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Abstract—In software development, developers commit code 

changes to the version control system. In a commit message, the 

committer may explicitly claim that the commit is a refactoring 

with the intention of code quality improvement. We defined such 

a commit as a self-admitted refactoring (SAR). Currently, there is 

little knowledge about the SAR phenomenon, and the impact of 

SARs on software projects is not clear. In this work, we 

performed a preliminary investigation on SARs with an emphasis 

on their impact on code quality using the assessment of code 

smells. We used two non-trivial open source software projects as 

cases and employed the PMD tool to detect code smells. The study 

results shows that: (1) SARs tend to improve code quality, though 

a small proportion of SARs introduced new code smells; and (2) 

projects that contain SARs have different results on frequently 

affected code smells. 
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I. INTRODUCTION  

Software systems are evolving over time once they are 
delivered. Software evolution often comprises up to 75% of the 
costs of software development [1]. However, the decrease in 
quality and increase of complexity push developers and 
practitioners to come up with flexible, maintainable, and 
extensible techniques for improving software quality and 
reducing change costs. One of these techniques is refactoring 
that is “the process of changing a software system in such a 
way that it does not alter the external behavior of the code yet 
improves its internal structure [2].” Software maintainability 
can be well indicated by code smells [3], while refactoring is a 
recommended daily practice and considered as an effective way 
to fix code smells [1].  

Interestingly, developers often explicitly claim, in the 
commit messages of version control systems, that their 
modifications to the software system are refactorings. It means, 
by definition, that the maintainability of the software system is 
expected to have been improved. We call such code 
modifications, claimed as refactorings by developers, self-
admitted refactorings (SARs). The concept of SAR is inspired 
by [4, 5], in which the term of self-admitted technical debt was 
introduced. Commits of a project can be divided into two 
categories: SARs and non-SARs (commits without SARs). 
Currently, there is little empirical evidence on whether SARs 
do improve the structure quality of the code.  
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II. BACKGROUND AND RELATED WORK 

A. Code Smells and Refactoring 

Fowler et al. proposed to use code smells to indicate the 
structure quality issues in code, which are possible refactoring 
opportunities [2]. They defined 22 common code smells, e.g., 
duplicated code [2]. Later, some new code smells were 
proposed. For instance, Kerievsky proposed 5 new code smells, 
e.g., conditional complexity [6]. Refactoring can help improve 
software design, software understandability, and development 
efficiency [2]. An approach based on the quantitative analysis 
of the dependencies between code smells was proposed by 
Hamza [7], showing that some code smells require larger effort 
to remedy and should be concerned by developers in 
refactorings. Besides, the paper also presents the difference 
between the code smells proposed by Kerievsky and Fowler. 
However, in the commit records of a project, there are some 
special refactorings that developers explicitly admit, and such 
refactorings have seldom been investigated.  

B. Code Smell Detection Tools 

It is a complex and tedious work to detect code smells, and 
tools for automatic detection of code smells are beneficial to 
developers. Various methods and tools for automatic detection 
of code smells were proposed [8]. DÉCOR, a method proposed 
by Moha et al., has a good performance on specification and 
detection of code and design smells [8]. Tools like Klockwork, 
PMD, and FindBugs are the typical instances for detecting 
potential code errors (e.g., naming flaw) and code smells (e.g., 
large classes). Some tools (e.g., PMD) have been applied into 
software development practice. 

III. STUDY DESIGN 

We conducted a case study on two non-trivial OSS projects 
written in Java and hosted on GitHub. We follow the guidelines 
by Runeson and Höst [9] to describe the case study. 

A. Objective and Research Questions 

The goal of this study, described using the Goal-Question-
Metric (GQM) approach [10], is to analyze the impact of SARs 
on source code for the purpose of validating its effectiveness in 
improving maintainability of the code, from the point of view 
of software developers in the context of OSS projects. We 
formulated two main research questions (RQs) as follows: 

RQ1: Do SARs improve the structure quality of source code? 

Rationale: The aim of refactoring is to improve the internal 

quality of software structure [2], thus, we want to explore 
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whether SARs do improve the structural quality of source code. 

This RQ can be further divided into two sub-RQs. 

RQ1.1: Do SARs affect (introduce or reduce) code smells? If 

yes, which code smells are affected most frequently?  

RQ1.2: Do SARs tend to introduce less code smells than non-

SARs?  

RQ2: What is the distribution of the severity levels of code 

smells affected in SARs?  

Rationale: Code smell detection tools (e.g., PMD) provide 

code smells’ severity information, which suggests the priorities 

of code smells for developers to fix. In SARs, the distribution 

of code smell severity levels can be used to assess the status of 

code quality. 

B. Case and Unit of Analysis 

According to Runeson and Höst [9], case studies can be 
characterized based on the way they define their cases and units 
of analysis. This study investigates the impact of SARs, thus 
we use an SAR as the unit of analysis. 

For case selection, we applied the following criteria: 

 The project is with a history of more than 2 years. 

 The project has at least 90% of its code written in Java, 
since PMD is used to detect code smells and it is 
dedicated to identifying code smells for Java source 
code.  

 The project has more than 20 SARs.  

 The project has more than 10 committers. 

 The source code of the project should be well 
commented (high readability and analyzability) to 
facilitate data analysis. 

C. Data Collection 

1) Data to be collected 
To answer the RQs formulated in Section III.A, we 

collected the data items listed in TABLE I, which also lists the 
target RQ(s) of each data item. 

TABLE I.  DATA ITEMS TO BE COLLECTED 

# Data item Description Target RQs 

D1 NCS – Number of 

Code Smells 

The number of code smells of a 

software system of a revision 

(commit) 

RQ1.1, 

RQ2 

D2 DNCS – Delta of 

the Number of 

Code Smells 

The change of the number of code 

smells in a commit comparing with 

its immediately previous commit; 

DNCS>0 if NCS increases, 

DNCS=0 if NCS does not change, 

and DNCS<0 if NCS decreases 

RQ1.1, 

RQ1.2, 

RQ2 

D3 SLCS – Severity 

Level of each 

newly-introduced 

code smell 

The severity level of each newly-

introduced code smell in a commit 

RQ2 

2) SARs Collection 
For each project, we performed the following steps: 

(1) Download code repository. Download the code repository 

of the project from GitHub. 

(2) Export commit records. Export the commit records of the 

project using the TortoiseGit client. 

(3) Identify candidate SARs. According to the definition of 

SAR, one way to identify SARs is to search the keywords in 

the commit messages of the selected projects. Fowler et al. 

defined 22 types of refactorings [2] , which can be used as 

basis for SAR identification. We extracted key refactoring 

verbs as detection roots from the refactorings, and the 22 

roots of key words are shown in TABLE II. The output of 

this step is a set of candidate SARs. 

(4) Check candidate SARs manually. Check each candidate 

SAR manually to exclude unexpected cases, e.g., the 

developer might write ‘not to refactor’, but no refactorings 

actually happened. Besides, we used a refactoring detection 

tool called Ref-Finder [11], to check whether refactorings 

had actually happened. 

(5) Record commits of SARs. Record the commits 

corresponding to the identified SARs in a spreadsheet. Each 

commit contains revision number, committer, etc. 

TABLE II.  DETECTED KEY WORDS ROOTS 

Key Words Roots 

Refactor/Extract/Inline/Replace/Introduce/Rename/Move/Hide/ 

Encapsulate/Change/Convert/Separate/Decompose/Consolidate/ 

Add/Parameterize/Preserve/Pull up/Pull down/Collapse/Spilt/Substitute 

3) Non-SARs Collection 
To answer RQ1.2, for each selected project, it requires to 

collect a set of normal commits that do not contain SARs. We 
call such commits as non-SARs. We randomly selected a set of 
non-SARs, and the size of the non-SAR set equals the number 
of SARs in the project for eliminating the effect of quantity. 

4) Code Smells Collection 
We detected code smells through the PMD tool, which is a 

widely-used code smell detection tool adopting a static 
detection method. There are 33 rule sets and 237 detecting rules 
(e.g., Cyclomatic Complexity) in PMD. For our case study, the 
code repository of the selected projects were downloaded and 
the corresponding code snapshots to SARs of the code 
repository were exported. Then, we analyzed the source files of 
the code snapshots corresponding to each SAR and its 
immediately previous revision to get the differences of code 
smells between the two code snapshots. Fig. 2 shows the 
procedure of code smells collection. For each SAR or non-SAR 
of each selected project, we performed the following steps:  

(1) Export source code. Two revisions of a project need to be 

exported: the revision corresponding to the SAR (or non-

SAR) (V1) and its immediately previous revision (V2). 

(2) Detect code smells. Use the PMD plugin for eclipse to 

detect code smells of revisions V1 and V2. The PMD 

plugin will generate reports on the detected code smells. 

(3) Export code smell reports. Export the code smell reports 

generated in the previous step. 

(4) Identify differences in code smell reports. Compare the 

code smell reports of V1 and V2 to identify the differences 

in code smells between the reports. We developed a 

dedicated tool to accomplish this task.  

5) Data Analysis 
To answer the RQs formulated in Section III.A, we need to 

analyze the collected data on SARs and code smells. For 
RQ1.1, RQ1.2, and RQ2, only descriptive statistics were used.  



IV. STUDY RESULTS 

A. Selected Cases 

We selected two OSS projects, i.e., Fastjson 1 and Junit4 2, 
as the cases. The two OSS projects are widely used in many 
software systems. TABLE III shows the demographic 
information of the three selected projects. Fastjson has 111,247 
lines of code, 121 SARs, and 1,662 commits; while Junit4 has 
26,579 lines of code, 28 SARs, and 2,090 commits . 

TABLE III.  DEMOGRAPHIC INFORMATION OF THE SELECTED PROJECTS 

Project Fastjson Junit4 

Sponsor Company Alibaba Apache 

Access Date 5/21/2016 5/19/2016 

Contributors 116 120 

Line of Code 111,247 26,579 

Percentage of code written in Java 99.90% 99.00% 

Number of commits containing SARs 121 28 

Number of commits 1,662 2,090 

Percentage of SARs against total commits 7.28% 1.34% 

B. Results 

1) Impact on code quality (RQ1) 
RQ1.1: TABLE IV shows the number of SARs in the two 
cases regarding the changed number of code smells. 70.25% 
(85/121) and 67.86% (19/28) of SARs did not increase code 
smells in Fastjson and Junit4, respectively. This suggests that 
more than half of the SAR revisions of the two projects were 
intended to decrease code smells compared with their previous 
versions. That is a positive signal of improving code quality. 

TABLE IV.  DNCS IN SELF-ADMITTED REFACTORINGS 

Project     Fastjson Junit4 

DNCS #( SAR) % #( SAR) % 

DNCS > 0 36 29.75 9 32.14 

DNCS = 0 39 32.23 9 32.14 

DNCS < 0 46 38.02 10 35.72 

DNCS ≤ 0 85 70.25 19 67.86 

Total 121 100.00 28 100.00 

We listed in TABLE V the top 5 code smells that are 
affected (introduced or decreased) most. Among all types of 
code smells, DataflowAnomalyAnalysis is the one that is 
affected most frequently in the two cases. Specifically, 
DataflowAnomalyAnalysis decreased in Fastjson and increased 
in Junit4 most frequently. This type of code smells happened 
most frequently as well. 

TABLE V.  TOP 5 MOST AFFECTED CODE SMELLS 

Fastjson Junit4 

Code smell DNCS NCS Code smell DNCS NCS 

DataflowAnomaly 

Analysis 

-131 1153 DataflowAnomalyAnalysis 18 34 

LooseCoupling -24 102 SignatureDeclareThrow 

Exception 

8 28 

UnusedImports -20 84 TooManyMethods 6 8 

CyclomaticComplexity -19 127 ConfusingTernary 3 5 

SignatureDeclareThro

wException 

-10 702 PreserveStackTrace 1 11 

RQ1.2: As shown in TABLE VI, for Fastjson, there were 121 

SARs, and thus 121 non-SARs were randomly selected for 
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comparison. The number of code smells increased (DNCS>0), 

kept unchanged (DNCS=0), and decreased (DNCS<0) in 76, 

29, and 16 non-SARs, respectively. The number of code smells 

increased, kept unchanged, and decreased, in 36, 39, and 46 

SARs, respectively. 37.19% (45/121) of non-SARs did not 

increase code smells while 70.25% (85/121) of SARs did not 

increase code smells in Fastjson. It means that, compared with 

non-SARs, SARs tend not to increase code smells in Fastjson. 
However, different from Fastjson, in Junit4, more non-

SARs did not increase the number of code smells than SARs. 
As shown in TABLE VI, 75.00% of non-SARs and 67.86% of 
SARs did not increase code smells in Junit4.  

TABLE VI.  DNCS IN SARS AND NON-SARS 

Project Fastjson Junit4 

Name #(Non-SAR) #(SAR) #(Non-SAR) #(SAR) 

DNCS > 0 76 36 7 9 

DNCS = 0 29 39 11 9 

DNCS < 0 16 46 10 10 

DNCS ≤ 0 45 85 21 19 

Total 121 121 28 28 

Proportion (DNCS≤0) 37.19% 70.25% 75.00% 67.86% 

2) Severity level distribution of affected code smells (RQ2) 

 PMD can detect 237 types of code smells. The priority of 

each code smell is defined in PMD, and it uses numbers 1 – 5 

to denote the priority levels: Error High, Error, Warning High, 

Warning, and Information. A smaller priority number of a code 

smell means it is more important and more urgent to be fixed.  

TABLE VII.  PRIORITY DISTRIBUTION OF CODE SMELLS 

PMD info Fastjson Junit4 

Priority 
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Information (5) 1 1 100.00 1153 131 1 100.00 34 18 

Warning (4) 14 1 7.14 84 -20 1 7.14 4 0 

Warning High (3) 188 77 40.56 6169 -327 55 29.26 559 137 

Error (2) 19 2 10.53 96 8 1 5.26 4 -4 

Error High (1) 14 6 42.86 813 -17 3 21.43 39 10 

TABLE VII shows the distribution of default severity levels 

of code smells identified by PMD. #(PMD code smell type) 

represents the number of priorities of code smells that are 

defined in PMD. DNCS is defined as the delta of the number of 

code smells in SARs. #(Detected code smell type) is the 

number of code smell types that were actually detected in a 

project. Type Percentage denotes the proportion of detected 

code smell types against all code smell types that can be 

detected by PMD. #(Detected code smell) represents the 

number of priorities of code smells that were actually detected 

by PMD in the SARs. As shown in TABLE VII, in all the 

SARs of Fastjson, 131 code smells with priority “Information” 

and 8 with priority “Error” were introduced; 20 with priority 

“Warning”, 327 with priority “Warning High”, and 17 with 

priority “Error High” were removed. As for Junit4, the results 

are similar in the distribution of code smell severity. 

https://github.com/alibaba/fastjson


V. DISCUSSION 

In this section, we discuss the study results and their 

implications as well as threats to validity of the results. 

A. Understanding on Study Results 

RQ1.1: As shown in TABLE IV, more than one half of 
SARs tend not to increase code smells in the two projects, 
which indicates that the code quality is likely to be improved 
through SARs. It is not surprising since developers take the 
initiative to improve the maintainability of code in SARs. 
However, the results imply that not all SARs can lead to quality 
improvement of the source code. Only a small percentage of 
SARs introduced new code smells. DataflowAnomalyAnalysis 
is the code smell type that happened and affected most 
frequently. The top 2 largest numbers of code smells may be 
caused by the small granularity of code smell detection rules in 
PMD.  

RQ1.2: From the comparison between the two datasets of 
SARs and non-SARs, 37.19% of non-SARs and 70.25% of 
SARs did not increase code smells of project Fastjson, which 
means less code smells introduced in SARs than in non-SARs. 
Nevertheless, more non-SARs than SARs did not increase code 
smells in Junit4, which indicates better performance of non-
SARs than SARs of Junit4 in code smells reduction. We 
reviewed and used Ref-Finder to check the selected non-SARs, 
and found that refactorings had happened in some non-SARs. 
Additionally, the scale of Junit4 is relatively small, thus less 
SAR information of Junit4 than Fastjson may lead to the 
fluctuation of the results. Not all non-SARs do not contain 
refactorings and not all SARs contain refactorings. SAR is a 
signal to find refactorings happened, but it does not mean that 
refactorings definitely happened in all SARs. This indicates 
that some developers may not strictly distinguish refactorings 
from normal code changes, which may result in 
misunderstandings on developers’ modifications on code. 

RQ2: As shown in TABLE VII, the priority types of 
actually detected code smells cover all priority types defined in 
PMD. Take Fastjson for example, 42.86% of the code smells 
are with priority “Error High”. Code smells with priority 
“Warning High” take the most proportion against all detected 
code smells, which implies that the code quality of the studied 
project may be moderate (similar performance in Junit4). This 
may partially result from the fact that the numbers of 
predefined code smell types are not balanced and most of code 
smell types of PMD are with priority “Warning High” (see 
TABLE VII). The number of code smells with priority “Error” 
increased, which is a signal of code quality sliding and should 
be paid special attention to.  

B. Implications 

More code smells means quality decline of a project, and in 
our case study, SARs are generally a positive sign of code 
quality improvement. However, some SARs may hurt the 
quality of source code, i.e., a SAR may not be a real 
refactoring. SARs indicate developers’ awareness of code 
quality improvement, since the fact that developers claim 
refactorings explicitly, to some extent, represents their 
willingness to improve the structure quality of the code.  

The distribution of severity levels of affected code smells in 
SARs reflects the maintainability status of a project to certain 
extent. When more code smells of high severity levels were 
removed in SARs, the project’s maintainability would be more 
improved.  

VI. CONCLUSIONS 

Self-admitted refactorings (SARs) were seldom studied in 
previous research. In this work, we explored the SAR 
phenomenon from multiple perspectives. Based on the results 
on three studied OSS projects, we draw the following 
conclusions: (1) SARs tended to improve code quality, though 
a small proportion of SARs introduced new code smells. (2) 
Different projects do not have the same results on frequent-
affected code smells. (3) More than half of SARs did not 
introduce code smells; however, non-SARs did not suggest less 
decrease of code smells than SARs. (4) In SARs, most code 
smells are with a moderate priority of “Warning High” to fix.  
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