its associated activities (see Fig. 17.1). 
 

 
Fig. 17.3. Mapping the KA tool suit onto the requirements engineering and archi-
tecting activities 

A brief outline of each tool is provided here. A more elaborate descrip-
tion is presented in the next subsections, while the exact details can be 
found in 0. In short, these tools are the followings: 



� Knowledge Repository is at the heart of the tool suite: a central loca-
tion, which provides various interfaces for other tools to store and re-
trieve AK. 

� Document Knowledge Client is a Word plug-in that supports capturing 
(annotating) and using (storing and retrieving from the Knowledge Re-
pository) AK within architecture and requirement documents inside Mi-
crosoft Word. 

� Analysis Model Knowledge Clients support capturing (annotating) and 
using (storing and retrieving from the Knowledge Repository) AK of 
quantitative analysis models. This type of analysis concerns the investi-
gation of alternative architectural solutions by delivering (scenario-
based) quantifications of one or more quality attributes of these solu-
tions. Specifically, two knowledge clients are developed (Excel and Py-
thon Plug-in): 

� Excel Plug-in supports capturing and using AK of quantitative analysis 
models inside Microsoft Excel 0. 

� Python Plug-in supports capturing AK from quantitative analysis mod-
els described in Python. 

� Knowledge Explorer analyzes the relationships between AK entities. It 
provides various visualizations to inspect AK entities and their relation-
ships. 

� Knowledge Translator (semi-)automatically translates the formal AK 
based on one AK domain model into the AK based on another, so that 
various stakeholders can understand each other when they use different 
AK domain models to document AK. 

We have mentioned before that the KA tool suite was built in the con-
text of the Griffin project2 for use within our industrial partner: Astron. 
Therefore certain tools of the suite are aimed at integrating with the tools 
already used at Astron. In particular this covers Microsoft Word for archi-
tecture documentation, Microsoft Excel and Python for architecture analy-
sis models. This is only one way to support the architecting activities (see 
Fig. 17.3); various other tools could be potentially built on the same under-
lying ideas of annotating AK on documentation and analysis models. 

In this section, we first introduce these tools, including the motivations 
of (why) and functions provided by (what) these tools. In the next section, 
we present the RE and architecting activities in a collaboration perspective 
by using these tools in a concrete running example. 

                                                      
2  GRIFFIN: a GRId For inFormatIoN about architectural knowledge, 
http://griffin.cs.vu.nl/ 



17.4.1 Knowledge Repository 

The Knowledge Repository, as depicted in Fig. 17.4, is a central location 
for storing and retrieving AK across a wide range of architecting activities. 
The tool makes heavy use of technologies developed for the semantic web. 
For example, the open source RDF store Sesame3 is used for storing and 
querying AK, while OWL (Web Ontology Language) is used for modeling 
AK domain models. The Knowledge Repository API provides the inter-
faces to communicate with all the Knowledge Clients (Document Know-
ledge Client, Excel and Python Plug-ins) to store the annotated AK into the 
repository. The Query Engine is used to query the AK entities and their re-
lationships in the repository, and visualize them in the Knowledge Explor-
er. The Knowledge Translator performs the automatic translation. All the 
surrounding tools are described in the remaining part of this section. 

 

 
Fig. 17.4. The Knowledge Repository with other tools in the KA tool suite 

17.4.2 Document Knowledge Client 

The Document Knowledge Client is a plug-in to capture and use explicit 
AK inside Microsoft Word 2003. Various AK domain models can be dep-
loyed in the Knowledge Repository for different users (stakeholders), who 
annotate the AK using the AK domain models they can understand. Hence, 
the tool can be reused with other AK domain models. The tool offers three 
basic functions: 

                                                      
3 http://www.openrdf.org/ 



AK capturing: Knowledge can be captured in a Word document by se-
lecting a piece of text and right clicking and choosing the appropriate op-
tion from the pop-up menu. When adding a new AK entity, a menu ap-
pears which allows the user to provide additional information about the 
entity, e.g., Name, Type, Status and Connections. 

AK traceability: The relationships among AK entities comprise critical 
traceability information in collaborative architecting. For example, to find 
out “who (stakeholders) are concerned with a design decision”. The AK 
traceability can be easily created or removed by pop-up menus in the Doc-
ument Knowledge Client. 

Design maturity assessment: One of the advantages of formalized (an-
notated) AK is automatic reasoning support based on the underlying for-
mal models. The Document Knowledge Client supports the architect in as-
sessing the completeness of the architecture description. Based on the AK 
domain model, the tool performs model checks using conformity rules to 
identify incomplete parts. 

17.4.3 Excel Plug-in 

The Excel Plug-in implements a domain model for quantitative architec-
ture analysis models in Microsoft Excel. The tool supports analysts in 
making the AK produced during architecture analysis explicit. The aim is 
to facilitate the sharing of AK to other analysts and the analysis results in a 
transparent manner to other stakeholders. The tool offers the following 
three basic functions: 

AK capturing: The major part of the AK of an architectural analysis 
model in Excel is found in the cells. Often labels surrounding the cell de-
note the semantic meaning of a cell. The tool allows analysts to make spe-
cial annotations to cells. For reviewing purposes, the tool also tracks the 
review state of each cell and allows for comments. 

AK traceability: An important feature of the tool is that it is capable of 
automatically inferring the dependencies among the cells (AK entities). 
Hence, the traceability relationships between AK entities are automatically 
captured. 

AK visualization: To facilitate manual verification, the tool offers a vi-
sualization of the AK dependency graph, which corresponds to the cells in 
the Excel worksheets. 



17.4.4 Python Plug-in 

Similar to the Excel Plug-in, the Python Plug-in provides functionality to 
codify the AK of analysis models. In this case, the analysis models are ex-
pressed using the Python programming language. Both the Excel and the 
Python Plug-in assume quite similar domain models. Hence, the concepts 
and functionality discussed in the previous section also apply here. 

17.4.5 Knowledge Explorer 

Typically, the size of an AK repository will be considerable containing 
thousands of AK entities. Finding the right AK entity, or even worse a 
number of related AK entities, from such a big collection is not trivial. 
Hence, there is a need for a tool to assist in exploring an AK repository. 
The Knowledge Explorer can support users in visualizing AK entities and 
their relationships. Fig. 17.5 presents a screenshot of the tool. It provides 
search functionality on the left hand side. The resulting AK entities of this 
search action are shown in the list on the left hand side. The results can be 
filtered using the drop down box on the left, thereby reducing the size of 
the found results. The filtering is based on the type of the AK. The availa-
ble options are taken from the used AK domain model. Double clicking on 
one of the search items results in illustrating a number of related AK enti-
ties in columns. 
 

 
Fig. 17.5. The screenshot of the Knowledge Explorer 



17.4.6 Knowledge Translator 

The purpose of the Knowledge Translator is to translate the AK in various 
AK domain models from one to the other and vice versa. This allows vari-
ous users to understand the AK codified in different AK domain models. 
This is critical for stakeholders from different backgrounds to understand 
each other in a collaborative architecting process. For example, a require-
ments engineer and an architect use different AK domain models to pro-
duce and consume requirements (part of AK), but need to have a common 
understanding. Currently, we employ the core model proposed in 0 as a 
central model for the AK translation by an indirect translation approach 0. 

The AK translation can be done manually or automatically. Both ways 
have their respective advantages and disadvantages on translation cost and 
quality, and stakeholders can select an appropriate manner by trading off 
quality and cost in their own context. The initial cost-benefit analysis 
about the AK translation cost and quality has been investigated in 0. 

17.5 Collaboration within the Process with KA 

In this section, we present the collaboration within the proposed architect-
ing process, as it is supported by the KA tool suite. We discuss both hori-
zontal and vertical collaboration and demonstrate them through a running 
example. The context of this running example originates from the archi-
tecting process used at our industrial partner, Astron (see Sect. 17.3). In 
their projects, there is a large and complex body of knowledge that needs 
to be shared frequently among the distributed stakeholders. However, the 
different backgrounds and expertise of these stakeholders restrains them 
from achieving a common understanding and thus hinders the integration 
of collaborative architecting activities. We have worked closely with As-
tron for the software architecture of two projects that concern the next 
generation of radio telescopes. The stakeholders involved with the archi-
tecting process in these projects include end-users (scientists), require-
ments engineers, architects, analysts, designers and architecture reviewers. 

17.5.1 Requirements Engineering 

Horizontal Collaboration 

In a traditional software development scenario, a requirements engineer 
produces the software requirements specification in a document, e.g., in a 
Word file. The requirements engineer subsequently delivers the require-



ments documentation to the architect for the architecture design. Within 
this process, the requirements engineer, architect, and other related stake-
holders will closely interact with each other. This close interaction is 
needed to ensure common document understanding 0 conciliate require-
ments 0 and improve the architecture design, etc., In a distributed devel-
opment environment or in a long-term development project, this intensive 
interaction between the requirements engineer and the architect is quite 
challenging. The geographical distance between the two actors hinders ef-
fective interaction, while staff reassignment in a long-term project would 
result in knowledge vaporization 0. In such cases, the Knowledge Reposi-
tory acts as the project requirements knowledge center: the repository pro-
vides valuable requirements information according to established AK do-
main models4, and it helps the architect to understand the requirements 
correctly and unambiguously. 

Running example: a requirements engineer5 specifies the requirements 
(including architectural significant requirements, concerns and risks, etc.,) 
in the requirements document through discussion with customers. After-
wards, the requirements engineer uses the Document Knowledge Client to 
annotate the knowledge about requirements in this document, e.g., “The 
user (scientist) uses these interfaces to propose and specify observations.” 
(an AK entity of concept Requirements), and “This flexibility is of great 
importance especially for the high performance applications.” (an AK ent-
ity of concept Concerns). In the end, all the annotated AK entities are 
stored into the Knowledge Repository. The architect retrieves the require-
ments information from the Knowledge Repository, and scopes the prob-
lem (architectural analysis) by choosing only the architecturally-significant 
ones (e.g., scoping the decision topics from the requirements). The archi-
tect subsequently stores the newly produced AK entities into the Know-
ledge Repository for further collaboration. 

The whole collaboration process is illustrated in Fig. 17.6. The numbers 
in this figure represent the actions sequence. The KA tool suite offers fea-
tures to support these collaboration activities. For example, the design ma-
turity assessment function based on formal AK can help the architect to 
find out whether all the requirements have been considered or not. Another 

                                                      
4 If there is no explicit specification, we assume that the AK domain model em-
ployed in various requirements engineering and architecting activities for pro-
ducing and consuming AK is the same one, so that all stakeholders can com-
municate the AK in a common language. 
5 The collaboration between other stakeholders is also critical, e.g., between the 
telescope user and requirements engineer, but we focus on the requirements en-
gineer and architect in the scope of this chapter. 



example is that the traceability of formal AK can help the architect to trace 
from the design space (e.g., a design decision) back to the original cause in 
the problem space (e.g., a requirement). 
 

 
Fig. 17.6. AK sharing process between requirements engineer and architect 

Vertical Collaboration 

The typical scenario in RE is that all the system stakeholders can propose 
their individual requirements, concerns, and risks from different perspec-
tive and at different levels (business goals, product features, user require-
ments, etc.,) Inevitably, there are always conflicts (e.g., conflict business 
goals, concerns) and mismatch (e.g., no user requirements relating to a 
product feature) in the candidate requirements. The collaboration among 
all the requirements stakeholders is needed to form a clear and unambi-
guous requirements specification using negotiation and reaching compro-
mises. Another situation is that different requirements engineers work on 
the requirements specification for different part of the system at same time. 
In this case, they also have to understand the requirements, which have 
been elicited and documented by other requirements engineers for consis-
tency. Hence, collaboration among these requirements engineers is a ne-
cessity to achieve a coherent and consistent requirements specification. 

Running example: Customer A specifies the requirement “The flow of 
information, either control or monitoring metrics, is in the vertical direc-
tion.”, and then the requirements engineer uses the Document Knowledge 
Client to annotate this requirement and store this AK entity into the Know-
ledge Repository. Customer B uses the Document Knowledge Client to re-
trieve the latest requirements from the Knowledge Repository. After this, 
Customer B finds out that the requirement “The flow of information in the 
vertical direction” is not desirable. The customer wants “The flow of in-
formation is in the horizontal direction”. In this situation, Customer B adds 
his/her requirement, annotates, and stores this requirement as a conflict re-



quirement with the requirement proposed by Customer A. Eventually, the 
requirements engineers will try to negotiate and resolve the conflict with 
all the other requirements stakeholders (e.g., through voting) or just inquire 
the high level project decision maker to choose one. 

17.5.2 Scope Problem Space 

Horizontal Collaboration 

“Scope problem space” is the first activity in the architecting process, 
aimed at refining the problem space by selecting the architecture signifi-
cant problem elements. The results of this activity are a set of architectural 
significant requirements, e.g., problem, cause, and decision topics, which 
are further used in the following activity to produce alternative architec-
tural solutions. The architect uses the Document Knowledge Client to an-
notate these architectural significant requirements, which he/she has iden-
tified, using the AK domain model, and stores them into the Knowledge 
Repository. After this, the analyst can retrieve this AK from the Know-
ledge Repository, understand it based on the AK domain model, and pro-
pose alternative architectural solutions. 

Running example: An architect analyzes an architectural significant 
requirement, e.g., “In this (data) view on the system software, we focus on 
the control over the data processing pipelines.”, and gets a decision topic, 
e.g., “the control method over the data processing pipelines”, which has to 
be addressed by a design decision. After that, the architect annotates and 
stores this decision topic into the Knowledge Repository. The decision top-
ics can be retrieved by the analyst from the Knowledge Repository for fur-
ther collaboration, e.g., in the proposing solutions activity. 

17.5.3 Propose Solutions 

Horizontal Collaboration 

Once the scoping of the problem space is complete and a clearer picture of 
the problem at hand is created, the architect has to define one or more al-
ternative solutions to (partially) address the problem. These alternatives 
need to be shared in some shape or form, e.g., using a textual description, 
figures, presentation, or a conversation, in order to be evaluated. For im-
portant decisions, the alternatives are shared with the stakeholders: (1) to 
validate whether the alternative is indeed addressing the problem (2) to 
create understanding and support among the stakeholders for the choice 
made in the next step. 



Furthermore, thinking up alternative solutions often leads to new in-
sights in the problem space. For example, it is not uncommon to find re-
quirements unclear on key aspects or find out that a particular concern is 
being overlooked. Hence, close collaboration with a requirements engineer 
(and perhaps other stakeholders as well) is needed to sort out these aspects. 

Running example: Following the running example from the previous 
activity, the analyst retrieves this decision topic from the Knowledge Re-
pository, and proposes several alternative architectural solutions, e.g., 
“use real-time control method”, “ use batch control” and “use real-time or 
batch control depending on the data characteristics” After this, the analyst 
annotates these alternative architectural solutions in the architecture doc-
ument and stores these newly produced AK entities into the Knowledge 
Repository. The architecture reviewer retrieves the corresponding con-
cerns, decision topic, and its alternative architectural solutions from the 
Knowledge Repository. Based on this AK, the reviewer evaluates the al-
ternative architectural solutions against related user concerns. It is noted 
that there is a bidirectional traceability relationship created automatically 
between a decision topic and an alternative architectural solution, as dic-
tated by the relationships in the AK domain model. With the bidirectional 
traceability relationship, when the architect changes (removes, modifies) 
the decision topic, then the analyst will be notified to reconsider the alter-
native architectural solutions which have been proposed. 
 

Vertical Collaboration 

For two reasons the proposed alternatives need to be shared among archi-
tects as well. Firstly, sharing alternatives among each other inspires archi-
tects to consider new solution directions. Often this takes the form of crea-
tively combining existing alternatives into a new one. Secondly, this 
sharing prevents architects from redoing work already done by their peers. 
For analysts, sharing the alternatives is important as well. The analysis of 
different experts has to be reconciled to evaluate a single alternative. How-
ever, this requires a shared understanding among the analysts what this al-
ternative exactly entails. Consequently, the knowledge of what these alter-
natives are should be shared. 

Running example: The analysts use the Knowledge Explorer to find 
out what kind of assumptions their fellow analysts have made in their 
analysis about the alternatives. Based on this knowledge, they can update 
their own analysis models. Software architects can share a software archi-
tecture document to facilitate vertical collaboration. Using the Document 



Knowledge Client, an architect can trace from a Decision Topic to the pro-
posed alternatives and read their description. 

17.5.4 Evaluate Solutions & Choose One 

Horizontal Collaboration 

The horizontal collaboration in this activity takes place between the soft-
ware architect/analyst and other stakeholders. It involves sharing four dif-
ferent types of AK. The first type is the evaluation criteria that should be 
used to judge the various alternative solutions. An important criterion is 
the extension to which a proposed alternative solution addresses the de-
fined decision topic. In addition, the captured concerns during RE provides 
good candidates for evaluation criteria. Additional horizontal collaboration 
with the requirements engineers is needed when the evaluation criteria are 
not clear. 

The second type is the relative importance of the aforementioned crite-
ria. Typically, there are differences among how the stakeholders perceive 
the importance of the criteria. Hence, the architect has to reach an accepta-
ble compromise, and through horizontal collaboration, communicate this 
compromise to the stakeholders. 

The third type is the perceived pros and cons of each alternative, i.e., the 
ranking of each proposed alternative solution on the defined criteria. Often 
conflicts arise among stakeholders due to differences in the perception of 
these pros and cons and their associated likelihood and strength. Since this 
knowledge forms the basis of the rationale of the choice, it is of paramount 
concern to reach consensus among the stakeholders about these properties. 
One of the goals of analysts is providing detailed information about these 
properties in an objective manner to facilitate this ranking. 

The fourth type is the choice made among the alternatives. The asso-
ciated rationale is based on the three earlier introduced elements. In prac-
tice, only this last element is typically communicated. In this situation, the 
rationale and the three other elements are only shared when asked for. 

Running example: In the previous step, three alternative architectural 
solutions were proposed and documented in a document: “use real-time 
control method”, “ use batch control” and “use real-time or batch control 
depending on the data characteristics”. In this step, the architect writes 
down the choice made (e.g., for the use real-time control method) and pro-
vides a small explanation for this choice, e.g., reducing costs by not requir-
ing additional storage. Selecting this piece of text and pressing the add KE 
button of the Document Knowledge Client adds the text as a Decision to 
the Knowledge Repository. To provide traceability, the architect relates the 



newly created Decision KE to the chosen Alternative. Indirectly, this also 
relates the Decision to the other considered alternatives through their 
common Decision Topic. 

To provide rationale, the tool suite provides two options. The first one is 
found in the Document Knowledge Client and allows the architect to relate 
an analysis result from one of the Analysis Model Clients (Excel and Py-
thon Plug-ins) as either a Pro or Con to an Alternative. For example, the 
predicted cost of the real-time alternative. The second option is to use the 
Knowledge Explorer to find suitable concerns (e.g., cost) that could be an 
evaluation criterion. 
 

Vertical Collaboration 

Among analysts the vertical collaboration for this activity mostly consists 
of unifying the analysis results of different experts in one consistent pic-
ture. In this way, evaluating the alternatives becomes relatively easy. Ver-
tical collaboration among architects is about the knowledge sharing cover-
ing the aforementioned four AK types, since it is this knowledge that 
makes up the reasoning behind the architecture. 

Running example: To present an objective basis for decision making 
analysts make a four column table in the architecture document with the 
first column being the criteria used and the other three columns 
representing the three alternatives considered. The rows present for each 
criterion the analysis result for each alternative. Using the Document 
Knowledge Client, the analyst creates the traceability between the docu-
ment and his/her quantitative analysis from Python or Excel. By sharing 
this document with other analysts, each adding their own row, a complete 
unified picture for the evaluation is created. Architects use a similar ap-
proach. 

17.5.5 Evaluate Architecture & Modify the Architecture 
Description 

This evaluation activity is similar to the previous evaluation activity, but 
has a larger scope. The previous activity focuses on the evaluation of alter-
native architecture solutions while this activity evaluates the entire archi-
tecture with the incorporated new design decision (chosen solution). Con-
sequently, the collaborations through AK sharing of these two evaluation 
activities are quite similar. Hence, we do not repeat them again. We focus 
on the activity “modify the architecture description”. 



 

Horizontal Collaboration 

Collaboration in this activity happens between sequential activities, i.e., 
horizontal collaboration from architecture description to detailed design. In 
this collaboration, the Knowledge Repository can also act as the hub in 
which the architects and designers share the architecture description in-
formation. 

Running example: An architect makes a design decision “use real time 
control during data taking and processing”, annotates, and stores this AK 
entity into the Knowledge Repository. A designer retrieves the latest de-
sign decisions from the Knowledge Repository and makes a detailed de-
sign which is based on this design decision. 
 

Vertical Collaboration 

Based on the evaluation results, an architect modifies the design and doc-
uments the outcome of design, using natural language or special notations 
(e.g., Architectural Description Language or UML) in a document. The ar-
chitecture description can be completed by a single architect in a small 
project, but for a large project, several architects will be working together 
for the various parts of the system. The collaboration among them is essen-
tial to produce an integrated and consistent architecture document in the 
end. The Knowledge Repository acts as the hub in which all the architects 
share the architecture description information with each other. 

Running example: One of the user concerns about the system is stated 
as “Performance issue is in a higher priority than cost in this system”. 
Architect A makes a design decision to address this concern as “use real 
time control during data taking and processing”, and annotates and stores 
this AK entity into the Knowledge Repository. Architect B makes another 
design decision to address the same concern as “limit the data payload 
during data taking and processing”, annotates, and stores this AK entity 
into the Knowledge Repository as well. Architect C retrieves the latest de-
sign decisions from the Knowledge Repository and uses the design maturi-
ty assessment function provided by Document Knowledge Client to verify 
the architecture design. The design maturity assessment function detects 
that these two design decisions address the same concern and are actually 
in conflict with each other. Therefore, Architect C tries to negotiate with 
Architects A and B to come up with a single design decision, e.g., “use real 
time control during data taking and processing”. Other defects or weak 



points can also be detected by the design maturity assessment, such as in-
completeness. Architect C annotates the new design decision and stores 
(updates) the Knowledge Repository for further collaboration with other 
architects. 

17.5.6 Feedback Loop 

Feedback can be provided from any architecting activity to the RE activity, 
as for example new user concerns, solutions and design decisions pose 
new requirements. Architecting is a highly iterative process. In each itera-
tion, the requirements are revisited until all the architectural significant 
requirements are satisfied and all risks are mitigated. The Knowledge Re-
pository is the central storage of AK produced in all activities, and sup-
ports feeding this knowledge back to the RE activity. 

Running example: An example of collaboration that concerns provid-
ing feedback to RE is the following: the architect makes a design decision 
“use SAS (a software package for data visualization) for data observa-
tion”, annotates, and stores this design decision into the Knowledge Repo-
sitory. A requirements engineer retrieves this design decision from the 
Knowledge Repository and finds that this design decision results in a new 
requirement “ the data observation should be visualized in GUI”. The re-
quirements engineer annotates and stores this newly-produced requirement 
into the Knowledge Repository. In this way, (other) requirements engi-
neers can retrieve the updated requirements from the Knowledge Reposito-
ry and validate the consistency between the new requirement and the exist-
ing ones. 

17.5.7 Architectural Knowledge Translation 

AK translation is a common function in all activities (both RE and archi-
tecting), since the involved stakeholders typically use different AK domain 
models to produce and consume the AK. It is comparable to human lan-
guage translation, were people from different countries speaking different 
languages try to communicate. A translator is needed for effective com-
munication between them, as he or she translates from one language to 
another and vice versa. The quality of the translation depends on the quali-
ty of the translator, i.e., how correctly the translator can translate know-
ledge. In AK translation, various translation methods can be employed 
with their specific advantages and disadvantages depending on the transla-
tion context (number of involved AK domain models and AK entities, 
etc.,) 0. 



Running example: A requirements engineer working at branch A of As-
tron uses the AREL AK domain model 0 to annotate knowledge about re-
quirements e.g., “The user (scientist) uses these interfaces to propose and 
specify observations” (an AK entity of AREL concept Functional re-
quirement), and “The new user (scientist) shall know how to use these in-
terfaces to propose and specify observations in 2 hours” (an AK entity of 
AREL concept Non-functional requirement). These two AK entities are 
subsequently stored into the Knowledge Repository. An architect working 
at branch B of Astron uses the LOFAR AK domain model 0 to consume 
and produce AK. In particular, the architect uses the concept Requirement 
from the LOFAR AK domain model to retrieve all the requirements infor-
mation from the Knowledge Repository which has been produced by the 
requirements engineer of branch A. Due to the different requirement con-
cepts being used by the AK producer (requirements engineer at branch A) 
and consumer (architect at branch B), knowledge translation is needed. 
The Knowledge Translator uses the defined AK concept mapping relation-
ship to translate AK entities. For example, the AREL AK concept Func-
tional requirement and Non-functional requirement are both the subClas-
sOf the LOFAR AK concept Requirement. Using this relationship, the 
Knowledge Translator translates the two AK entities annotated in the 
AREL domain model into the AK entities in the LOFAR domain model 
and stores translated AK entities into the Knowledge Repository. After this 
translation, the architect at branch B can retrieve all the requirements in-
formation from the Knowledge Repository. 

17.6 Related Work 

Computer Supported Co-operative Work (CSCW) in software engineering 
comprises all software engineering methods, norms, and tools that support 
teamwork flexibly and effectively 0. CSCW concentrates on improving the 
efficiency of groupware 0 for software development. It focuses on the ver-
tical collaboration in the software development lifecycle, e.g., the collabo-
ration among requirements engineers or among designers. One such exam-
ple is ProjectIT-Studio, an integrated environment that supports 
collaborative RE by combining wikis with CASE tools for requirements 
specification and validation 0. This tool can assist non-technical stake-
holders during the requirements specification and help requirements engi-
neers for a seamless integration with dedicated RE CASE tools. ProjectIT-
Studio fosters the stakeholders’ involvement in collaborative RE from a 
socio-technical perspective. Another example is the UML profile UML-G 



for co-operative UML modeling in the design activity 0. It supports soft-
ware modeling by explicitly representing shared data, roles and actors in 
co-operative sessions. UML-G stresses the sharing of design outcomes 
(i.e., models), but does not pay attention to the rationale underneath the de-
sign. 

A CSCW approach for architecting was proposed in 0 addressing the 
collaborative architecture modeling of complex component-based systems. 
A collaborative modeling tool was provided for the architecture design 
team in which several architects design architecture co-operatively. Mul-
tiple architects are able to concurrently access and manipulate the software 
architecture information stored in a server machine. The shared software 
architecture information in this tool is mostly the design artifacts (e.g., 
components, data flows, external entities, etc.,) There is no support to store 
information about design decisions and rationale. 

Similarly, Maheshwari and Teoh implemented a web-based tool for col-
laborative software architecture evaluation, supporting the Architecture 
Tradeoff Analysis Method (ATAM) 0. They argue that the ATAM method 
has its limitations in an increasingly globalized software industry in which 
the distribution of development teams is extensive. Their web-based tool 
provides a mental mapping from the physical world to the internet world. 
For example, their tool set provides communication tools, such as chatting, 
brainstorming, voting tool, etc. The tool set also provides some assistant 
tools for ATAM, such as Utility Tree Viewer/Editor, Features Evaluator, 
etc., Most of the knowledge exchanged by their tool set is personalized 
knowledge, which is often difficult to understand by users who come from 
different backgrounds. 

Farenhorst et al. use wikis to support collaboration, communication, and 
consensus decision making in the architecting process of distributed devel-
opment by sharing AK 0. They suggested that, for successful AK sharing, 
it is necessary to tailor the types and content of AK for sharing according 
to the concrete architecting process 0. Their work focuses on personalized 
(e.g., by using yellow pages) and documented AK and not on formal AK. 

PAKME (Process-centric Architectural Knowledge Management Envi-
ronment) is a web-based tool aimed at providing knowledge management 
support for the architecting process 0. PAKME focuses on various colla-
borative features (e.g., collaborative decision making) for distributed 
stakeholders involved in the architecting process by managing codified AK 
(pattern, decision etc.,) and personalized AK (contact management, online 
collaboration, etc.,) Other related work on AK sharing and reusing can be 
found in the SHARK workshop series 0. 



17.7 Conclusions and Future Work 

AK is widely accepted and recognized to be of paramount importance for 
the success of software architecting. However, the collaboration among the 
stakeholders involved in the architecting process is hindered by the lack of 
integration of architecting activities and the corresponding AK. This has 
severe implications for the quality of both the architecting process and the 
product. This chapter presented a collaborative architecting process and 
the accompanying tool suite that integrate the architecting activities 
through AK sharing. 

The process and the accompanying tool suite address the four goals of 
collaboration in software architecting identified in Sect. 17.2.1: 

(1) Using the central Knowledge Repository and Knowledge Client tools, 
an integrated and consistent architecture document can be produced 
through stakeholders collaboration; 

(2) Using various AK domain models to capture (annotate) AK in the 
Knowledge Clients, dependencies and especially traceability among 
architecture artifacts can be effectively managed in the Knowledge 
Repository; 

(3) Using the functions provided by the Knowledge Client tools (e.g., de-
sign maturity assessment of the Document Knowledge Client), the 
architectural conflicts, risks, inconsistency and incompleteness can be 
identified, recorded and resolved based on the formal relationships 
defined in the AK domain model and semantic web inference; 

(4) Using the central Knowledge Repository, all the knowledge which is 
relevant to the whole architecting process (AK) is recorded. 

Although the proposed approach (process and tool suite) was derived 
from a specific organization, it is generally applicable to other organiza-
tions: as explained in Sect. 17.3, the proposed collaborative architecting 
process is orthogonal to current architecting processes. Due to its generic 
nature, it has to be adapted and customized into an existing architecting 
process before it is put into practice. For the accompanying tool suite, 
some general tools (Knowledge Repository, Document Knowledge Client, 
Knowledge Explorer, and Knowledge Translator) can be adjusted and em-
ployed to the architecting processes mentioned above since they follow 
closely the proposed process. The Excel and Python Plug-ins have been 
developed according to Astron’s needs, and can only be used if other or-
ganizations have similar needs (quantitative analysis). 

The KA tool suite has been used and (empirically) validated in two in-
dustrial case studies at Astron for quantitative analysis of architecture de-
sign 0 and enrichment of architecture documentation 0. In 0 the tool suite 



was deemed effective for facilitating AK sharing for verification and vali-
dation of quantitative architectural solutions. In 0 we proved that the tool 
suite helps to partially address the shortcomings of current architecture do-
cumentation approaches of large and complex systems. 

In the future, the integrated collaborative architecting process with the 
tool suite should be further validated in a larger industrial project with a 
cost-benefit analysis. The tool suite needs to be further improved with re-
spect to its usability and scalability. Finally, we plan to extend this suite 
with other tools for a wider application of AK sharing (e.g., UML/ADL 
modelers, Email Plug-in, and other quantitative analysis tools). 

Acknowledgments  

This research has been partially sponsored by the Dutch Joint Academic 
and Commercial Quality Research & Development (Jacquard) program on 
Software Engineering Research via contract 638.001.406 GRIFFIN: a 
GRId For inFormatIoN about architectural knowledge. The authors would 
like to thank Astron for their support and access to the LOFAR software 
architecture documents. 

References 

[1] Ali-Babar M, Gorton I (2007) A tool for managing software architecture 
knowledge. In: Proceedings of the 2nd Workshop on Sharing and Reusing 
architectural Knowl-edge - Architecture, rationale, and Design Intent 
(SHARK/ADI 2007), May 20-26, pp 11-17 

[2] Ali-Babar M, Gorton I, Kitchenham B (2006) A framework for supporting ar-
chitecture knowledge and rationale management. Rationale Management in 
Software Engineering, Dutoit AH et al. Editors, pp 237-254 

[3]  Avgeriou P, Lago P, Kruchten P (2008) Third international workshop on shar-
ing and reusing architectural knowledge (SHARK 2008). ICSE Companion, 
pp 1065-1066 

[4] Avgeriou P, Kruchten P, Lago P, Grisham P, Perry D (2007) Architectural 
knowledge and rationale: issues, trends, challenges. ACM SIGSOFT Software 
Engineering Notes, (32) 4:41-46 

[5] Bass L, Clements P, Kazman R (2003) Software architecture in practice (2nd 
edition). Addison-Wesley Professional 

[6] Bhat JM, Gupta M, Murthy SN (2006) Overcoming requirements engineering 
challenges: lessons from offshore outsourcing. IEEE Software, (23) 5:38-44 

[7] Bischofberger WR, Kofler T, Mätzel KU, Schäffer B (2002) Computer sup-
ported co-operative software engineering with beyond-sniff. In: Proceedings 
of the 7th Conference on Software Engineering Environments (SEE 1995), 
April 5-7, pp 135-143 



[8] Capilla R, Nava F, Carrillo C (2008) Effort estimation in capturing architectur-
al knowledge. In: Proceedings of the 23rd IEEE/ACM International Confe-
rence on Automated Software Engineering (ASE 2008), September 15-19, pp 
208-217 

[9] Capilla R, Nava F, Pérez S, Dueñas J (2006) A web-based tool for managing 
architectural design decisions. ACM SIGSOFT Software Engineering Notes 
(31) 5:20-27 

[10]de Boer RC, Farenhorst R, Lago P, van Vliet H, Clerc V, Jansen A (2007) 
Architectural knowledge: getting to the core. In: Proceedings of the 3rd Inter-
national Conference on the Quality of Software Architectures (QoSA 2007), 
July 12-13, pp 197-214 

[11]Dingsøyr T, Conradi R (2002) A survey of case studies of the use of know-
ledge management in software engineering. International Journal of Software 
Engineering and Knowledge Engineering, (12) 4:391-414 

[12]Farenhorst R (2006) Tailoring knowledge sharing to the architecting process, 
ACM SIGSOFT Software Engineering Notes, (31) 5:15-19 

[13]Farenhorst R, van Vliet H (2008) Experiences with a wiki to support architec-
tural knowledge sharing. In: Proceedings of the 3rd Workshop on Wikis for 
Software Engineering (Wikis4SE 2008), September 8-10 

[14]Ferreira D, da Silva AR (2008) Wiki supported collaborative requirements 
engineering. In: Proceedings of the 3rd Workshop on Wikis for Software En-
gineering (Wikis4SE 2008), September 8-10 

[15]Guo J, Liao Y, Parviz B (2006) A collaboration-oriented software architecture 
model-ing system – JarchiDesigner. In: Proceedings of the 13th Annual IEEE 
International Symposium and Workshop on Engineering of Computer Based 
Systems (ECBS 2006), March 27-30, pp 481-482 

[16]Hansen MT, Nohria N, Tierney T (1999) What’s your strategy for managing 
knowledge? Havard Business Review, (77) 2:106-116 

[17]Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America P (2005) A 
general model of software architecture design derived from five industrial ap-
proaches. Journal of Systems and Software, (80) 1:106-126 

[18]Jansen A, Avgeriou P, van der Ven JS (2009) Enriching software architecture 
documentation. Journal of Systems and Software (accepted) 

[19]Jansen A, Bosch J (2005) Software architecture as a set of architectural design 
decisions. In: Proceedings of the 5th Working IEEE/IFIP Conference on 
Software Architecture (WICSA 2005), November 6-10, pp 109-120 

[20]Jansen A, de Vries T, Avgeriou P, van Veelen M (2008) Sharing the architec-
tural knowledge of quantitative analysis. In: Proceedings of the 4th Interna-
tional Conference on the Quality of Software Architectures (QoSA 2008), Oc-
tober 14-17, pp 220-234 

[21]Jansen A, van der Ven J, Avgeriou P (2007) Tool support for architectural de-
cisions. In: Proceedings of the 6th Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA 2007), January 6-9, pp 44-53 

[22]Kruchten P (2004) An ontology of architectural design decisions in software 
intensive systems. In: Proceedings of the 2nd Groningen Workshop on Soft-
ware Variability Management (SVM 2004), December 2-3, pp 54-61 



[23]Kruchten P, Lago P, van Vliet H (2006) Building up and reasoning about arc-
hitectural knowledge. In: Proceedings of the 2nd International Conference on 
the Quality of Software Architectures (QoSA 2006), June 27-29, pp 43-58 

[24]Lago P, Avgeriou P (2006) First workshop on sharing and reusing architectur-
al knowledge. ACM SIGSOFT Software Engineering Notes, (31) 5:32-36 

[25]Li J, Li T, Lin Z, Mathur AP, Kanoun K (2004) Computer supported co-
operative work in software engineering. In: Proceedings of the 28th Interna-
tional Computer Software and Applications Conference (COMPSAC 2004), 
September 27-30, pp 328-328 

[26]Liang P, Jansen A, Avgeriou P (2008) Selecting a high-quality central model 
for sharing architectural knowledge. In: Proceedings of the 8th International 
Conference on Quality Software (QSIC 2008), August 12-13, pp 357-365 

[27]Liang P, Jansen A, Avgeriou P (2009) Sharing architecture knowledge 
through models: quality and cost. The Knowledge Engineering Review (in 
press) 

[28]Liang P, Jansen A, Avgeriou P (2009) Knowledge architect: a tool suite for 
managing software architecture knowledge. Technical Report RUG-
SEARCH-09-L01, University of Groningen, 
http://www.cs.rug.nl/~liangp/download/liang2009kat.pdf 

[29]Maheshwari P, Teoh A (2005) Supporting ATAM with a collaborative web-
based software architecture evaluation tool, Science of Computer Program-
ming, (57) 1:109-128 

[30]Nonaka I, Takeuchi H (1995) The Knowledge-creating Company: how Japa-
nese companies create the dynamics of innovation. Oxford University Press, 
USA 

[31]Nuseibeh B (2001) Weaving together requirements and architectures, IEEE 
Computer, (34) 3:115-117 

[32]Rubart J, Dawabi P (2004) Shared data modeling with UML-G. International 
Journal of Computer Applications in Technology, (19) 3:231-243 

[33]Rus I, Lindvall M (2002) Knowledge management in software engineering, 
IEEE Software, (19) 3:26-38 

[34]Tang A, Ali-Babar M, Gorton I, Han J (2006) A survey of architecture design 
rationale. Journal of Systems and Software, (79) 12:1792-1804 

[35]Tang A, Jin Y, Han J (2007) A rationale-based architecture model for design 
traceability and reasoning. Journal of Systems and Software, (80) 6:918-934 

[36]Tyree J, Akerman A (2005) Architecture decisions: demystifying architecture. 
IEEE Software, (22) 2:19-27 

[37]van der Ven J, Jansen A, Avgeriou P, Hammer D (2006) Using architectural 
decisions. In: Short Papers of the 2nd International Conference on the Quality 
of Software Architectures (QoSA 2006), July 27-29 

[38]Whitehead J (2007) Collaboration in software engineering: a roadmap. In: 
Proceedings of Future of Software Engineering (FOSE 2007), March 20-22, 
pp 214-225 


