
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/315729354

Who	is	Producing	More	Technical	Debt?	A
Personalized	Assessment	of	TD	Principal

Conference	Paper	·	May	2017

CITATIONS

0

READS

9

4	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Managing	Technical	Debt	View	project

JDeodorant:	Extract	Class	refactorings	View	project

Alexander	Chatzigeorgiou

University	of	Macedonia

160	PUBLICATIONS			1,498	CITATIONS			

SEE	PROFILE

Apostolos	Ampatzoglou

University	of	Groningen

53	PUBLICATIONS			247	CITATIONS			

SEE	PROFILE

Ioannis	Stamelos

Aristotle	University	of	Thessaloniki

186	PUBLICATIONS			2,362	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Apostolos	Ampatzoglou	on	19	April	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/315729354_Who_is_Producing_More_Technical_Debt_A_Personalized_Assessment_of_TD_Principal?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315729354_Who_is_Producing_More_Technical_Debt_A_Personalized_Assessment_of_TD_Principal?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Managing-Technical-Debt?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/JDeodorant-Extract-Class-refactorings?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Stamelos2?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Stamelos2?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aristotle_University_of_Thessaloniki?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Stamelos2?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Who is Producing More Technical Debt?

A Personalized Assessment of TD Principal

Theodoros Amanatidis
Department of Applied Informatics

University of Macedonia

Thessaloniki, Greece

tamanatidis@uom.edu.gr

Alexander Chatzigeorgiou
Department of Applied Informatics

University of Macedonia

Thessaloniki, Greece
achat@uom.gr

Apostolos Ampatzoglou
Department of Computer Science

Aristotle University of Thessaloniki

Thessaloniki, Greece
apamp@csd.auth.gr

Ioannis Stamelos
Department of Computer Science

Aristotle University of Thessaloniki

Thessaloniki, Greece
stamelos@csd.auth.gr

ABSTRACT

Technical debt (TD) impedes software projects by reducing the

velocity of development teams during software evolution.

Although TD is usually assessed on either the entire system or on

individual software artifacts, it is the actual craftsmanship of

developers that causes the accumulation of TD. In the light of

extremely high maintenance costs, efficient software project

management cannot occur without recognizing the relation

between developer characteristics and the tendency to evoke

violations that lead to TD. In this paper, we investigate three

research questions related to the distribution of TD among the

developers of a software project, the types of violations caused by

each developer and the relation between developers’ maturity and

the tendency to accumulate TD. The study has been performed on

four widely employed PHP open-source projects. All developers’

personal characteristics have been anonymized in the study.

CCS CONCEPTS

• Software and its engineering → Software creation and

management → Software post-development issues→ Maintaining

software• Social and professional topics→ Management of

computing and information systems → Software management →

Software maintenance

KEYWORDS

Technical Debt; Software Maintenance; Project Management

1 INTRODUCTION

Tom DeMarco in his novel about project management (“The

Deadline”) [1] vividly claims that the most important part of any

successful software project is team and people. According to Mr.

Tompkins, the main character of the story, people do projects and

therefore getting the right people is essential. Different developers

have varying skills and capabilities in designing, developing and

maintaining software in the right manner. Unavoidably, the

members of a development team introduce design and code

violations at unequal rates and intensities, contributing differently

to the overall system Technical Debt [2].

Technical Debt principal (i.e., the effort needed to refactor a

system in order to address existing inefficiencies) is usually

assessed on design or code artifacts. However, since software

development is a highly people-centric activity, Technical Debt

Management (TDM) should also consider the individual members

of a team. To name an example, technical debt items with high

interest probability [3] (i.e. modules that hold TD and are very

likely to undergo maintenance in the future) should be assigned to

skilled and experienced developers to mitigate the involved risks.

Acknowledging that efficient project management cannot take

place unless people are carefully matched to tasks, in this paper

we present the results of a case study assessing the distribution of

TD among developers. Knowing whether some members of the

development team are more likely to introduce TD or particular

design/code violations can be of value to project managers to steer

the allocation of issues and maintenance tasks more effectively.

Moreover, we investigate whether the tendency to introduce TD is

related to the developer’s age in the project. The relevant research

questions have been investigated based on findings from four

widely employed PHP open-source projects with a long

development history.

Collecting and processing information at the level of individual

developers involves a number of ethical issues and therefore

should be performed with care. In the context of this study

gathered personal data, which are subject to statistical analysis,

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on

the first page. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from permissions@acm.org

MTD 2017, May 22, 2017, Cologne, Germany

© 2017 ACM. ISBN 978-1-4503-4486-9/17/04...$15.00

mailto:a.ampatzoglou@rug.nl
mailto:stamelos@csd.auth.gr
mailto:permissions@acm.org
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==

has been de-identified. In any case, assessing the contribution of

the members of a development team to the system’s TD for

research purposes, should not share any kind of personal data with

third parties. On the other hand, performance appraisals within an

organization are a great and commonly used tool to evaluate how

employees have been performing. We note however, that any type

of performance analysis should respect ethics, ensuring for

example that developers are aware of the relevant process and that

any feedback will be accessible by the employees and will remain

confidential.

The rest of the paper is organized as follows: Section 2 provides

an overview of related work on the assessment of software quality

at the developer level, regardless of whether TD is explicitly

mentioned or not. The case study design is presented in Section 3

while the results for each of the investigated questions are

presented and discussed in Section 4. Implications to project

managers and developers are presented in Section 5, while threats

to the validity of the study are discussed in Section 6. Finally, we

conclude in Section 7.

2 RELATED WORK

In this section we present efforts that aimed at investigating how

the characteristics and coding habits of individual developers

relate to the introduction of code smells, violations and buggy

code that eventually undermine software quality.

Alves et al. investigated the influence of developers on the

introduction of code smells in 5 open source software systems [4].

Developers have been classified in different groups based on two

characteristics, namely: a) developer participation, calculated as

the time interval between his first and last commit and b)

developer authorship, representing the amount of modified files

and lines of code. The authors investigated how those two

characteristics are related to the insertion and/or removal of five

types of code smells: dead (unused) code, large classes, long

methods, long parameter list (of methods) and unhandled

exceptions. Results suggested that groups with fewer participation

in code development tended to have a greater engagement in the

introduction and removal of code smells. Authors supported that

groups with higher participation level code more responsibly

during maintenance whereas the other groups tend to focus on

error correction actions.

Tufano et al. analyzed developer-related factors, on 5 open source

Java projects, that could influence the likelihood of a commit to

induce a fix [5]. They found evidence that clean commits (i.e.,

commits that do not induce bugs or any kind of need to fix code)

have higher coherence than fix-inducing commits. Commits with

changes that are focused on a specific topic or subsystem are

considered more coherent than those with more scattered changes.

Furthermore, their results, surprisingly, suggested that developers

with higher experience perform more fix-inducing commits that

developers with lower experience. Authors claimed that this could

be happening due to the fact that more experienced developers

usually cope with more pretentious tasks.

Eyolfson et al. [6] analyzed the impact of three social

characteristics of commits on their bugginess: a) time of the day

the commit is performed, b) day of the week, and c) developer’s

experience (i.e. days of participation in the project) and commit

frequency. The study was performed on two open source projects

(the Linux kernel and PostgreSQL) and found evidence that late-

night commits are significantly buggier emphasizing that

developers that perform late-night commits should double-check

their code. They also found that more experienced developers

introduce fewer bugs. Furthermore, according to their results, the

day on which the code is written plays no significant role on the

‘bugginess’ of a commit something which contradicts what was

observed in an earlier study by Sliwerski et al. back in 2005 [7].

That study claimed that programming on Friday is more likely to

generate faults than on any other day.

Rahman and Devanbu [8] studied the impact of ownership and

experience of the developers on the quality of code. As

ownership, they considered the extent to which a developer

modifies a file along with others or on his own. They also

conceptualized two distinct types of experience that can affect the

quality of a developer’s work: specialized experience in a file (i.e.

developer’s contribution to a single file) and general experience in

the entire project (i.e., developer’s contribution to the entire

project). Their results highlighted that: a) code that is maintained

by many developers is less bug-prone, validating the “many

eyeballs  better code” theory, b) less specialized experience on

a specific file is associated with fix-inducing code to that file and

c) the lack of general experience on the overall project is not

consistently associated with faulty code.

Our study differs in that software quality is viewed from the

perspective of TD rather than the introduction of faults or selected

code smells. Although not all TD violations are considered as

harmful by development teams, examining a broader range of

design and code inefficiencies as well as the distribution of TD

introduction among developers can provide a more holistic view

on the competencies of a team.

3 CASE STUDY DESIGN

3.1 Research Objectives and Research Questions

The aim of this study, expressed through a GQM formulation, is:

to analyze individual contributions by the project developers for

the purpose of evaluation with respect to the TD that they

introduce, from the point of view of software managers in the

context of software maintenance and evolution in open-source

projects.

Driven by this goal three relevant research questions have been

set: The first research question aims to investigate whether TD is

uniformly induced by all developers in a software project or is

mostly associated to the commits of specific developers.

Answering this research question and especially if common

patterns among the examined projects are found, could shed light

into the actual causes of design and code inefficiencies. The first

research question is formulated as follows:

https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==

 3

RQ1: Is TD uniformly distributed among the developers of a

software project?

The second research question concerns the particular TD

violations caused by each developer during his commits and

investigates whether there is any relation between violation types

and developers. Any evidence on commonly occurring violations

across all developers or individual members of the development

team can be of help to efficient technical management. The

second question is formulated as:

RQ2: Which TD violations are introduced by the developers of a

software project?

The third research question analyzes the relation between the

maturity of each developer in any project (obtained as the time

since his initial commit to the project) and his tendency of

inducing TD. It would be reasonable to assume that less

experienced developers introduce more TD and thus allocation of

work considering the maturity factor would enable effective TD

management. The last question is formulated as:

RQ3: What is the relation between TD and the maturity of

developers in a software project?

3.2 Case and Units of Analysis

This is an embedded multiple-case study, i.e. it studies multiple

cases, whereas each case is comprised of many units of analysis.

Specifically, the cases of the study are open source projects, and

units of analysis are the developers of each project. The reporting

of results is performed at the project/case level.

As subjects for our study, we employed recent commits (i.e. those

of the most recent year) of a selected branch during the

development history of 4 open source projects written in PHP.

The projects have been selected so as to have a long development

history and varying sizes. A short description of the goals of these

projects is provided below, whereas some demographics are

provided in Table I. Laravel (core) consists of the core source

code of one of the most popular PHP frameworks for building

web applications, Laravel, with more than 20 million downloads.

Composer is the most popular dependency manager for PHP with

more than 2 million downloads. Yii2 and CakePHP are two

actively maintained PHP frameworks with over 2.5 million and 1

million downloads respectively.

All developers who submitted at least 10 commits on the

examined branches of the selected projects have been used as

cases for this study (the lower limit of 10 commits has been set to

avoid considering in the study developers with partial or

circumstantial association to the project).

Table I: OSS PHP Project Demographics

Project #Commits

#Developers

(considered)

Size of last

version (LOC)

Laravel (core) 1136 11 149K

Composer 807 7 8K

Yii2 2097 19 406K

Cakephp 1677 23 297K

3.3 Variables and Data Collection

3.3.1 Variables

For each unit of analysis (i.e. developer in a project) we recorded

the following variables in order to answer the research questions

that have been set:

[V1] DevID: unique developer identification id

[V2] Total TD: induced TD by all commits of the particular

developer during the examined time frame. Contributed TD

for a particular transition from one commit to the next is

obtained by SonarQube as the difference between the TD of

the files that the developer modified during the transition. It

can be positive or negative.

[V3] Number of modified lines: To normalize the contributed

TD over the amount of work performed by each developer

we recorded the number of lines that have been modified

during each commit (as the number of added and deleted

lines of code).

[V4] Normalized TD: Since the amount of TD that is introduced

by a developer is heavily dependent on the amount of code

that he contributes, to allow for a fair assessment the total

TD (V[2]) is normalized by dividing it with the number of

modified lines (V[3])

[V5] Types of TD violations: This variable consists in a map of

TD violation types and occurrence frequencies. It essentially

captures the types of TD violations caused by the commits

of each developer.

[V6] Developer Maturity: Time between the first commit that

each developer performed in the project’s history to the last

commit that he contributed. It captures the developer’s

maturity in the project.

3.3.2 Data Collection

In order to analyze developers’ recent activity and contribution to

Technical Debt we obtained the most recent year’s commit data

for every examined project via the GitHub API. This data includes

commit information, such as the author of the commit, the number

of changed lines of code, the modified files, the commit date and

of course the commit id (hash) in the repository. Next, the TD of

every project snapshot, corresponding to each commit, has been

calculated using SonarQube1. SonarQube is a widely employed

tool for assessing technical debt that quantifies the principal based

on several axes of code quality (e.g., code duplications, metrics,

styling conventions, etc.). In particular, we checked out the source

code corresponding to each commit and performed TD analysis

with SonarQube for every project snapshot. The entire process has

been fully automated by executing the required commands within

a bash script.

1 Available at: http://www.sonarqube.org

http://www.sonarqube.org/
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==

Once the analysis for each project snapshot has been completed,

commits have been grouped by developers and placed in

chronological order. For every developer’s commit the files that

he/she modified have been identified, and their TD amount has

been compared against the TD of the same files in the previous

commit2 that involved those files. The difference in TD amount

that was detected between two successive commits (ignoring the

commits affecting other files) was added to each developer’s stack

and we eventually calculated the total contribution of each

developer to the project’s technical debt principal. The process of

obtaining the personalized principal contribution (delta of TD)

based on two successive commits is illustrated in Figure 1.

Figure 1: Process of obtaining TD deltas for each developer

3.4 Data analysis

To answer the research questions stated in Section 3.1, using the

variables described in Section 3.3, we employed descriptive

statistics and hypothesis testing (for RQ3).

For checking whether the distribution of TD among developers is

uniform or not (RQ1), we will present the distribution as a bar

chart. To provide a more systematic view into the distribution of

TD we calculated the Gini coefficient for each project. The Gini

coefficient is a measure of statistical dispersion originally used for

quantifying the inequality of income distribution [9]. The value of

the Gini coefficient varies between zero and one. A Gini

coefficient (or index) equal to zero implies perfect equality in the

distribution (i.e. the case where all developers introduced the

same amount of TD). A Gini index equal to one, implies

maximum inequality (i.e. the case where one developer introduces

the entire TD of the system while all others introduce no TD at

all).

2 For the special case where a file was created in a particular commit and

thus did not exist in the previous commit, zero TD principal has been

assumed for the previous commit

To investigate whether developers have a tendency to introduce

particular TD violations (RQ2) we used a heatmap. Columns

correspond to the individual developers in each project (denoted

by their ID) while rows correspond to identified TD violations as

obtained by SonarQube. Frequently occurring violations are

denoted by darker colors. A completely black cell indicates that

the corresponding developer introduces only violations of one

type (that corresponding to the row). In case the violations by a

developer are distributed among many types, shading changes

according to the percentage of violations of each type.

Finally, to test whether developer maturity plays a role in the

number and severity of violations that they introduced we display

the findings as scatterplots (developer age vs. normalized TD) and

test the hypothesis whether normalized TD depends on age with

correlation analysis. Since correlation analysis on the limited data

points of each project leads to statistically insignificant results, for

this research question a combined dataset from all projects has

been formed. However, to avoid any biasing, the combined

dataset contains developer maturity and introduced normalized

TD expressed as a percentage: For each project, the maturity of

each developer (in days) is divided with the maturity of the most

experienced developer. Similarly, for each project, the normalized

TD (i.e. TD/LOC) for each developer, is divided by the maximum

normalized TD in that project. To further investigate whether

developer’s maturity is related to the amount of introduced TD

principal we have performed an independent study t-test, by

differentiating between less- and more-experienced developers

(we used as threshold the age in days corresponding to 50% of the

longest experience). The analysis strategy per research question is

summarized in Table II.

Table II. Data Analysis

RQ Analysis Strategy

RQ1
Bar-chart illustrating distribution of TD [V4] among

developers [V1] – Gini index for each distribution

RQ2
Heatmap illustrating frequency and types of violations

[V5] per developer [V1]

RQ3 Scatterplot & correlation analysis between normalized

TD [V4] and developer age [V6]

Independent sample t-test, grouping variable [V6]

(threshold 50%) and testing variable [V4]

4 RESULTS AND DISCUSSION

In this section we present the results of the study organized per

research question along with an interpretation of the findings.

4.1.1 Distribution of TD among Developers

Figure 2 illustrates the distribution of the contributed TD during

the examined time frame among the developers who performed

commits in each project. To avoid biasing the results by the

Commit History

commit
of developer A
affecting file X

developer A

File X

public class
Group {

protected
String name;
private String
description;
protected
ArrayList<User
> members;

commit
of developer B
affecting file Y

developer B

File Y

public class
Group {

protected
String name;
private String
description;
protected
ArrayList<User
> members;

commit
of developer B
affecting file X

developer B

File X

public class
Group {

protected
String name;
private String
description;
protected
ArrayList<User
> members;

Δ TDFileX

developer s B
TD contribution

 5

amount of code written by each developer and thus ‘falsely

blaming’ a developer, the added TD is normalized over the

number of changed lines of code. On each chart the value of the

corresponding Gini index is also shown.

The pattern observed in each plot presents similarities across

projects. A limited number of developers (e.g. Developer-2 for

Laravel and Developer-5 and Developer-11 for CakePHP)

contribute a significant portion of the system’s technical debt (in

terms of TD per line of code), while the majority of developers

contribute significantly less violations. In a few cases developers

even have a negative TD contribution meaning that they remove

violations instead of introducing new ones when adding code.

The distribution in general is far from uniform as it is confirmed

by the Gini index which is remarkably similar in all projects. To

provide an intuitive interpretation of the meaning of the Gini

index, it is noted that a Gini value of 0.66 implies that 80% of the

developers introduce approximately 1/3 of the system’s TD. The

rest 2/3 is introduced by only 20% of the developers. Therefore

there is a small group of developers that produce significant

amount of principal, whereas another larger set of developers

produces less technical debt confirming the Pareto principle.

We claim that TD principal is not equally distributed across

developers since at least one of them stands up as a main source

of producing violations (and therefore introducing principal).

On the contrary, there are cases in which developers consistently

remove violations (i.e., repay TD). However, this observation is

not consistent across all investigated projects

(a) Laravel (core)

(b) Composer

(c) Yii2

(d) CakePhP

Figure 2: Distribution of TD among developers

4.1.2 TD Violations per Developer

Figure 3 illustrates the most common violations in each of the

examined projects against the developers who introduce them, in

the form of a heatmap. The darker the color the more violations of

the corresponding type are introduced by the indicated developer.

A row that is relatively dark across all developers implies a

commonly occurring violation. On the other hand, a column with

many dark cells implies a developer that generates many different

types of violations.

The findings vary among projects, similarly to the total number of

different violation types encountered in each project (22 violation

types in Laravel to 30 types in CakePhP). Rows with many shaded

Gini index = 0.66
Gini index = 0.66

Gini index = 0.65

Gini index = 0.61

cells indicate common violation types introduced by many

developers. Such a violation is violation ‘php:S1192’ (of critical

importance) in all projects. According to SonarQube this violation

indicates the presence of String literals which are duplicated,

rendering the process of updating all occurrences in case of a

change, error-prone. Another relatively common violation among

developers in all projects is ‘php: S2037’ (of minor importance).

SonarQube identifies as violations cases where a reference to a

static class member from another method in the same class is not

employing the “static::” keyword. This might lead to

undesired behavior in the case of subclasses, as the original

definition of the member is referenced, rather than the overridden

one.

(a) Laravel (core)

(b) Composer

(c) Yii2

(d) CakePhP

Figure 3: TD violation types per developer

Differences are also clearly visible between developers. Some

developers introduce violations of many different types, as

indicated by shaded cells in the corresponding columns. This is

for example the case for the first three developers of project

Laravel. In such cases, training actions focusing on the merits of

smell-free code can be planned as part of a project’s management

for selected members of the development team. On the other hand,

some developers produce violations of a very limited number of

types, even of a single type. This is for example the case for

developers with a single black cell in their column (i.e. 100% of

their violations belong to that specific type). Although the latter

information might be of limited value to a project manager, it

could be useful as a self-assessment tool for the developer. The

analysis points to the particular violations that a developer is

inclined to introduce, and if he acknowledges their importance,

can eventually modify his programming habits to eliminate them.

In principal a large variety of violations can be identified in

different projects, introduced by different developers. However,

we have pointed out to specific frequently recurring violations

for: (a) the same project, (b) the same developer, and (c) across

all projects.

4.1.3 TD vs. Developer Maturity

The third research question aims at investigating the relation

between a developer’s ‘age’ in the project and the TD that he

introduced per line of code. The corresponding scatterplot for

variables [V4] and [V6] is shown in Figure 4. The trendline in the

chart indicates a very moderate negative correlation between

developer maturity and introduced TD (note that both variables

are expressed as ratio over the highest developer maturity and the

highest TD/LOC in each project, respectively). However, the

p-value for Spearman correlation indicates that the results are not

statistically significant (p = 0.753). Thus, there is no evidence to

support the rejection of the corresponding null hypothesis (i.e. that

no monotonic correlation between the two variables exist).

Figure 4: Introduced TD versus developer maturity

To further investigate whether developer’s maturity plays any role

in the amount of introduced TD principal we have performed an

independent study t-test. However, the results of the test have not

suggested the rejection of the null hypothesis (sig: 0.8). Therefore,

we cannot claim that there is a difference in the mean TD incurred

by experienced and inexperienced software developers.

However, despite the lack of statistical evidence we can observe

that a larger number of immature developers is concentrated in the

top-20% most TD-incurring developers (5 immature against 1

experienced). This finding, in conjunction with the declining

trendline in the scatterplot opens up and interesting research

direction. In particular, the identification of additional factors

(apart from experience) that characterize the developer need to be

investigated so as to more accurately profile which types of

developers incur the most TD principal.

The collected data were not able to provide enough evidence on

the relationship between developers’ age and the amount of TD

that they introduce. However, a negative trendline has been

identified and 80% of the most TD-introducing developers have

been active for less than 33% of the project’s age (i.e., have low

project-related experience).

5 IMPLICATIONS OF THE STUDY

Any performance analysis at the level of individual people might

be viewed with skepticism. However, the provided perspective on

a system’s TD and its actual causes might prove beneficial to the

managers of software development teams and to the developers

themselves.

With respect to software project managers, resource allocation can

benefit by assigning artifacts with increased technical debt interest

probability to software engineers that tend to introduce less

technical debt principal or even remove technical debt. In a

similar line of thought, and without any intent to punish

developers, managers could identify developers who impair

software quality by introducing source code violations and

technical debt instances and try to upgrade their coding habits,

either by placing them next to more experienced developers or by

calling them to reflect on their common violations. Appropriate

guidelines or tooling to avoid the accumulation of particular

violations can also be developed, based on the findings from

previous projects.

With respect to software developers, the results on the

personalized assessment of technical debt can be a valuable self-

improvement tool. Developers can identify recurring problems

that they consciously or unconsciously introduce as well as their

locations in code. Moreover, critically analyzing their own

performance with respect to TD against the rest members of their

team can highlight opportunities for improvement.

Finally, the results of the study provide some useful research

implications as well. First, the outcomes of the study suggest that

an individual / personalized assessment of TD can be a

meaningful research direction that unveils interesting relations

that can guide TDM. Therefore, the topic deserves further

investigation. Some tentative future research direction are as

follows: (a) a personalized assessment of TD interest, (b) a

detailed analysis of specific violations, with respect to their

criticality, and (c) an elaborate personality / developers’

characteristics model that will provide a more accurate profile of

TD-prone developers.

6 THREATS TO VALIDITY

In this section we present and discuss threats to the validity of the

empirical study emphasizing on construct, reliability, external and

internal validity threats, according to the classification by

Runeson et al. [10].

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1TD
/L

O
C

 (
n

o
rm

al
iz

ed
)

developer maturity (normalized)

 3

Construct validity reflects to what extent the phenomenon under

study (i.e. introduction of technical debt principal by individual

developers) really represents what is investigated according to the

research questions. By selecting a particular tool for quantifying

technical debt, whereas other types of non-identified technical

debt exist, threats to construct validity emerge. However,

SonarQube is a widely employed tool for the assessment of

technical debt identifying a variety of design and code

inefficiencies.

The reliability of a case study is related to the extent by which the

collected information and the performed analysis can be replicated

with the same results. To mitigate reliability threats we explicitly

report the design of the case study and the statistical tests that

have been performed.

Internal validity threats are related to the identification of

confounding factors, that is, variables, other than the implied

independent variables (developer’s competence and maturity)

which might influence the value of the dependent variable

(introduced technical debt and technical debt types). Such threats

do apply in the presented study, since introduced technical debt

might be affected by the tasks assigned to (or chosen by) each

developer. For example, a highly skilled and experienced

developer might be inclined to take over the most complex and

demanding tasks limiting his ability to control the introduced

technical debt.

Finally, as in any other empirical study, the results are subject to

external validity threats. External validity deals with our

possibility to generalize the findings. To mitigate this threat we

have selected four widely known PHP projects which have

evolved over a number of years. Nevertheless, further studies are

required to thoroughly analyze the parameters that drive

developers to introduce TD.

7 CONCLUSIONS

Software development is a complex activity requiring experience,

skills and significant mental effort. Artifacts produced by

developers are systematically analyzed in terms of quality, which

recently is successfully captured by the Technical Debt metaphor.

In this paper, we have attempted to investigate, through a case

study on four open-source PHP projects, the relation between

introduced TD principal and developers.

The findings confirm the belief that developers’ competencies

vary, since the distribution of technical debt among developers is

highly imbalanced. Moreover, different developers introduce

different technical debt violations; however, some recurring

violations can be identified across developers and projects.

Finally, there is no statistically significant evidence that more

experienced developers introduce less technical debt per line of

code. Such findings but more importantly the ability to perform a

personalized assessment of technical debt can be a valuable tool

for effective project management and self-assessment and

improvement.

ACKNOWLEDGEMENT

This work was financially supported by the action "Strengthening

Human Resources Research Potential via Doctorate Research" of

the Operational Programme: "Human Resources Development

Program, Education and Lifelong Learning, 2014-

2020", implemented from State Scholarship Foundation (IKY)

and co-financed by the European Social Fund and the Greek

public (National Strategic Reference Framework (NSRF) 2014 –

2020)

REFERENCES

[1] T. DeMarco, The Deadline: A Novel About Project Management.

New York: Computer Bookshops, 1997.

[2] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From

Metaphor to Theory and Practice,” IEEE Softw., vol. 29, no. 6, pp.

18–21, Nov. 2012.

[3] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F.

Shull, and C. Seaman, “Identification and management of technical

debt: A systematic mapping study,” Inf. Softw. Technol., vol. 70, pp.

100–121, Feb. 2016.

[4] L. Alves, R. Choren, and E. Alves, “An Exploratory Study on the

Influence of Developers in Code Smell Introduction,” in

Proceedings of the 10th International Conference on Software

Engineering Advances (ICSEA 2015), Barcelona, Spain, 2015.

[5] M. Tufano, G. Bavota, D. Poshyvanyk, M. Di Penta, R. Oliveto, and

A. De Lucia, “An empirical study on developer‐ related factors

characterizing fix‐ inducing commits,” J. Softw. Evol. Process, vol.

29, no. 1, Jan. 2017.

[6] J. Eyolfson, L. Tan, and P. Lam, “Do Time of Day and Developer

Experience Affect Commit Bugginess?,” in Proceedings of the 8th

Working Conference on Mining Software Repositories, New York,

NY, USA, 2011, pp. 153–162.

[7] J. Sliwerski, T. Zimmermann, and A. Zeller, “Don’t Program on

Fridays! How to Locate Fix-Inducing Changes,” in Proceedings of

the 7th Workshop on Software Reengineering, Bad Honnef,

Germany, 2005.

[8] F. Rahman and P. Devanbu, “Ownership, experience and defects: a

fine-grained study of authorship,” n Proceedings of the 33rd

International Conference on Software Engineering, Waikiki,

Honolulu, USA, 2011, p. 491.

[9] C. Gini, “Measurement of Inequality of Incomes,” Econ. J., vol. 31,

no. 121, pp. 124–126, 1921.

[10] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study

Research in Software Engineering: Guidelines and Examples, 1st

ed. Wiley Publishing, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/315729354

