
How Do Developers Fix Issues and Pay Back
Technical Debt in the Apache Ecosystem?

Georgios Digkas, Mircea Lungu, Paris Avgeriou
Johann Bernoulli Institute for Mathematics and Computer Science

University of Groningen
Nijenborgh 9, 9747 AG, Groningen, The Netherlands
g.digkas@rug.nl, m.f.lungu@rug.nl, paris@cs.rug.nl

Alexander Chatzigeorgiou, Apostolos Ampatzoglou
Department of Applied Informatics

University of Macedonia
Egnatia 156, 546 36, Thessaloniki, Greece

achat@uom.gr, apostolos.ampatzoglou@gmail.com

Abstract—During software evolution technical debt (TD) fol-
lows a constant ebb and flow, being incurred and paid back,
sometimes in the same day and sometimes ten years later. There
have been several studies in the literature investigating how
technical debt in source code accumulates during time and the
consequences of this accumulation for software maintenance.
However, to the best of our knowledge there are no large scale
studies that focus on the types of issues that are fixed and the
amount of TD that is paid back during software evolution. In this
paper we present the results of a case study, in which we analyzed
the evolution of fifty-seven Java open-source software projects by
the Apache Software Foundation at the temporal granularity level
of weekly snapshots. In particular, we focus on the amount of
technical debt that is paid back and the types of issues that are
fixed. The findings reveal that a small subset of all issue types
is responsible for the largest percentage of TD repayment and
thus, targeting particular violations the development team can
achieve higher benefits.

Index Terms—Software Evolution, Technical Debt, Mining
Software Repositories, Empirical Study, Apache Software Foun-
dation

I. INTRODUCTION

Technical Debt (TD) is a powerful metaphor that represents
shortcuts taken in a software development project, usually
to meet business goals such as limited time or budget [1].
Technical debt concerns mostly invisible parts of the system
(i.e. no visible features or defects) that have a detrimental
effect on the maintainability and evolvability of software [1].
Technical Debt cannot realistically be eliminated but it does
need to be proactively managed in order to be kept at a
sustainable level [2].

One of the primary activities of Technical Debt Management
is termed Technical Debt Monitoring [2]: the activity of
continuously inspecting the levels of TD throughout time.
Monitoring technical debt aims to identify trends in the
evolution of TD and alert the development teams in case
certain TD items increase beyond a threshold, or even worse
grow out of control. In that sense monitoring helps to identify
and prioritize repayment actions where TD items are resolved
(e.g. through refactoring).

In this paper we study the TD evolution of fifty-seven open-
source software projects by the Apache ecosystem12, through
a longitudinal case study, with the aim of identifying cases
in which repayment activities take place. Although in the
literature there are many studies which investigate projects by
the Apache ecosystem (since they are highly appreciated and
used by many software engineers), in this work we narrow
down our scope to the types of issues that are fixed and the
amount of TD that is paid back over time.

Structure of the Paper: The rest of the paper is organized
as follows: In Section II we discuss related work on the
evolution of software projects with respect to their quality and
code smells in particular. Section III clarifies methodological
issues related to the collection of data for the repayment of
TD. The protocol of the case study is outlined in Section IV,
while the Results are presented and discussed in Section V.
Key observations and open questions resulting from the study
are outlined in Section VI. Threats to the validity of the study
are discussed in Section VII. Section VIII provides information
regarding the replication package for the study. Finally, we
conclude in Section IX.

II. RELATED WORK

This section reports studies that are related to our work.
These include empirical studies that investigate the evolution
of open-source software projects, the evolution of TD over
time and studies that deal with the survivability and impact of
code smells in open-source software projects.

Bavota et al. [5] have studied the evolution of inter-
dependencies of 147 Java projects over a period of 14 years
that belong in the Apache ecosystem. The results of their
study show that there is a linear increase trend in the number
of projects but the number of dependencies between them
tend to increase exponentially. They have also found that the
developers do not upgrade immediately the dependencies of
their projects unless it is a major release.

1Apache Software Foundation is one of the biggest communities which
“provide software products for the public good”

2In this paper we consider an ecosystem to be “a collection of software
systems that are developed and co-evolve in a shared environment” [3] even
if other definitions exist [4]

One of the first studies that investigates the evolution of
code smells in the literature is by Olbrich et al. [6]. They
analyze historical data of two projects by the Apache Foun-
dation, namely Apache Lucene and Apache Xerces 2 J and
they study how the God Class and Shotgun Surgery smells
evolve over time. The main findings of their study are that
during the evolution of these projects, there are phases where
the number of these smells decreases and phases where the
number increases. Moreover, these phases are not affected by
the size of the systems.

Peters and Zaidman [7] developed a tool which is called
SACSEA. The tool computes the lifespans of the following
code smells: God Class, Feature Envy, Data Class, Message
Chain Class, and Long Parameter List. The tool has been
employed to analyze eight open-source software projects. The
main finding of their study reports that software engineers are
aware of the existence of the code smells in their projects.
However, there is evidence that they perform very few refac-
toring activities.

Chatzigeorgiou and Manakos [8] have also investigated the
evolution of code smells in object-oriented projects. They
studied the evolution of Long Method, Feature Envy, State
Checking, and God Class smells throughout successive ver-
sions of two open-source software projects, namely: JFlex
and JFreeChart. The results of their study show that as the
projects evolve over time the number of code smells increases.
Furthermore, the developers do not perform refactorings in
order to solve these code smells and in the vast majority of
the cases if one code smell is removed, it is probably a side
effect of regular maintenance and not a result of intentional
refactoring activity.

Zazworka et al. [9] investigate how God Classes impact
maintainability and correctness. To this end, they analyzed
two sample applications by a software development company.
Their findings show that God Classes are more change-prone
and there are some cases where they also are more defect-
prone, when they are compared to the non-God Classes.

Tufano et al. [10] conducted a study on 200 open-source
software projects from three different software ecosystems,
namely: Apache, Eclipse, and Android. The main aim of
their study is to understand when and why code smells are
introduced into the projects and what is their life cycle. In
order to answer this question, they focus on the following code
smells: Blob Class, Class Data Should be Private, Complex
Class, Functional Decomposition, Spaghetti Code. The results
of their study, show that a) in the majority of the cases, the
code smells are introduced into the projects with the creation
of classes or files, b) also, while the project evolves over time,
the smelly code artifacts will become more smelly, c) software
engineers introduce new code smells when they implement
new features or when extend the ones that already exist, d) the
developers who introduce new code smells into the projects,
are the ones who work under pressure and not necessarily the
newcomers, and e) the majority of the smells are not removed
during the project’s evolution and few of them are removed
as a direct consequence of refactoring operations.

TABLE I
RELATED WORKS

Authors Year Projects Issues
Bavota et al. [5] 2013 147 -
Zazworka et al. [9] 2011 2 1
Olbrich et al. [6] 2009 2 2
Chatzigeorgiou and Manakos [8] 2014 2 4
Peters and Zaidman [7] 2012 8 5
Tufano et al. [10] 2015 200 5
Digkas et al. [11] 2017 66 232
Maldonado et al. [13] 2017 5 -
Curtis et al. [12] 2012 745 > 1200

Digkas et al. [11] have also studied the evolution of open-
source software projects by the Apache Foundation. They
analyze the evolution of 66 Java projects, over a period of 5
years, using SonarQube in order to investigate how TD evolves
and what are the types of issues that incur it. In their study,
they use the default SonarQube settings and they examine 232
different types of issues that incur technical debt. The results
of their study show that on the one hand, there is a significant
increasing trend on the size, complexity, number of issues, and
the technical debt over time. But on the other hand, when the
TD is normalized to the size of the project, it decreases over
time. This means that the developers either insert better quality
code on the projects or they fix some of the open issues.

A large-scale study on 745 business applications has been
performed by Curtis et al. [12]. The projects that they analyzed
are from 160 companies that belong in 10 industry segments.
The analysis that they perform is similar to that of the present
study. They used more than 1200 rules of good architectural
and coding practices in order to evaluate the quality of these
applications. One key difference between our and their study
is that we investigate the number of the issues that are fixed
and the amount of TD that is paid back.

Maldonado et al. [13] have conducted an empirical study
on the removal of Self-Admitted Technical Debt (SATD) by
analyzing the code comments of five open-source software by
the Apache Software Foundation. The results of their study
show that the removal of SATD issues could take from several
months and up to a decade. The authors also found that in most
of the cases the developer who introduced an SATD issue is the
one who removes it when they fix bugs or add new features.

Table I summarizes all studies reported in this section,
including the year of publication, the number of analyzed
projects and the number of examined issues.

III. STUDYING TECHNICAL DEBT EVOLUTION

In order to study the repayment of debt one must study its
evolution, and in order to study the evolution of debt one must
be able to detect it in the first place. Different types of debt can
be detected from various sources of information: source code,
architectural documentation, issue trackers, mailing lists, etc.
However, to detect the evolution of debt over a long period of
time and in a large number of systems, restricting the study
of debt to that which can be inferred based on the study of
source code makes the challenge more approachable.

A. Using SonarQube for Debt Estimation

In this study, we use SonarQube [14] to detect fixes of rule
violations and in this way we compute the amount of TD that
is paid back. SonarQube, relies on a set of rules in order to
calculate the amount of TD. During the analysis of any project,
SonarQube creates a new issue every time a piece of code
breaks one of the predefined rules. For every issue it assigns
an estimate of how much time will be required for someone
to solve it. A downside of this decision is the restriction of
the study to the particular types of TD that can be detected by
source code analysis and in particular by the SonarQube tool
platform.

We have decided to use SonarQube because it is one of the
most popular tools that are used in industry for the purpose
of measuring and estimating debt. Moreover, SonarQube can
detect a large number of source code related types of TD.

The tool uses different strategies for estimating TD for
different types of issues:

1) Constant Time – some issue types are assigned a
constant time estimate for their fixing (e.g. “Sections of
code should not be commented out” is assigned a constant
fixing time independent of the size of the commented
out code)

2) Issue Dependent Time – some types of issues are
estimated to take a time which takes into account their
particular characteristics (e.g. cloning takes into account
the number of clones)

Finally, to compute the total amount of technical debt per
system at a given time, SonarQube calculates the estimated
fixing time for all the open issues.

B. Studying Multiple Revision of a System

SonarQube, and other similar tools, cannot take as input
deltas between system revisions, but instead they parse the
entire source code of a system and build a model for every
new version submitted for analysis. This means that even if
a single line change in a single file will result in a massive
and time-consuming analysis step which for large systems can
take several minutes.

To study the evolution of a large number of systems one
must thus discretize their evolution by analyzing only a limited
number of revisions of the system. However, although the
analysis of multiple revisions is slow, the individual issues
together with their cost estimation being the most basic unit
of debt are identified by the tool across revisions and their
identity can be preserved.

The preservation of issue identity is achieved even in the
presence of different types of changes. However, one of the
situations in which the identity of an issue is lost is whenever
a file is renamed and at the same time the content of that file is
changed too. On the other hand, if only one of these changes
occurs (i.e. renaming of the file or change of content) the tool
is still able to preserve the identity of the issues.

C. Detecting Fixed Issues

When analyzing multiple revisions of a system, SonarQube
tracks the issues that are fixed and the debt that is repaid.
When an issue disappears, it is considered fixed.

By investigating manually a series of such fixed issues we
observed three types of situations in which the tool considers
an issue to be fixed:

1) Source code deletion. If a piece of code that contains
some issues that incur TD is deleted, then the TD is
paid back automatically. Deleting a piece of code (e.g.
a statement of a block) represents TD repayment which
can be either intentional or unintentional.

2) Refactoring of the code aiming explicitly at the removal
of the issues. If one section of code has been detected to
contain TD issues, the refactoring of the corresponding
code to remove the issue will result in the repayment of
TD.

3) A file-rename-con-file-content-change situation, as de-
scribed earlier. In this problematic situation, the tool
considers all the issues in the old file to be removed
and a series of equivalent issues in the new file to have
appeared.

Since the goal of this study is the detection of fixed issues
and thus, repaid debt, we must be wary of the issues which
are fixed in the third situation since they are not actually fixed
and the corresponding debt is not being repaid.

By using the SonarQube API a filter can be implemented to
remove the issues in the third category from the list of fixed
issues3. By using such a filter, in the remainder of this paper,
we only talk about the first two types of closed issues.

D. Classifying Issues

SonarQube classifies the issue types into two main cate-
gories: based on their type and severity.

Issue Types: If an issue is related to a piece of code
that is demonstrably wrong is classified as bug. If a piece of
code could be exploited by a third person and that could be the
reason to harm the system then it is classified as vulnerability
and finally, as code smells are classified all the issues that
represent an instance of improper code and they are neither a
bug nor a vulnerability.

Issue Severity Levels: In terms of severity, there are
five categories namely: blocker, critical, major, minor, and
info. Based on the main object of their impact, there are the
following three sub-categories:

1) Impact on the system. Blocker and critical designation
expresses the impact that an issue can have in the
behavior of the application in production. Blocker issues
have high probability to negatively impact the system,
which is a reason that the software engineers should
fix them as soon as possible. Critical issues have lower
probability, when we compare to the blocker, to impact
negatively the system.

3Code for the filter is available in the online replication package for the
paper

2) Impact on the productivity of a software engineer. Ma-
jor can have high impact and minor have little impact.

3) Everything else. The last category is the info. This
category collects all the issues that are neither a bug
nor a quality flaw.

IV. STUDY DESIGN

The goal of our study is to analyze the evolution of open-
source software projects in the Apache ecosystem for the
purpose of understanding and investigating the types of the
issues that have been fixed and the amount of TD that is
paid back. More specifically, our study aims at addressing the
following five research questions (RQs):

1) How does the issue fixing rate vary for different
projects? The goal of this research question is to in-
vestigate whether software development practices differ
with respect to TD repayment among projects.

2) What is the fixing prevalence of the various issue types?
This RQ aims at identifying which issues are fixed more
often than others.

3) How does the fixing rate vary for different issue types?
Because the number of fixes is dependent on the number
of issues for each particular type, this RQ investigates
the fixing rate, i.e. the percentage of fixes over the total
number issues present in each system.

4) How is the effort of paying back TD distributed across
the various types? Since different issue types demand
different amounts of effort to resolve them, this RQ
sheds light into the issues which have yielded the higher
benefit in terms of TD repayment.

5) After how much time is TD paid back? Similarly to
previous studies we analyze the time that is required to
fix issues, for the types that have been identified as more
beneficial in terms of TD repayment.

A. Project Selection

For the purpose of this study, we chose to analyze projects
by the Apache Software Foundation. Since the analysis that we
performed is computationally intensive, we used the Apache
Software Foundation Index4 in order to randomly select a
sample of fifty-seven Java projects.

The three main inclusion criteria that we used are the
following:

1) In terms of programming languages, we chose to analyze
projects that the main programming language is Java
and have at least 100 classes

2) In terms of project evolution, we included projects that
have been developed for at least two years and 1000
commits, and

3) In terms of activity, we included only projects that there
was commit activity in 2017, in other words, projects
that are still active in the year when we conducted
this study

4https://projects.apache.org/projects.html?language#Java

Fig. 1. Correlation between the size of a project (in number of files) and
commit density

Figure 1 shows considerable variation in both the number of
commits and the size of the systems as measured by counting
the number of Java files.

B. Issue Selection

We are limiting the focus of this paper to those issues in
the blocker-critical-major category: bugs or flaws that have a
probability of affecting the behavior of the application or can
highly impact the productivity of developers. The reason for
this is that many of the minor and info issues are quite minor
including:

• “Functions should not be defined with a variable number of argu-
ments” (info)

• “Field names should comply with a naming convention” (minor)
• “Useless imports should be removed” (minor)
• “Unused local variables should be removed” (minor)

Figure 2 illustrates the results of aggregating the issues in
the analyzed system based on their severity level. In total 5,041
Blocker, 44,421 Critical, and 105,847 Major issues have been
fixed in the full history of the fifty-seven systems under study.
The light gray background presents the total number of issues
of that kind. The Major have a much higher percentage of
fixes than the other types (see Figure 2).

Fig. 2. Distribution of resolved issues by priority type (the light gray
background presents the total number of issues of that kind)

This narrowing of the focus results in 160 types of issues
to which we will limit our discussion to henceforth.

https://projects.apache.org/projects.html?language#Java

V. RESULTS AND DISCUSSION

A. How does the issue fixing rate vary for different projects?
(RQ1)

The goal of this research question is to investigate whether
software development practices differ with respect to TD
repayment among projects.

Figure 3 shows several types of information for every
project. The middle histogram presents the absolute number
of issues fixed in a project (dark green) and the number of
issues which are still open (light green). The bottom histogram
presents in dark green the issue fixing rate – the percentage
of the issues in that project which are closed5. The top part of
the Figure 3 presents the size of the corresponding systems

Based on the figure we observe that:
• The highest fixing rate is presented by projects nutch

and jmeter which both have more than 70% of the is-
sues that appeared during their evolution fixed. This could
be possibly attributed to the fact that the development
team of nutch6 uses SonarQube to evaluate its quality,
while jmeter7 is itself a SonarQube plugin.

• Four projects have a fixing rate of less than 10%. They are
projects of varying sizes, with polygene-java having
more than 2K Java files.

5The projects are sorted in decreasing order of their issue fixing rate
6https://svn.apache.org/repos/asf/nutch/site/publish/sonar.html
7https://docs.sonarqube.org/display/SONARQUBE45/JMeter+Plugin

• If we compress further the information about fixing rates
as in Figure 4, which shows a histogram depicting the
number of projects for several classes of fixing rate with
a bin size of 10%, the largest category, with 20 elements,
corresponds to a fixing rate of between 20% and 30%.

Fig. 4. Distribution of fixing rates in examined projects for bins of size 0.10

• There is no clear correlation between the absolute number
of issues found in the system and the percentage of fixes:
batik (rightmost) and nifi (7th from right) have very
large numbers of issues but very low fixing percentages
while for similar numbers of issues nutch (leftmost) and
jmeter (2nd from left) have very high fixing rates.

• There seems to be no clear correlation between the size of
the projects and the fixing rate: sis (4th from left) with
one of the highest fixing ratios and batik (righmost)
with the lowest fixing ratio are about the same size.

Issue Count

Project Size

Fig. 3. Number of open (light yellow) and closed (dark green) issues per project. The top part of the figure presents the sizes of the corresponding projects;
the middle absolute numbers of open/closed issues; the bottom part presents percentages of open/closed issues

https://svn.apache.org/repos/asf/nutch/site/publish/sonar.html
https://docs.sonarqube.org/display/SONARQUBE45/JMeter+Plugin

B. What is the fixing prevalence of the various issue types?
(RQ2)

To answer RQ2 we sum up all fixed issues, without differen-
tiating among projects. The histogram of Figure 5 presents the
distribution of the number of fixed issues for each type: every
vertical bar is an issue type, and its height is proportional
to the number of issues of that type. The figure shows a
strongly skewed distribution where a handful of issue types
are fixed very frequently while for most types fixes are rarely
encountered.

Computing the Gini index for the prevalence of the issues
we obtain a very high value of 0.8458. This means that the
“wealth” of issue fixes is very inequally distributed across the
issue types.

Fig. 5. Distribution of resolved issues by issue type for the 160 types of
issues in this study

In order to focus on the left side of Figure 5, Table II shows
the ten most frequently fixed types of issues encountered in the
analyzed projects. Instead of presenting the absolute number
of fixed issues for each issue type, we present the prevalence
(column P%) which is, the percentage of that type of issues
fixed from the total number of fixes.

TABLE II
MOST FREQUENT TYPES OF RESOLVED CODE SMELLS (TYPES RELATED
TO EXCEPTIONS, COMPLEXITY, AND DUPLICATION ARE HIGHLIGHTED)

Issue P%a

1. Statements should be on separate lines 7.8
2. Sections of code should not be ”commented out” 7.8
3. String literals should not be duplicated 6.4
4. Exception handlers must preserve the original exceptions 6.1
5. Control flow statements should not be nested too deeply 5.9
6. Cognitive Complexity of methods should not be too high 5.4
7. Generic exceptions should never be thrown 5.1
8. Standard outputs should not be used directly for logging 3.9
9. Source files should not have any duplicated blocks 3.8
10. Synchronized classes Vector, [...] should not be used 2.8
a Prevalence percentage

Several high-level observations that can be derived from the
table are:

8The index varies between 0 for a population with perfect equality and 1
for a population with perfect inequality

1) Skewdness. The ten issue types (out of 160!) in the
table account for 55.14% of all the issue fixes in the
studied systems. All the fifty-seven systems contain fixes
of these issues with the exception of issue #1 missing
in five systems and issue #10 absent from 2 systems.

2) Ease of fix. The most frequently occurring fixes are
also probably some of the easiest to be remedied,
as separating statements to different lines (issue #1),
removing commented code (issue #2), and removing
string literal duplication (issue #3) that normally have
no side effects.

3) Duplication. Issues related to duplication appear twice
in the table (#3 and #9), are found in all the analyzed
systems, and account together for more than 10% of the
total issues fixed revealing that code clones are identified
and handled by developers in numerous instances.

4) Exception Handling. Issues related to exception han-
dling also appear twice in the table amounting together
for more than ten percent of the total fixes. They also
affect all the systems.

Types of Issues: It should be noted that most of the fixed
issues are not necessarily language specific; the first language
specific issue is at position 10, namely “Synchronized classes
Vector, Hashtable, Stack and StringBuffer should not be used”.

All the issues in the table are classified by SonarQube as
code smells, i.e symptoms that possibly indicate a deeper
problem, but are not bugs. The ten most frequently fixed
problems that are classified as bugs are shown in Table III.

TABLE III
MOST FREQUENT TYPES OF RESOLVED BUGS AND VULNERABILITIES

Issue P%a

Bugs
16. Resources should be closed 2.15
22. Null pointers should not be dereferenced 1.30
36. InterruptedException should not be ignored 0.49
41. Floating points should not be tested for equality 0.43
45. Conditionally executed blocks should be reachable 0.38
70. All branches in a conditional structure should not have
exactly the same implementation

0.11

72. Identical expressions on 2 sides of binary operator 0.10
78. Assignments should not be redundant 0.08
79. Jumps should not occur in ”finally” blocks 0.08
80. Classes should not be compared by name 0.08

Vulnerabilities
68. SQL binding mechanisms should be used 0.11
76. Credentials should not be hard-coded 0.08
127. File.createTempFile should not be used to create a
directory

0.01

a Prevalence percentage

Finally, with respect to issues tagged as vulnerabilities, there
are only three vulnerability types, in the blocker-critical-major
category, that have been detected as fixed. These fixes are
responsible for less than 0.20% of the total fixes, as shown in
Table III. Although not shown in the table, these issues occur
in very few projects, and also have a low fixing rate.

Fig. 6. Fixing rate (horizontal axis) vs. Number of Issues for a given Issue
Type

C. How does the fixing rate vary for different issue types?
(RQ3)

The reason for asking this research question is understand-
ing whether some types of technical debt are repaid more
often than others – and thus, could represent candidates for
debt that is more important for the developers of the Apache
ecosystem9.

By computing the fixing rate as the ratio between all the
issues of a given type that are closed over the ones which
are open we found six issue types with a fixing rate of 100%.
However, they are very rare with the most popular one (“Future
keywords should not be used as names”) occurring only 21 times
and the second most popular one (“Variables should not be self-
assigned”) occurring only 10 times in the whole the history
of all the fifty-seven projects10. The reduced prevalence of
the issues decreases their relevance for a broader developer
community. To increase the relevance of the observations, in
the remainder of this section, we limit our discussion to issues
that have a minimum of 500 discovered occurrences.

Issues with at least 500 occurrences: Figure 6 shows
a scatter plot of the 69 issue types which have at least 500
occurrences11. The red data points correspond to the ten issue
types with the highest fixing rate which are detailed below.
The figure shows that:

• The majority of the issue types have a fixing rate between
20% and 50%

• The issue types with the highest fix rates (marked in
red) are distinct from the issue types with the highest
prevalence in the studied systems.

Table IV presents details about the ten issue types with the
highest fixing rate. There are eight issue types which are fixed

9There is no guarantee that if something has a high fixing rate it is
necessarily important for the developers; however, we expect that those issues
which are important, will be found among those with a high fixing rate. On
the other hand, it is safe to say that issue types with low fixing rate, are very
likely to not be important for developers

10The others are available in the online replication package
11By removing the other issue types we are removing a lot of “noise” data

points that are crammed on the bottom of the figure along the axes

in at least 50% of the cases. One salient observation is that, in
the table, the majority of the issues are Java specific (marked
with K).

TABLE IV
ISSUES WITH THE HIGHEST FIXING RATE (KARE JAVA-SPECIFIC)

Issue Count Fa

Conditionally executed blocks should be reachable 594 59
K Replace Map.get/test with single method call 694 58
K Deprecated elements should have both the annota-
tion and the Javadoc tag

2678 57

Unused ”private” fields should be removed 2094 56
Boolean expressions should not be gratuitous 1571 55
K Synchronized classes Vector, Hashtable, Stack and
StringBuffer should not be used

4381 53

K Constructors should not be used to instantiate
”String” and primitive-wrapper classes

3761 52

Dead stores should be removed 3720 50
K @Override should be used on overriding [...] 1586 48
Unused ”private” methods should be removed 689 47
aFixing Rate

TABLE V
ISSUE TYPES WITH THE LOWEST FIXING RATE

Issue Count Fa

Floating point numbers must not be tested for equality 665 28
Expressions should not be too complex 597 26
Exception handlers should preserve the original excep-
tions

9535 26

Methods should not be empty 3549 26
K Lambdas and anonymous classes should not have
too many lines of code

869 25

Instance methods should not write to ”static” fields 547 25
Generic exceptions should never be thrown 7961 23
Resources should be closed 3338 22
Utility classes should not have public constructors 746 22
String literals should not be duplicated 9875 19
aFixing Rate (rounded to the closest integer)

Table V lists the ten issue types with the lowest fixing
rate. The table contains fewer Java-specific issues (it could
be argued whether there is one or several). Instead it shows
generic issues related to best practices which were seen in an
earlier discussion to have a high prevalence in the case study:
exception handling, complexity, duplication.

D. How is the effort of paying back TD distributed across the
various types? (RQ4)

This question aims to shed light into the benefits resulting
from paying back TD, as the reduction of the TD principal is
not only related to the frequency of fixes but also the relative
contribution of each issue to the overall TD.

To answer this research question we have summed up the
effort that would have been nominally required to resolve
all fixed issues, according to the estimates provided for each
issue type by SonarQube. The total amount of TD estimated
to be paid back is 30,200 hours and Table VI shows the
percentage of repaid TD by issue type. The “Change in
ranking” column from the table shows the relative change
in the global ranking of a given issue with respect to the
prevalence ranking discussed in RQ2.

TABLE VI
SMELLS WHOSE RESOLUTION HAS YIELDED THE HIGHER BENEFIT

Issue Est. Repaid Debt Change in Rankinga

1 Source files should not have any duplicated blocks 11.78 ↑8
2 Cognitive Complexity of methods should not be too high 11.19 ↑4
3 Generic exceptions should never be thrown 8.83 ↑4
4 String literals should not be duplicated 6.64 ↓1
5 Exception handlers should preserve the original exceptions 5.29 ↓1
6 Control flow statements ”if”, ”for”, ”while”, ”switch” and ”try” should not be nested too deeply 5.07 ↓1
7 Synchronized classes Vector, Hashtable, Stack and StringBuffer should not be used 4.86 ↑3
8 Methods should not be too complex 3.97 ↑3
9 Standard outputs should not be used directly to log anything 3.37 ↓1

10 Sections of code should not be ”commented out” 3.36 ↓8
arefers to changes compared to the frequency of code smells.

Changes in Ranking: By analyzing the “Change in rank-
ing” column we observe that the order of issues changes
with respect to the frequency of fixes presented in RQ2. This
means that the most frequently fixed issues are not necessarily
the ones representing the highest amount of TD paid back.
The biggest jump in the ranking is observed for the issue
of duplication between source files. The fixes of this type of
issue are responsible for ≈12% of the total TD that is paid
back. That is because the estimation of TD payback time is
proportional to the number of duplicated blocks.

Types of Debt: The table shows that three general classes
of debt are represented by more than one issue in the top-10
list and together account for more than half the total repaid
debt:

1) Method Complexity – accounting for about 24% of the
total estimated pay back effort – is detected in three
cases: issue types #2, #6, and #8. These issues are
related to the understandability of the code. Cognitive
Complexity measures the maintainability of the code and
indicates how difficult is for someone to understand the
control flow of a method and to maintain it. Deep nesting
of control flow also increases cyclomatic complexity and
reduces understandability and testability of the code.
Having a code base clear without commented out sec-
tions of code also helps software engineers to understand
the functionality easier. Commented out sections of code
slow down the development and maintenance speed.

2) Code Duplication – accounting for about ≈18% of
the total estimated pay back effort – is detected in two
situations: at file level and at the level of string literals.
Code duplicates appear frequently and cost a lot in many
different ways. They make the source code difficult to
understand, maintain and extend.

3) Exception Handling – accounting for about 14% of
the total estimated pay back effort – is represented
by two cases: issue types #3 and #5. Using generic
exceptions prevent methods from handling more spe-
cific, application-generated errors in the appropriate way.
Moreover, the results imply that developers care about
passing forward the original exceptions’ messages and
stack traces.

TABLE VII
BUGS AND VULNERABILITIES WHOSE RESOLUTION HAS YIELDED THE

HIGHER BENEFIT

Issue ERDa

Bugs
17. Null pointers should not be dereferenced 1.12
23. Resources should be closed 0.93
31. InterruptedException should not be ignored 0.64
37. Conditionally executed blocks should be reachable 0.49
55. Jump statements should not occur in ”finally” blocks 0.20
58. Floating point numbers should not be tested for equality 0.18
64. All branches in a conditional structure should not have
exactly the same implementation

0.14

77. Blocks should be synchronized on ”private final” fields 0.08
79. Non-thread-safe fields should not be static 0.08
83. Synchronization should not be based on Strings or boxed
primitives

0.04

Vulnerabilities
53. Credentials should not be hard-coded 0.211
56. SQL binding mechanisms should be used 0.195
134. File.createTempFile should not be used to create a
directory

0.002

aEstimated Repaid Debt

Fig. 7. Histogram of the survival time for the 155K issues in this study with
bins of 30 days

E. After how much time is TD paid back? (RQ5)

This RQ focuses on the survival of the various types
of issues that have been identified in the previous research
questions focusing on the issues whose resolution has yielded
the higher benefit in terms of TD payback. For each one of
those issues types, we calculated the number of days that the
issue survived, i.e. the difference between the time point at

which an issue is introduced to the source code to the time it
is resolved12.

Figure 7 presents the histogram of the fixing time of all
the 150K issues found fixed in this study. Taking into account
the fact that the total number of fixed issues in this study is
slightly more than 155K, the histogram shows that:

• Almost 20% (≈30K/155K) of the issues are fixed within
one month of their introduction

• More than 50% of the issues are fixed within the first
year

• The lifetime of the issues is a long-tailed distribution with
a small number of issues being fixed even after ten years.
It seems that one must never lose hope when it comes to
the possibility of debt being paid back!

Figure 8 shows the distribution for each of the ten issue
types reported in RQ2 in the form of a boxplot (outliers are
not shown in the diagram for simplicity). The figure limits
itself to presenting only the respective issue types since, as
shown in the previous section, these are responsible with more
than half of the effort required for payback.

There is a large difference between the minimum and the
maximum duration that is required in order to fix an issue.

The main observations from the survival times of these
issues are similar to the corresponding observations about the
entire populations. For all issue types in the figure:

• 25% of all instances disappear in less than two months
• 50% of all issue instances disappear approximately within

one year from their introduction to the code
• The longest lived issue types exhibit a large variation that

spans from 5 years to more than 10 years
Moreover, the figure highlights in similar colors issue types

which are similar. One can see that there is a certain similarity
in the survivability distribution of the similar issue types.

VI. OBSERVATIONS AND OPEN QUESTIONS

Based on this study, we can conclude with several obser-
vations about the way technical debt evolved in the Apache
Ecosystem over ten years:

12One of the limitations of the weekly commits approach is that when we
compute the time an issue “survived” we will consider that it was fixed in
the last commit of the week even if it was actually fixed earlier that week. In
fact, the worst case scenario is when the issue was fixed on the first day of the
week, and we only consider it to be fixed in the last day of the week. Thus
our results regarding the longevity of a given issue have a built-in maximum
imprecision of seven days

Fig. 8. Distribution of survival time for top the ten issues (according to RQ2)

• There is a very large variation between the fixing rate of
issues that contribute to technical debt among the projects
of the same ecosystem

• Only a very small minority of the issue types have a
fixing rate of more than 50%. If we consider those types
with at least 500 instances, then the count is eight.

• There is a very large variation in the survivability of the
different issues: about 10% of the issues are fixed within
the first month, about 50% in the first year, and some of
the issues can take up to ten years

• Issues related to duplication and exception handling are
frequently encountered and rarely fixed by developers

Questions which are still open after this study:

• What percentage of the issue fixing happens during
purposeful debt repayment by developers and what per-
centage happens as a side effect of source code evolution?

• What is the impact of individual developers on issue
fixing and technical debt in the studied ecosystem?

• How can we use this information to be able to provide
developers with ways of better understand their own
system’s evolution?

• Do other language ecosystems (Smalltalk, Javascript, R,
have already been studied before [15]–[17]) have different
attitudes towards debt repayment? How do these results
compare against closed-source ecosystems?

VII. THREATS TO VALIDITY

The results of the study are unavoidably subject to external
validity threats since a sample of projects has been analyzed
to study how TD is paid back, thus limiting the ability to
generalize the conclusions to projects of a different program-
ming language, ecosystem or domain. Nevertheless, the fact
that fifty-seven active, large and highly popular projects have
been studied partially mitigates threats to generalization.

As explained in the study design, we consider treats an issue
as paid back either when the development team intentionally
refactored the code or when the code fragment hosting the
issue (but not the entire file) has been removed. When the
entire file had been deleted, we do not count the contained
issues in that file in the removed ones. One threat to the
construct validity of the study stems from that fact that issue
elimination due to the removal of the corresponding statement,
code block or method is consider as paying back TD whereas
it could be a side effect of regular maintenance activities.
However, even in the presence of this threat the findings on
deliberate or unintentional TD payback can be valuable since
the focus is on the relative frequency of each issue type rather
than the absolute count of issue removals. An additional threat
stems from the fact that TD identification is performed on
source code artifacts rather than the built version of each
project. The lack of build information often leads to false
positives. For example, a language specific issue (e.g. the
omission of the diamond operator) might be reported for a
revision in which the rule does not apply (language version
prior to Java 7).

Concerning threats to the repeatability, we believe that this
study can be easily replicated by other researchers, since: a)
the study protocol is extensively described in this paper, and
b) the collection of data and analysis of the results did not
rely on any subjective judgment and is based on SonarQube
reports.

VIII. DATA SET AND REPLICATION

As explained before, due to the limitations of multi-version
analysis, collecting the data used for this study was time
consuming and computationally intensive. In total, the analysis
of 19,800 revisions of fifty-seven systems took more than
a month even though we used multiple machines for the
analysis. We took weekly snapshots for each one of the
selected projects and we picked the last commit of each week.
Then, for that revision we analyzed all the Java files (including
the test classes) in order to detect which of the open issues
were fixed and which additional issues were introduced. The
resulting PostgreSQL database dump is more than 28GB in
size. An online Git repository available at https://github.com/
td-evolution-in-apache contains a replication package which
includes:

• A series of scripts that can be used for data analysis
• A spreadsheet with all the data that was used in this paper
• Information about how to obtain the full database dump

and how to import it a SonarQube instance for those users
who would want to explore it using SonarQube’s API

We would be happy to support other researchers in using
this dataset for their investigations as we believe there are
more open questions that this study raises than it answers.

IX. CONCLUSION AND FUTURE WORK

The Technical Debt metaphor has been widely adopted and
one of its underlying implications is that principal and interest
are not regularly paid back. In analogy to bank clients who
get into trouble when not paying their invoices promptly,
increasing technical debt signifies software decay. However,
development teams can act on Technical Debt by removing
issues and inefficiencies.

In this paper we presented the results of a case study on
fifty-seven Java projects from the Apache Ecosystem, focusing
on the amount of TD that is paid back and the issues that are
fixed. The results revealed that: a) a large percentage of TD is
paid back during the evolution; however, for the majority of
the projects the fixing rate is below 30%, b) a small percentage
of issue types (such as complex methods, duplicates and
exception handling problems) account for the majority of issue
fixes and the majority of TD that is paid back and c) although
some issue types live in the systems for several years, for the
majority of the issues that get fixed, their elimination occurs
within one year from their introduction. Such findings can be
of help to development and maintenance teams by pinpointing
the types of issues that have been adopted by other projects
and yielded the largest benefit in terms of Technical Debt
reduction.

Finally, although this study investigates a large number of
open-source software projects and the issues that are fixed over
time, it is still limited to a random sample of projects from
only one ecosystem. Furthermore, it relies on SonarQube in
order to detect the type of issues that are fixed and the amount
of TD that is paid back. It will be valuable, in the future,
to analyze a bigger number of projects, from more than one
ecosystem, and projects that are developed in other languages
or even multilingual projects. Moreover, we plan to replicate
this study on all commits of the master branch including build
information and performing further data sanitization.

ACKNOWLEDGMENTS

Work reported in this paper has received funding from the
European Unions Horizon 2020 research and innovation pro-
gramme under grant agreement No 780572 (project SDK4ED).

REFERENCES

[1] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[2] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
vol. 101, pp. 193–220, 2015.

[3] M. Lungu, “Reverse engineering software ecosystems,” Ph.D.
dissertation, University of Lugano, Nov. 2009. [Online]. Available:
http://scg.unibe.ch/archive/papers/Lung09b.pdf

[4] K. Manikas, “Revisiting software ecosystems research,” J. Syst.
Softw., vol. 117, no. C, pp. 84–103, Jul. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2016.02.003

[5] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
“The evolution of project inter-dependencies in a software ecosystem:
The case of apache.” in ICSM, 2013, pp. 280–289.

[6] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in Proceedings of the 2009 3rd international symposium on empirical
software engineering and measurement. IEEE Computer Society, 2009,
pp. 390–400.

[7] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Software Maintenance and Reengineer-
ing (CSMR), 2012 16th European Conference on. IEEE, 2012, pp.
411–416.

[8] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of code
smells in object-oriented systems,” Innovations in Systems and Software
Engineering, vol. 10, no. 1, pp. 3–18, 2014.

[9] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the
impact of design debt on software quality,” in Proceedings of the 2nd
Workshop on Managing Technical Debt. ACM, 2011, pp. 17–23.

[10] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lu-
cia, and D. Poshyvanyk, “When and why your code starts to smell
bad,” in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 403–414.

[11] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolu-
tion of technical debt in the apache ecosystem,” in European Conference
on Software Architecture. Springer, 2017, pp. 51–66.

[12] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost,
and types of technical debt,” in Proceedings of the Third International
Workshop on Managing Technical Debt. IEEE Press, 2012, pp. 49–53.

[13] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical debt,” in
Software Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on. IEEE, 2017, pp. 238–248.

[14] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st ed.
Greenwich, CT, USA: Manning Publications Co., 2013.

[15] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When github meets cran:
An analysis of inter-repository package dependency problems,” in 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, Mar. 2016, pp. 493–504.

https://github.com/td-evolution-in-apache
https://github.com/td-evolution-in-apache
http://scg.unibe.ch/archive/papers/Lung09b.pdf
http://dx.doi.org/10.1016/j.jss.2016.02.003

[16] R. Robbes, M. Lungu, and D. Roethlisberger, “How do developers react
to API deprecation? The case of a Smalltalk ecosystem,” in Proceedings
of the 20th International Symposium on the Foundations of Software
Engineering (FSE’12), pp. 56:1 – 56:11.

[17] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics

of the javascript package ecosystem,” in Proceedings of the 13th
International Conference on Mining Software Repositories, ser. MSR
’16. New York, NY, USA: ACM, 2016, pp. 351–361. [Online].
Available: http://doi.acm.org/10.1145/2901739.2901743

http://doi.acm.org/10.1145/2901739.2901743

	Introduction
	Related Work
	Studying Technical Debt Evolution
	Using SonarQube for Debt Estimation
	Studying Multiple Revision of a System
	Detecting Fixed Issues
	Classifying Issues

	Study Design
	Project Selection
	Issue Selection

	Results and Discussion
	How does the issue fixing rate vary for different projects? (RQ1)
	What is the fixing prevalence of the various issue types? (RQ2)
	How does the fixing rate vary for different issue types? (RQ3)
	How is the effort of paying back TD distributed across the various types? (RQ4)
	After how much time is TD paid back? (RQ5)

	Observations and Open Questions
	Threats To Validity
	Data Set and Replication
	Conclusion and Future Work
	References

