IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 1

Transaction management in Service-Oriented
Systems: requirements and a proposal

Chang-ai Sun, Elie el Khoury, and Marco Aiello

Abstract—Service-Oriented Computing (SOC) is becoming the mainstream development paradigm of applications over the Internet,
taking advantage of remote independent functionalities. The cornerstone of SOC’s success lies in the potential advantage of composing
services on the fly. When the control over the communication and the elements of the information system is low, developing solid
systems is challenging. In particular, developing reliable Web service compositions usually requires the integration of both composition
languages, such as the Business Process Execution Language (BPEL), and of coordination protocols, such as WS-AtomicTransaction
and WS-BusinessActivity. Unfortunately, the composition and coordination of Web services currently have separate languages and
specifications. The goal of this paper is twofold. First, we identify the major requirements of transaction management in Service-
oriented systems and survey the relevant standards. Second, we propose a semi-automatic approach to integrate BPEL specifications
and Web service coordination protocols, that is, implementing transaction management within service composition processes, and thus

overcoming the limitations of current technologies.

Index Terms—Web services, Transaction Management, Business Process Execution Language.

1 INTRODUCTION

TANDARDIZED Web service technologies are enabling
S a new generation of software that relies on external
services to accomplish its tasks. The remote services are
usually invoked in an asynchronous manner. They are
known by their published interfaces, and await invo-
cations over a possibly open network. Single remote
operation invocation is not the revolution brought by
Service-Oriented Computing (SOC), though. Rather it is
the possibility of having programs that perform complex
tasks coordinating and reusing many loosely coupled
independent services. It is the possibility of having
programs manage business processes which span over
different organizations, people and information systems.
The scenarios opened by SOC are therefore unprece-
dented, for instance, (i) supply chains can become ever
more dynamic, efficient and cost effective, (ii) vertical
marketplaces can become open and dynamic both in
terms of access and reaction to changes, (iii) virtual enter-
prises can be created based on the functional properties
(the governing processes), rather than being confined by
geographical or bureaucratic constraints.

e M. Aiello and E. el Khoury are with Johann Bernoulli Institute, University
of Groningen, The Netherlands.
E-mails: m.aiello@rug.nl, e.el. khoury@rug.nl

o C. Sun is with School of Information Engineering, University of Science
and Technology Beijing, China.
E-mail: casun@ustb.edu.cn

This work is supported by the EU Integrated Project SeCSE (IST Con-
tract No. 511680): Service Centric System Engineering and the Research
Fund for the Doctoral Program of Higher Education of China (Grant
No. 2008000401051) and Natural Science Foundation of China (Grant
No. 60903003). We thank Dieter Hammer, Oliver Kopp and Michele Man-
cioppi for fruitful discussion, Gerard Biemolt and Heerko Groefsema for
work on the related implementation, and the anonymous reviewers for their
suggestions.

A new approach to software, such as that brought
by SOC, calls for new ways of engineering software
and for new problems to be solved. The central role of
these systems is played by services which are beyond a
centralized control and whose functional and, possibly,
non-functional properties are discovered at run-time.
The key problems are related to the issue of discover-
ing services and deciding how to coordinate them. For
instance, while planning to drive to a remote city, one
might discover that it is heavily snowing there, and may
want to obtain snow tyres. Therefore, one needs to find a
supplier and a transport service to have the appropriate
tyres in a specific location by a specific deadline. That
is, various independent services are composed into the
form of a process, called the ‘get winter tyres while
traveling” with the requirement that we order the tyres if
and only if we find also a transport service for them. In
other words, we require the services of tyre ordering and
tyre delivery to be composed in a transactional manner.

In the present treatment, a service is a standard XML
description of an autonomous software entity, it executes
in a standalone container, it may have one or more
active instantiations, and it is made of possibly many
operations that are invoked asynchronously. A service
composition is a set of operations belonging to possibly
many services, and a partial order relation defining the
sequencing in which operations are to be invoked. Such a
partial order is adequately represented as a direct graph.
A service transaction is a unit of work comprehending two
or more operations that need to be invoked according to
a specific transaction policy. The coordination of a service
transaction is the management of the transaction accord-
ing to a given policy. A service transaction can span
over operations of one service or, more interestingly, of
several services.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 2

One may argue that transaction management is a
well-known technique that has been around for ages
but, as anticipated by Gray [1] more than fifteen years
ago, nested, long-lived transactions demand for different
techniques, and in fact they do. To cater for the new
features of transactions executed by Web services, vari-
ous Web transaction specifications have been developed.
WS-Coordination [2] specification describes an extensive
framework for providing various coordination protocols.
The WS-AtomicTransaction and WS-BusinessActivity
specifications [3], [4] are two typical Web transaction
protocols. They leverage WS-Coordination by extending
it to define specific coordination protocols for trans-
action processing. The former is developed for simple
and short-lived Web transactions, while the latter for
complex and long-lived business activities. Finally, the
Business Process Execution Language (BPEL) [5], [6], [7]
is a process-based composition specification language.
In order to develop reliable Web services compositions,
one needs the integration of transaction standards with
composition language standards such as BPEL [8], [9].
Unfortunately, these are currently separate specifications.

This paper has a double goal: The first one is to look at
the requirements of transaction management for Service-
oriented systems. The systematization of requirements
is the starting point for an analysis of current standards
and technologies in the field of Web services. The second
goal of the paper is to propose a framework for the
integration of BPEL with transaction protocols such as
WS-AtomicTransaction and WS-BusinessActivity. We use
a simple but representative example across the paper, the
drop dead order one, to illustrate requirements and the
proposed approach.

The need for filling the gap regarding transaction
management for BPEL in a declarative way is testified
also by other proposals in the same line. E.g., indepen-
dently and in the same time window, Tai et al. [10]
have worked out a declarative approach to Web service
transaction management. Their approach is very similar
to ours with respect to the execution framework and
the use of a policy-driven approach to extend BPEL
definitions with coordination behavior. However, they
do not consider the semi-automatic identification of
transactions and consequent process restructuring as we
do. Earlier, Loecher proposed a framework for a model-
based transaction service configuration, though it was
never implemented [11]. Even before the birth of Web
services, declarative approaches to automate transaction
management have been proposed, most notably [12].

The present work extends our survey and requirement
analysis for service transactional systems [13] and our
proposal of the XSRL language for handling requests
against service compositions [14], [15]. In XSRL a con-
struct is defined to express atomicity of services execu-
tion, though no means for recovering from failures is
provided.

The rest of the paper is organized as follows. First,
we introduce the drop dead order example in Section 2.

supplY

supplier

distributor

carrier

customer

Fig. 1. The drop dead order example.

We continue by looking at transaction requirements in
Section 3 and considering Transaction standards in Sec-
tion 4. The proposed approach to transaction manage-
ment is presented in Section 5 and illustrated using the
example in Section 6. Section 7 contains a discussion
of related work. Conclusions and remarking discussions
regarding transaction management in Service-oriented
systems are presented in Section 8.

2 THE DRop DEAD ORDER EXAMPLE

The drop-dead order example (DDO) describes a sce-
nario where a customer wants to order products from
a distributor with the requirement that these must be
delivered before the drop-dead date. To satisfy such a
request, the distributor will try to find a supplier that
has the products available. If found, he will search for
a carrier that is able to deliver the products before the
drop-dead date. If both the supplier and the carrier are
able to fulfill the demands of the customer, the distrib-
utor will report to the customer that he can fulfill the
order. After the customer has sent a confirmation of the
order to the distributor, the latter sends a confirmation
to the supplier and the carrier. We consider the drop-
dead example in the context of the automotive industry
as depicted in Figure 1.

The example is due to Haugen and Fletcher [16] who
first introduced the drop-dead order to illustrate multi-
party electronic business transactions. We extended this
case study to demonstrate the various faults and excep-
tions of transactions. Though simple, we argue that the
example captures all relevant aspects of a transaction in
the context of service oriented systems, since it may be
built from several Web services and it requires trans-
action management, especially nested and long-lived
transactions.

One of the trends in the car industry is providing ever
more sophisticated services to the driver. We have re-
cently witnessed the blooming of GPS-based navigation
equipments. The next step is to provide value-added
services. For instance, the driver could desire to have
traffic information and, on the basis of this, book a
hotel and a parking space. Or, by checking the weather
report, he may decide to acquire a set of winter tires
while on the way to a ski resort. That is, the driver



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 3

Operation: orderProduct

'%\/ Variable: orderProductRequest
ReceiveOrder

7

Operation: requestSupply
v In: RequestSupplyRequest
4 N :
/ RequestSuppIy ) Out: RequestSupplyResponse
D AE— Operation: requestDelivery
In: requestDeliveryRequest

A4
/ R . I Out: requestDeliveryResponse
equestDeliver
\_Requestelivery )

Operation: supplyProduct
In: supplyProductRequest

Ve / .
,\ SupplyProduct \/,/ Out: supplyProductResponse
- Operation: deliverProduct
v In: deliverProductRequest
e - N : deli
‘\\ DeliverProduct /; Out: deliverProductResponse

Operation: orderProduct
In: orderProductRequest
Out: orderProductResponse

Yy
'(CompleteDistributiorﬁ,/

Operation: orderProduct
¥y i .
| Variable: orderProductResponse
< ReplyOrder >/

Fig. 2. A simplified representation of the drop-dead order
example.

may request his car information system to execute the
process of ordering winter tires in a specific area in a
given time frame. The car information system then has
to find a tire supplier and a carrier that will deliver the
tires in the appropriate location with a certain deadline.
Of course, the driver is interested in tires only if these
are delivered before going to the ski resort, therefore the
car’s information system has to perform the required
process in a transactional manner and take into account
the non-functional requirement of drop-dead time.

Let us now bring the example to the realm of Web
services. To construct such a system, we need to develop
three web services each fulfilling the responsibility on
behalf of a distributor, supplier and carrier, respectively.
Then, a business process describing the drop-dead order
scenario can be built by orchestrating these Web services.

Figure 2 illustrates the major segments of the business
process represented as a BPEL specification. First, the
BPEL process receives an order for requesting a dis-
tributor to distribute some products via the operation
orderProduct. If the order is valid and the distributor
provides the service required by this order, the process
will respond positively. Otherwise, it will reject the order
request.

When the distributor accepts the order, the BPEL
process seeks a suitable supplier to ask for supplying the
products via the operation RequestSupply. If the request
result from the supplier is positive, the BPEL process
seeks a suitable carrier to deliver the products via the
operation RequestDelivery. Otherwise, the process will
return a fault message indicating no suitable supplier
is available for the supply.

Similarly, if a carrier is found, the process will ask
the supplier to dispatch the products via the operation
SupplyProduct, and ask the carrier to deliver the products
via the operation deliverProduct. Otherwise, the process
will return a fault message indicating no suitable carrier
is available for the delivery. After the successful delivery
of the products to the customer, the process is informed

by the distributor with the positive result, and it returns
a success message.

3 TRANSACTION REQUIREMENTS

In the field of databases, transactions are required to
satisfy the so called ACID properties, that is, the set
of operations involved in a transaction should occur
atomically, should be consistent, should be isolated from
other operations, and their effects should be durable
in time. Given the nature of service oriented systems,
satisfying these properties is often not possible and, in
the end, not necessarily desirable [17]. In fact, some
features are unique to service oriented systems:

o Long-lived and concurrent transactions, not only
traditional transactions which are usually short and
sequential.

o Distributed over heterogeneous environments.

o Greater range of transaction types due to different
types of business processes, service types, informa-
tion types, or product flows.

o Unpredictable number of participants.

o Unpredictable execution length. E.g., information
query and flight payment needs 5 minutes; while
e-shopping an hour; and a complex business trans-
action like contracting may take days.

o Greater dynamism. Computation and communica-
tion resources may change at run-time.

o Unavailability of undo operations, most often only
compensating actions that return the system to a
state that is close to the initial state are available.

Furthermore transactions may act differently when
exposed to certain conditions such as logical expressions,
events expressed in deadlines and even errors in case of
a faulty Web service. To make sure that the integrity of
data is persistent, the two transaction models used are
namely Composite and Distributed allow smooth recovery
to a previous “safe” state.

The set of emerging features mentioned earlier, which
are a combination of requirements mostly coming from
the areas of databases and workflows, provide the basis
for identifying the most relevant requirements for trans-
actions in service-oriented systems. We list these next,
starting from the classic ACID properties, then consid-
ering behaviors, models and further issues of service
transactions.

3.1
3.1.1 Atomicity

ACID properties

Atomicity is the property of a transaction to either
complete successfully or not at all, even in the event
of partial failures. In the Drop Dead Order Example,
it should not happen that the supplier’s resources are
committed while the Carrier is not.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 4

3.1.2 Consistency

Consistency is the property of a transaction to begin
and end in a state which is consistent with the intended
semantics of the system, i.e., not breaking any integrity
constraints. A state in which the Carrier is committed
but has never prepared to commit is inconsistent.

3.1.3 Isolation

Isolation is the property of a transaction to perform oper-
ations isolated from all other operations. One transaction
can therefore not see the other transaction’s data in an
intermediate state. The Customer should not be aware of
the state of the transaction between the Distributor and
the Supplier/Carrier regarding a different order.

3.1.4 Durability

Durability is the property of a transaction to record
the effects in a persistent way. Whenever a transaction
notifies one participant of successful completion, the ef-
fects must persist, even when subsequent failures occur.
When the Supplier is notified of a successful completion,
but somehow the connection with the Carrier fails, the
changes with the Carrier should still be made.

3.2 Transaction behaviors
3.2.1 Rollback

Rollback is the operation of returning to a previous
state in case of a failure during a transaction. This may
be necessary to enforce consistency. In the DDO, when
the Distributor assigns a Supplier, but cannot assign
a Carrier, the changes made with the Supplier (and
Customer) should be rolled back.

3.2.2 Compensating actions

Compensating actions are executed in the event of a fail-
ure during a transaction, all changes performed before
the failure should be undone. If the Distributor assigned
a Supplier and committed it but cannot assign a Carrier,
the changes made with the Supplier (and Customer)
should be compensated.

3.2.3 Abort

Abort is the returning to the initial state in case of
failure or if the user wishes so. When the Distributor
assigns a Supplier but cannot assign a Carrier, the entire
transaction is to abort.

3.2.4 Adding deadlines

Adding deadlines to transactions involves giving time-
outs to operations. Suppose that the Customer needs the
goods before a certain time, then the Distributor and the
Carrier need to comply with certain time constraints, too.

3.2.5 Logical expressions

Logical expressions for specifying constraints are used
for giving unambiguous and semantically defined rules
for guaranteeing consistency. For instance, the fact that
the account of the Distributor cannot be debited while
the account of the Customer is not credited in the
event of a money exchange can be expressed by deb-
ited(distributor) + credited(customer) = 0.

3.3 Transaction models
3.3.1 Composite transactions

Composite transactions are nested transactions. In the
Drop Dead Order example, the distribution transaction
consists of two sub-transactions, namely, the supply and
the deliver transactions. These transactions depend on
the global outcome, that is, all three succeed or the whole
composite transaction fails.

3.3.2 Distributed transactions

Distributed transactions are transactions between two
or more parties executing on different hosts. The trans-
action should support transactions through a network
between two different hosts. A customer can place a
drop-dead order at the Distributor through a network
connection.

3.4 Transaction Behavior - Alternatives
3.4.1 Transaction recovery

Transaction recovery by dynamic rebinding and dynamic
re-composition at run-time is the possibility of replacing
a faulty Web service when the current service is not
able to fulfill its promises. Dynamic re-composition is
the forming of a new composition by replacing one or
several services by another composition that fulfills the
same function. Imagine that the first Carrier somehow
fails and is unreachable. If this happens during a transac-
tion, then automatic re-bind with a service that offers the
same service should take place. Re-composition through
re-binding with a third Carrier through the Supplier is
also a possibility.

3.4.2 Optimistic or pessimistic concurrency control

Optimistic or pessimistic concurrency control refers to
the support of different types of concurrency control to
enforce consistency. This control could either be opti-
mistic or pessimistic. The pessimistic approach prevents
an entity in application memory by locking it in the
transaction for the entire time. While the optimistic
simply chooses to detect collisions and then resolve the
collision when it does occur. This scheme has better per-
formance. When two transactions are concurrent, they
should not both claim the same supply of goods from
one Supplier.

For the Drop Dead Order example, we see that all
these requirements are necessary with the exception of
the last two points. Existing transaction protocols are



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 5

based on pessimistic concurrency control (locking). But
let us look at this in more detail by considering, first
existing standards and composition languages, and then
tools referring to the just listed requirements.

4 TRANSACTION STANDARDS AND SERVICE
COMPOSITION LANGUAGES

WS-Transactions [3], [4] and Business Transaction Pro-
tocol (BTP) [18] are the two most representative stan-
dards that directly address the transaction management
of Web service-based systems, while for representing
compositions of services the Business Process Execution
Language (BPEL) [19] and the Choreography Descrip-
tion Language (WS-CDL) are most widely known and
adopted. WS-Transactions consists of two coordination
protocols: WS-AtomicTransaction (WS-AT) [3] and WS-
BusinessActivity (WS-BA) [4] which live in the WS-
coordination framework [2]. WS-AT provides the coordi-
nation protocols for short-lived simple operations, while
WS-BA provides the coordination protocols for long-
lived complex business activities. The WS-coordination
framework is extensible and incremental. That is, WS-
coordination can enhance existing service oriented sys-
tems with transaction properties by wrapping them with
a specific coordination. On the other hand, BTP is a
model for long-lived business transaction structured into
small atomic transactions, and using cohesion to connect
these atomic operations. Its motivation is to optimize
the use of resource involved in a long-lived transaction
under loosely coupled Web service environments and
avoiding the use of a central coordinator. BPEL provides
the facilities to specify executable business processes
with references to services’ interfaces and implementa-
tions. It does handle some basic issues of transactions,
such as compensation, fault and exception handling,
but other transaction requirements are not managed.
WS-CDL provides the infrastructure to describe cross-
enterprise collaborations of Web services in a chore-
ographic way. The transactions are not explicitly ad-
dressed, but some facility can be used to satisfy some
basic transaction properties, as we see next.

Consider the proposed protocols that take the trans-
action and the business perspective of Service-oriented
systems with respect to the requirements identified in the
previous section. In Table 1, we summarize the results
of the evaluation for all requirements-each row-and for
all protocols-each column-by denoting the satisfaction
with the '@’ symbol, the partial satisfaction with ‘®’, and
no support with ‘e’. We refer to [20] for details on the
evaluation.

First, we notice that WS-Transaction actually con-
sists of two different protocols with different properties,
which we analyze separately. WS-AT is a traditional pro-
tocol which satisfies the basic ACID properties. WS-BA,
on the other hand, renounces atomicity to accommodate
long-lived transactions. BTP has included confirm-sets.
These confirm-sets let the application element choose

TABLE 1
Evaluation Results

Requirements BTP | WS- | WS- | BPEL | WS-

AT | BA CDL
3.1.1 Atomicity D & © © ©
3.1.2 Consistency D 52 © © ©
3.1.3 Isolation o @ S D S
3.1.4 Durability 53] 52 2] 52 ©
3.2.1 Rollback D @ © © S
3.2.2 Compensating actions o o 2] 52 ©
3.2.3 Abort & & & D ©
3.2.4 Adding deadlines © D D © S
3.2.5 Logical expressions © S) S] 52 2]
3.3.1 Composite trans. @ < D < D
3.3.2 Distributed trans. D 52 S S S
3.4.1 Trans. recovery © S) S @ ©
3.4.2 Concurrency control © S] © S] S

which operations with parties in the transaction are to
be canceled and which are to be confirmed. In this way,
the application element is able to contact more services
which perform the same task and to choose the best
option. Unfortunately, BTP is not part of the WS-Stack,
which limits its compatibility with other Web service
technologies. In addition, BIP does not support long-
lived transactions. There is also a difference in granu-
larity between the above transaction standards. WS-AT
contains simple two phase commit protocols, WS-BA
contains non-blocking protocols and BTP consists of a
sequence of small atomic transactions. As for security,
WS-Security [21] can be combined with WS-Transaction
as well as with BTP.

Dynamic rebinding is supported only by BPEL,
though only at the implementation level. WS-CDL sup-
ports most requirements, while its major disadvantage is
that the large players in the field do not support it and
that no implementation is available.

We can further draw the following conclusions in
terms of extensions to the traditional transaction model.
WS-AT is a very conservative business transaction model
especially with respect to blocking. WS-BA is more ap-
propriate for services, by renouncing to the concept of
the two-phase commit. BTP places itself in the middle
(two phase commit is followed in a relaxed way). As for
BPEL and WS-CDL they address the business process
perspective with limited transaction support.

We refer to [13] for survey and comparison of tools
available for transaction management. The survey in-
cludes tools such as Apache Kandula, Active Engine 2.0
or JBoss Transactions.

5 PROPOSAL FOR INTEGRATING TRANSAC-
TIONS INTO BPEL
The above survey shows that there are standardized

protocols for describing transactions and languages for
describing processes in terms of flows of activities. The



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 6

connection among these is, to say the least, very loose.
The problem is that processes are described in terms of
activities and roles capable of executing the activities,
but semantic dependencies among these activities are not
represented beyond message and flow control. It may
happen that several operations from a single Web service
are invoked within a BPEL process, and dependencies
among these operations may exist.

For example, before a supplier provides the product
requested by a distributor, he needs first to process
the request and then reply to the requester. The two
operations correspond to two activities in the BPEL
process, namely providing products and processing request,
which need to be managed in some transactional way,
but BPEL is unable to capture the right granularity and
the dependencies among operations.

Our proposal consist of making the dependencies
among the activities explicit via an automatic procedure
and performing a restructuring step of the process,
where necessary. The identified dependencies among
activities can be then identified by the designer of the
process as being transactions or not. In case they are,
the designer will decide which kind of transactions they
are and simply annotate them. The execution framework
then takes care that transaction annotations are correctly
managed at run time. The need for the human design
decision in the process is necessary due to the lack of
semantic annotations of the BPEL processes. Only the
designer can decide whether a set of activities that seem
to have a dependency in the process are to be executed
transactionally or not.

Let us be more precise on what the phases of the
proposed approach are. Consider Figure 3, where data
transformation goes from left to right and we distinguish
three layers: the data layer at the bottom, the middle
execution layer defining the data transformation, and the
knowledge level indicating from where the knowledge
to transform the data comes. We start with a generic
business process designed to solve some business goal.
An automatic processing step, which we define next,
identifies dependencies among activities. These are then
reviewed by an expert that decides which are actually
transactions and which not. For those who qualify, s/he
further decides what kind of transactions they are and
annotates them. For instance some may be long running
while others may be atomic ones. We remark how this is
a design step performed by an expert who understands
the domain, the specific process and the consequences
of choosing a transaction policy in favor of another.
This step cannot be automated unless further semantic
annotations are made on the BPEL. The restructured and
annotated process is then ready to be sent for execution.
We notice that the restructured process may be sent to
execution several times. That is, the manual effort will
occur only once and allow for many execution instances.
In fact, at this stage no concrete binding has occurred.
This will be postponed till the execution phase and
will be handled by the execution framework. Next we

consider the three phases of the approach individually.

5.1

Preprocessing the BPEL specification is performed in
two steps, namely (i) identification and (ii) resolution of
transaction dependencies. In order to illustrate the two
steps, we introduce an abstract model of BPEL.

Preprocessing

5.1.1 Abstract model of BPEL specifications

A BPEL process specification describes the interaction
between services in a specific composite Web service. Its
abstract model, known as behavioral interface, defines the
behavior of a group of services by specifying constraints
on the order of messages to be sent and received from
a service [22]. In this sense, a BPEL specification S is a
set of activities A and its associated links L, represented
by S = (A, L). The links, which are directed, define a
partial ordering over the set of activities and are thus
well represented as a directed graph (e.g., Figure 4).

o An activity a in A having a type represented by 7T,
has the following properties:

— name N,.

— operation OF,, which is usually implemented
by the Web service at a specific port.

— input variable IV, and output variable OV,
which specifies the parameters required and
produced by the OP,, respectively.

- set of source links SL, and set of target links
TL,, which specify the outgoing and incoming
links (transitions), respectively.

o Alink ! in S has a unique name N; and is indirectly
defined through two activities a; and as which
indicates not only the direction {? of the transition,
but also the conditions (¢ for the transition to take
place.

Furthermore, the Customer-to-distributor link I._4 is one
of the source links of the ReceiveOrder activity a;, namely
le—qa € SL,,. Furthermore, [._q € TL,,, where TL,,
is the target link of the CompleteDistribution activity as.
Therefore, the link /._; connects the transition between

le—a . .
a; and ag, denoted as a; —— ag. Figure 4 provides an

. . le—a
illustration of a; —— ag.

5.1.2 Dependencies identification algorithm

If one specifies a set of activities within a given BPEL
specification S, there may exist dependencies among
activities that can hinder the application of transaction
management as described above. Assume that

St = {a; | a; is atransactional activity of a transaction t}

is a transaction t specified within the BPEL specification
S.
For any two activities a,, and a,, where a,,,a, € S;

ljk
— Qn

1,
and a,, # a,, if there exists a path a,, — ...

where [;, and [;, are some links connecting activities, we



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 7

‘ Automatic execution ‘

v

Transaction-
related
Preprocessing

Knowledge

Execution

‘ Manual execution ‘

v

Declare and
annotate
transaction

Business Transaction To
© Process > Policy = ——————3 Execution
§ Design Annotation Framework
Original BPEL Transactional BPEL Trans. BPEL with

transaction annotation

Fig. 3. Approach to integrating transactions into BPEL processes.

ReceiveOrder (a4)

(SI—a1)

Customer-to-distributor

(Ic—d )

(T Las)

/CompleteDistribution (a@

\

Fig. 4. Representation of activities and the link that
connects them.

say that a,, is reachable from a,,, denoted as a, 5 an,
and {l;,...l;,} is a link chain of a,, — a, denoted as
LC(apm, 5 an). For any two activities a,,, and a, in a
transaction S; that are implemented by the same Web
service, if a,, — a, and OV, €l wherel € LC(ay, 5
an), then a transaction dependency exists between a,
and a,.

To identify the existence of transaction dependencies
within a given BPEL specification S, we propose Algo-
rithm 5.1. The algorithm is a standard graph algorithm
similar to those for reachable set construction, e.g., [23].
The function IdentifyDependency takes S as input and
outputs a boolean value that represents the existence of
transaction dependencies td. The function first creates a
path p for any two activities a,, and a,,. Then traverses
the links in the link chain [, obtained from p. When a
link [/ is detected and its transition condition [ contains
the output variable OV, of the first activity a,,, or if
it contains an output variable OV,, which is identical
to OV, semantically, the algorithm stops and returns
TRUE. Otherwise, it continues until all pairs of activities
in S; have been visited. Finally, if no transaction depen-
dencies are detected, the algorithm returns FALSE.

Algorithm 5.1: IDENTIFYDEPENDENCY(.S)

td = false

for each a,, € S

for each a, € S and a,, # a,

if Ip,and ay 2 a, €8

ls = ¢ comment: Is is a set of links.

store transitions I
o

do for each linkl € ls
do \ hen if 1°# ¢ and OV, €1°
then {td = true

do else if [ # ¢ and OV, € ¢
and OV,, € OV,
then {td = true

return (td)

5.1.3 Resolution of dependencies

Once transaction dependencies are identified, it is neces-
sary to handle them. To solve this problem, we merge the
dependent activities into one transaction. Algorithm 5.2
resolves the transaction dependencies within a BPEL
specification S. It employs Algorithm 5.1 to detect trans-
action dependencies and it asks the user for confirmation
that it is indeed a transactional dependency. The output
is a new BPEL specification referred to as preprocessed
BPEL where conflicts are resolved.

Algorithm 5.2: DEPENDENCYRESOLVER(S})

PS =5,
for each a,, € S,
for each a, € S; and a,, # a,
if IdentifyDependency(am,, a,, PS) = true
do < and user_agrees_that_it_is_transaction

do

then {PS — PS(am/ax)

return (PS)

Figure 5 and 6 illustrate the schematic flowcharts
of the BPEL specification for the drop-dead example



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 8

ReceiveOrder ‘

v

RequestDistribution

¢yes

RequestSupply

¢yes
RequestDelivery %
¢yes
‘ SupplyProduct +

No v

‘ DeliverProduct + """"""""

v

‘ CompleteDistribution +

{#‘

‘ Reply ‘

H
Carrier service }
H
H

1T 1

Fig. 5. The schematic flowchart for the drop-dead order
example.

before and after the processing using Algorithm 5.2,
respectively.

Figure 5 shows the existence of transaction depen-
dencies in the original BPEL specification for the drop-
dead order example. That is, for some activities from the
same Web service, there is always another companion
activity. For example, before the supplier service supplies
products (the SupplyProduct activity in Figure 2), a re-
quest activity (the RequestSupply activity in Figure 2) is
performed. These two companion activities are similar
to Prepare and Commit in the two-phase-commit protocol.
When Algorithm 5.1 is applied to the drop-dead order
example, it can identify the transaction dependency
between the RequestSupply activity (denoted as as) and
the SupplyProduct activity (denoted as a4), because both
as and a4 are implemented by the supplier service, and
the precondition for executing a4 contains the output
variable of ap. Similarly, the algorithm identifies the
transaction dependency between RequestDistribution and
CompleteDistribution, and the transaction dependency be-
tween RequestDelivery and DeliverProduct. In this case, all
identified dependencies lead to an actual transaction.

Figure 6 illustrates transactional activities within the
preprocessed BPEL specification where the transactional
dependencies have been resolved using the algorithm
5.2. For example, our algorithm merges the RequestSupply
activity (az) and the SupplyProduct activity (a4), resulting
in one single transactional activity namely the Sup-
plyProduct activity (a4). Similarly, CompleteDistribution
and DeliverProduct are treated as transactional activities.
Note that three transaction scopes are specified in Figure
6. The supply transaction (T2) and deliver transaction (T3)
are nested in the distribution transaction (T1). For each

ReceiveOrder

Begin T1
CompleteDistribution

Begin T3

<Supp\yproducl> <DeliverProduct>
End T2 End T3

EndT1
Reply

Fig. 6. Transactional activities in the preprocessed BPEL
specification (DDO).

Legend

Transactional Tag activity

Begin T2

{4

Transactional activity

Transactional scope

()

of these three transactions, one transactional activity (an
invoke activity) is annotated with transaction policy. The
meaning of transaction policy will be explained in the
subsequent sections.

Note that although the detection and elimination are
done automatically, a human interaction is necessary
when a design choice must be made to represent the
relationship between different transactions. Consider for
instance, the Drop-dead Order example, there are three
transactions (77, Ty and T3). One could decide that 75 is
going to run in parallel with 73, and both of these are
nested in 77 as we do in Figure 6. However, another
valid choice is that of including 73 in 75 this would
represent the case where the supplier accepts the order,
the carrier is going to deliver it, and this way the
parallelism between 75 and 73 is removed. Moreover,
Algorithm 5.1 detect all possible transactions within
a process. Consequently, due to the fact that multiple
solutions might exist for even a simple BPEL process,
the human interaction is mandatory at this step.

5.2 Declaration of transaction policies

Once transactions are identified and BPEL has been
accordingly restructured, one needs to define the de-
sired transactional behavior. To this end, we introduce a
reference transaction policy declaration schema, shown
in Figure 7. With this schema, one can declare the
transaction policy using the following elements:

1) Trans_ID is a non-zero integer, representing trans-
actions within a business process.

2) Trans_Protocol specifies a protocol for the trans-
action, such as WS- AtomicTransaction (WS-AT) or
WS-BusinessActivity (WS-BA).

3) Trans_Root indicates the parent transaction iden-
tified by Trans_ID. The value 0 is used to indicate
the root transaction within the business process.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 9

Begin T1
WS-BA

CompleteDistribution

Begin T2 Begin T3
WS-AT WS-AT
<5upplypmdun> (DeliverProduct)
End T2 End T3
WS-AT WS-AT

EndT1
WS-BA
Reply

Fig. 8. An illustration of transaction policies for the drop-
dead order example.

Legend

Transactional Tag activity

Transactional activity

Transactional scope

One can specify the hierarchy of transactions by
assigning appropriate Trans_IDs and Trans_Roots.

With such a schema, one can annotate constraints or
preferences to a specific activity in the BPEL specifi-
cation. The annotated activity must be an invoke activ-
ity. One can separately specify the desired constraints
or preferences in the design-time-info or run-time-info
sections. For transaction management, we declare the
transaction policies in the section of the trans-info which
is embedded within the section of run-time-info, since
a transaction policy is a run-time constraints. Together
with the other types of process information, transaction
policies are stored in an XML file for use at run-time.

Let us consider again the drop-dead order example.
After the preprocessing, we found three transactional ac-
tivities belonging to different transaction scopes (Figure
6). Then, one declares the desired transaction policies.
For the purpose of illustration, suppose that one would
like to implement the SupplyProduct activity and the
DeliverProduct activity using the WS-AtomicTransaction
protocol (WS-AT), and implement the CompleteDistri-
bution activity using the WS-BusinessActivity protocol
(WS-BA), respectively. Figure 8 illustrates such a decla-
ration of the preferred transaction policies for the drop-
dead order example'.

In order to support the declaration of transaction poli-
cies, we need to annotate the transactional activities us-
ing the proposed transaction policy declaration schema.
By analyzing these annotation profiles, one may deduce
that the CompleteDistribution transaction (T1) is the top
transaction because its Trans_Root is 0, while both the
SupplyProduct transaction (T2) and the DeliverProduct
transaction (T3) are sub transactions of the CompleteDis-
tribution transaction, since the latter Trans_ID is 1 and

1. Notice that the “Transaction Scope” used here is not related to the
BPEL “scope” tag.

the SupplyProduct and DeliverProduct Trans_Root are 1.

5.3 The Execution framework

The proposed approach transforms a generic business
process into a restructured one in which transactions are
identified and annotated. Now one needs an execution
framework that is richer than a simple BPEL engine. In
fact, one needs to interpret the annotations, make sure
that activities are executed according to the transaction
conditions and also that the binding among dependent
activities is consistent with the transaction semantics. To
achieve this we rely on the SeCSE platform in the context
of which the current approach has been developed.

Service Centric System Engineering (SeCSE) is an
European sixth framework integrated project, whose
primary goal is to create methods, tools and techniques
for system integrators and service providers and to
support the cost-effective development of service-centric
applications [24], [25]. The SeCSE service composition
methodology supports the modeling of both the service
interaction view and the service process view [26]. A
service integrator needs to design both the abstract
flow logic and the decision logic of the process-based
composition. Therefore, the SeCSE composition language
allows the definition of a service composition in terms
of a process and some rules that determine its dynamic
behavior [27]. Correspondingly, the flow logic can be
represented by a BPEL specification, while the decision
logic is defined by rules.

Based on the architecture of the SeCSE platform, we
built a transaction management tool called DecTM4B. It
consists of three modules, namely

o The Preprocessor for T.M. is used to identify and
eliminate transaction dependencies occurring in the
original BPEL specification. The output is the pre-
processed BPEL specification. The SeCSE platform
will deal with the binding of abstract services before
the BPEL engine executes the BPEL specification.
The preprocessing executed by Preprocessor for
T.M. happens just before the binding. Currently,
ODE and ActiveBPEL [28] are two BPEL engines
supported by the SCENE platform.

o The Event Adapter maps the low-level events from
the BPEL engine onto the binding-related events.
The first version of SeCSE event adapter is ex-
tended to support the mapping of transaction-
related events.

o The Transaction Manager is a separate component
in the executor and deployed in the Mule con-
tainer (Mule is a messaging platform based on ideas
from Enterprise Service Bus (ESB) architectures).
The Transaction Manager consists of the following
two transaction-specific components.

1) TransLog is responsible for managing the lifecy-
cle of transactions, such as creating transaction
instances, maintaining the status of transaction
instances, and destroying transaction instances.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010

<activity-info activityName=@ncname>
<design-time-info>
<!-- To do:
</design-time—-info>
<run-time-info>

define design-time information —-->

<!-— To do: define other run-time information —-->

<trans—-info>
<Trans_ID> i </Trans_ID> <!-- where i is a non zero integer —-->
<Trans_Protocol> [WS_AT] | [WS_BA] </Trans_Protocol>

<Trans_Root> Trans_ID </ Trans_Root >

</trans—-info >
</run-time-info>
</activity-info>

Fig. 7. A transaction policy declaration schema.

TransLog is also responsible for transferring
the information among the components in the
executor. For example, it listens the transac-
tion related events from the Event Adapter,
and it is responsible for the communication
between Transaction Manager and JBoss Trans-
action Server.

2) PolicyOperator retrieves the transaction policies
from the XML file, and parses the transaction
policies, and then maps transaction policies
onto the coordination context. It provides a set
of APIs which are to be called by the TransLog.

As for the implementation of transaction proto-
cols, we rely on JBoss Transaction Server [29]. JBoss
Transaction Server is an open source implementation
of WS-Coordination, WS-AtomicTransaction, and WS-
BusinessActivity. It provides a set of APIs to support the
coordination services and transaction protocols. JBoss
Transaction Server is selected for this purpose because it
(1) is a complete, standalone, open source software tool,
(2) has sufficient documentation, (3) and supports WS-
Coordination and WS-Transaction.

6 A RUN oF THE DDO EXAMPLE

Let us consider again the drop-dead order example intro-
duced in Section 2 and apply the proposed methodology
for transaction management. In particular, let us con-
sider the drop-dead order example in the context of the
automotive industry with a BPEL process specification
(denoted as S7) and three Web services instances. The
process starts with an order request through the Receive
activity, then it transfers the request variable to the carrier
and supplier services for their confirmation, and finally
replies to the request by the Reply activity. The process
returns a positive result if both the supplier and carrier
services can provide the declared service; otherwise it
returns a rejection. The Web services developed and
deployed are transactional Web services that execute the
business operations and at the same time are aware
of the coordination responses. In our case, they are
participants of a transaction and must implement the

TABLE 2

Protocols

Signatures supported by
participants

WS-AT Durable2PC

prepare, commit, rollback,
commitOnPhase, unknown,
error

WS-AT Volatile2PC

prepare, commit, rollback,
commitOnePhase,
unknown, error

WS-BA  with Participant
Completion

close, cancel, compensate,
status, unknown, error

WS-BA with Coordinator
Completion

close, cancel, compensate,
complete, status, unknown,

Lists of signatures for different transactional protocols.

error

coordination interfaces for specific transactional proto-
cols. Table 2 lists signatures in the coordination inter-
faces for different transactional protocols applied [29]
(DecTM4B reuses the coordination infrastructure in the
JBoss Transaction Server). We refer to the specifications
of WS-AtomicTransaction and WS-BusinessActivity for
details, to [13], [30] for the reference implementation for
these signatures and we omit them here for brevity.

Then, the BPEL specification s; is processed using the
Preprocessor for T.M. to identify and eliminate the trans-
action dependencies. The preprocessing is implemented
using the Algorithms 5.1 and 5.2. The result of the
preprocessing is a BPEL instance denoted as s. Then, we
declare transaction policies and annotate transactional
interpretation rules with respect to s;. The next step is
to obtain the transformed BPEL specification (denoted
as s3) by applying the Preprocessor for Binding to s2 in
order to support dynamic binding.

Let us consider an execution within the SeCSE plat-
form after all relevant Web services and tools have been
properly deployed and initiated for execution, such as
ActiveBPEL (a BPEL engine) [28], Drools (a rule engine)
[31], and the SeCSE related modules: Binder (imple-
menting the binding process), the Transaction Manager,
JBoss Transaction Server, the Event Bus and Event Adapter.
Suppose the transactional invoke activity SupplyProduct
is executed, the following sequence of events represents



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 11

a possible successful execution:

1) The Event Adapter captures the event ActivityEn-
ableEvent produced by the BPEL engine, and maps
it to the activitiyBindingEvent and the transaction-
CreatedEvent events.

2) When the Drools rule engine receives the event
ActivityEnableEvent from the Event Bus, the pre-
defined binding rule is invoked. During the
binding process, the Binder finds the service
http:/ /localhost:8084 /services/supplierWS and re-
turns it for execution via the operation setBind-
ing(AbstractService as, Service s) where AbstractSer-
vice is the proxy and Service is the concrete service
discovered.?

3) Then the Drools rule engine receives the event
transactionCreatedEvent from the Event Bus, and
the rule defined in Figure 8 is invoked. The
transaction-related process proceeds as follows:

a) Drools is invoked for interpreting the prede-
fined transaction rule.

b) A PolicyOperator module retrieves transac-
tion policies from the XML file, it parses it and
it translates it into the appropriate transaction
context.

c) The TransLog module, which is responsible
of managing the lifecycle of the transaction,
prepares the coordination context with trans-
action policies, creates an instance transaction
entry and transfers the coordination context to
the JBoss Transaction Server via the Event-Bus.

d) JBoss Transaction Server controls the proceed-
ing of the transaction between the participant
(http:/ /localhost:8084 /services /supplierWS)
and the coordinator according to the WS-AT
transaction protocol.

e) When the transaction is successfully commit-
ted, the TransLog receives a message from
JBoss Transaction Server via the Event-Bus,
destroys the transaction instance, and pub-
lishes an event of TransactionResultEvent via
the Event-Bus.

4) The next activity (DeliverProduct) within the BPEL
specification is ready for being invoked.

7 RELATED WORK

The study of transactions is quite old in the history of
computer science. Scholars investigated various topics,
such as nested transactions [1], [32], transaction pro-
cessing monitor [33] or using declarative techniques
for integrity control [12]. The interest has been mainly
motivated by databases applications, but as workflows
became a popular way to manage information systems,
the problem of handling exceptions and transactions in
workflows arose [34].

2. In the SeCSE platform, there is a separate component responsible
for service discovery based on quality of service properties.

Bonner et al. [35] propose to solve transaction prob-
lems using Transaction Datalog (TD). He identified dif-
ferent types of transactions and exceptions that might
occur, and wrote TD rules for them. However, the detec-
tion and elimination of dependencies among workflow
activities is missing, as well as automatic modification of
workflows to account for transactions. Other work such
as [36], [37] emphasizes on exception handling within
a transactional workflow. This is done by identifying
the error cases and creating specific defined rollbacks.
If on the one hand, this approach is similar to what
we proposed, one remarks the limited applicability of
the approach and the need to define rollbacks on a per
case base rather that generally. In [38], [39] an exception
management framework to define policies in a declar-
ative manner is proposed. The methodology is similar
to ours, though it lacks the possibility of identification
and resolution of dependencies, thus transforming the
original workflow. Additionally, the application to the
context of Web services is not straightforward.

7.1 Web service transactions

With the shift in interest toward Internet-based appli-
cations, Web service transactions have received grow-
ing attention from both industry and academia. Un-
like traditional transactions, Web service transactions
are usually complex, involve multiple parties, spanning
over many organizations, and may last over a relatively
long time [9]. Various advanced transaction models and
architectures for Web services have been proposed [40],
and their middleware support [41]. An overview of
service transaction behaviours is offered in [42], which
is a superset of those used in this paper as requirements.
[43] offers a description of possible failures during work-
flow executions, including transaction failures. Our work
does not offer another Web service transaction model
or architecture, we rather consider the integration of
existing transaction models with composite Web ser-
vices, having the objective of increasing the reliability
of the composition. Similarly to [44], we consider the
transactionality of processes and services, not simply
data.

Curbera et al.[6] point out that Web services are mov-
ing from their initial “describe, publish and interact”
capability to a new phase in which robust business in-
teractions are supported. They indicate that transactional
(transaction-aware) Web services will be available in the
near future and will need to be managed. This need is
what we addressed with the present proposal.

As a response to transactional Web services, Vasquez
et al. [45] developed an open source middleware that
enables Web services to participate in a distributed
transaction as prescribed by the WS-Coordination, WS-
AtomicTransaction and WS-BusinessActivity specifica-
tions. Their work focuses on the implementation of the
transactional Web services only from the Web service’s
point of view, in particular, on the recovery of Web



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 12

services in case of failure. Although the architecture of
the middleware employs a BPEL engine, it does not deal
with the issue of how to process BPEL specifications.

7.2 Declarative approaches and transaction models

Tai et al. [8], [10] present a WS-Policy based method to
implement transaction management within BPEL pro-
cesses. In their model, the coordination services de-
scribed by WS-Coordination are implemented as a co-
ordination middleware. Coordination participants are a
set of Web services, which support not only applica-
tion specific port types (interfaces), but also coordina-
tion middleware interfaces. A declarative coordination
policy specifying WS-Coordination types and protocols
can be attached to a Web service through its WSDL
specification. In the BPEL definitions, the coordination
policy is attached to BPEL partner links and scopes.
These are correspondingly called coordinated partner
links and coordinated scopes, respectively. In order to
support the implementation of transactions, the method
extends existing Web services to support coordination
interfaces, and it changes the original BPEL definitions.
This method is similar to the one we propose since both
of them are declarative. The difference is that the method
we propose is based on the preprocessing and the rule-
based annotation mechanism, transaction policies are
declared using a specific XML schema, while Tai et al.’s
method is based on WS-Policy. In addition, it affects
partner links in the BPEL specifications and relies on the
Java implementation of BPEL constructs for executing
the BPEL composition. Furthermore, our method does
not need any modification of existing BPEL engines.

Green and Furniss [46] present a method of extending
BPEL for transaction management. The method intro-
duces transaction contexts and coordination contexts as
variables of BPEL processes. The set of BPEL actions
is extended with transaction activities including ‘new’,
‘confirm’ and ‘cancel’. At the same time, the method
extends compensation handlers with confirmHandler and
cancelHandler operations. In order to support the trans-
action management in BPEL processes, it is necessary to
extend the BPEL language itself, and thus modify the
available BPEL engines. It is not clear how the method
incorporates WS-Coordination and WS-Transactions into
BPEL processes. Till this date, no implementation of this
method is reported.

Papazoglou et al. [9] propose a business-aware Web
services transaction model and support mechanism,
which is driven by common business functions. They
focus on cross-enterprise business process automation,
and they include quality of service (QoS) information
to guarantee integrity of information. The authors dis-
tinguish between business transaction and Web service
transactions, the latter rely on technical requirements
such as coordination, data consistency and recovery;
while business transactions depend on economic needs.
In fact, their objective is met once a final agreement
between parties is made.

7.3 Performance

Recently, Schifer et al. [47] discuss an approach for
dealing with compensation when a service failure occurs
during a transaction and propose a heuristic to improve
performance. The authors describe an environment for
advanced compensation operation adopting forward re-
covery within Web service transactions. The idea is to
prevent a rollback when an error occurs at some point
in the transaction. Forward recovery proactively changes
the state and structure of a transaction after a service
failure has occurred, allowing the process to complete
successfully. This is done by using a component called
abstract service that acts as a mediator for compensations.
The proposal by Limthanmaphon et al. [48] is on a sim-
ilar line. It provides a different solution to compensate
when a service failure occurs. The authors use the Tenta-
tive Hold and Compensation approach to allow tentative,
non-blocking holds or reservations to be requested for a
business resource. By granting non-blocking reservations
on their services, the resource owners still keep control
of their resources while allowing many potential clients
to place their requests, thus minimizing the need for
cancellation. The issue of recovery is very important
in transaction management, though different in scope
from our proposal that has to do with the design and
annotation of transactions.

7.4 Technologies

A commonly used method in practice for supporting
Web service transactions resorts to generic middleware.
Some representative transaction management tools, such
as IBM Web services AtomicTransaction for WebSphere
Application Server [49], JBoss Web service Transac-
tions [29], and Apache Kandula [50], have employed
this method to support distributed Web services atomic
transactions. These tools focus on the implementation
of transactions within some types of application servers
using the Java Transaction API (JTA). JTA provides
three main interfaces, namely UserTransaction inter-
face, TransactionManager interface and Transaction in-
terface [51]. These interfaces share transaction operators,
such as commit(), rollback(), suspend(), resume() and enlist().
The application servers act as Transaction Manager, and
implement the coordination services described by the
WS-Coordination specification. This method is practical
and reuses the available generic middleware. Though,
it does not take into account transaction management
within BPEL processes. In [11], Loechner presents a sur-
vey of issues in implementing transactions with service
technology and proposes a model-based approach to
managing transactions. The proposal is not backed up
by any implementation.

8 DISCcUSSION AND FUTURE WORK

Web services are being increasingly adopted by orga-
nizations in order to run their businesses more effec-
tively and efficiently. However, current technologies lack



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010 13

TABLE 3
Requirement satisfaction for the proposed approach.

Requirements

3.1.1 Atomicity

3.1.2 Consistency

3.1.3 Isolation

3.1.4 Durability

3.2.1 Rollback

3.2.2 Compensating actions
3.2.3 Abort

3.2.4 Adding deadlines
3.2.5 Logical expressions

Proposed approach

3.3.1 Composite trans.
3.3.2 Distributed trans.
3.4.1 Trans. recovery

O DDDO0O0DDDDD DD

3.4.2 Concurrency control

the support often required by such organizations. The
success of Web services lies, among other factors, in
their reliability, especially when economic interests are
involved. One key feature is that of being able to deal
transactionally with a set of operations, but this is far
from being easy, especially when the operations in the
transaction come from different remote service instances.

In this paper, we highlight the key requirements of
transaction management in Service-oriented systems and
propose a novel declarative transaction management
approach for Web service compositions. The key to
implementing transaction management into BPEL pro-
cesses is to consider the combination of business logic
with transactions, taking into account the challenges that
make it impossible to directly apply transaction models
to all BPEL processes.

The proposal consists of first a preprocessing of the
BPEL to identify and manage transaction dependencies
among a group of activities. Then it proceeds with the
annotation with transaction policies. Finally, the interpre-
tations of the declared transaction policy are specified as
event-action-condition rules to be processed at run-time.

Consider again Table 1 where requirements for trans-
actions in Service-oriented systems are listed, one may
wonder how our proposed approach performs with
respect to these. Basic atomicity and isolation proper-
ties (3.1.1,3.1.3) are supported in our approach by the
adoption of the underlying transaction protocol such as
WS-AT. Similarly for Consistency, we note that Adding
deadlines (3.2.4) and Logical expression (3.2.5) currently
have no direct implementation in Web service transac-
tion protocols.

Secure transactions of different types (Confidentiality,
Integrity, Authentication and Non-repudiation) referring
to the fact that participants in a transaction may be
authorized and authenticated are beyond the scope of
this work and the current implementation does not
support it. However, we do not see this as a limitation of
the approach, but rather as something to be addressed

by resorting to an underlying secure layer, moreover
security will be addressed in future work. Table 3 sum-
marizes the analysis.

The proposed methodology has been fully imple-
mented and tested on a number of cases from the
automotive industry (Fiat and Daimler-Chrysler who are
partners of the SeCSE project [24], [25]). For illustration
purpose, here we use a simple example, the drop-dead
order nested transaction. This example is simple as it
contains only few activities and three partners, but it
is explanatory enough as it captures nested and atomic
transactions among independent partners. The execution
of the platform on the example is also described.

The proposal fills an existing gap of composition
languages with respect to transactions. The main advan-
tages are that it integrates with existing BPEL processes
(independently of how these were engineered) and it
is declarative. If an organization decides to change the
transaction policy within one of its processes, then, it
simply needs to change a few lines of XML. One can then
have a general process with attached many transaction
policies. One could even have a different set of policies
for each customer interacting with the organization.

The described research opens a number of items for
future investigation. First, one would like to automate
as much as possible the process of identifying trans-
actions in BPEL instances. This could be achieved, for
instance, by mining typical transaction patterns in BPEL
processes and their most recurrent translation into a
transaction [52]. Another possibility is to use semantic
annotations that can allow for fully automatic identifi-
cation of transactions. Second, we will consider other
transaction protocols beyond WS-AtomicTransaction and
WS-BusinessActivity when these become available. From
the more technological point of view, it is currently hard
to achieve coordination among services living in distinct
containers, e.g., rolling back operations of a delivery
service living in a JBoss container and of a purchase
service living in an Apache Tomcat container. Thus, nifty
implementations have to be devised to overcome other
heterogeneity issues in Web service coordination.

REFERENCES

[1] ]. Gray, “The transaction concept: Virtues and limitations,” Very
large Data Base (VLDB), vol. 6, pp. 144-154, 1981.

[2] WS-C, “Web Services Coordination (WS-Coordination),” Arjuna
Technologies Ltd., BEA Systems, Hitachi Ltd., IBM, IONA Tech-
nologies and Microsoft, Tech. Rep., 2007.

[3] WS-AT, “Web Services Atomic Transaction (WS-
AtomicTransaction), Version 1.1,” Arjuna Technologies Ltd.,
BEA Systems, Hitachi Ltd.,, IBM, IONA Technologies and
Microsoft, Tech. Rep., 2007.

[4] WS-BA, “Web Services Business Activity Framework (WS-
BusinessActivity), Version 1.1,” Arjuna Technologies Ltd., BEA
Systems, Hitachi Ltd., IBM, IONA Technologies and Microsoft,
Tech. Rep., 2007.

[5] BPEL, “Business Process Execution Language for Web Services
Version 1.1,” IBM, Microsoft, BEAT, SAP and Siebel Systems, Tech.
Rep., 2003.

[6] E Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The
next step in Web services,” Communication of the ACM, vol. 46, pp.
29-34, 2003.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, OCTOBER 2010

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]
(17]
(18]
(19]

[20]

[21
[22]

[a—

[23]

[24]

[25]

[26]

[27]

[28

[er

[29]

[30]

[31]
[32]

[33]

F. Leymann and D. Roller, “Business processes in a Web services
world: A quick overview of BPEL4WS,” 2002, http://www-
128.ibm.com/developerworks/library /ws-bpelwp /.

S. Tai, R. Khalaf, and T. Mikalsen, “Composition of coordinated
Web services,” Proceedings of the 5th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, vol. 78, no. 5, pp. 294-310, 2004.

M. Papazoglou, “Web services and business transactions,” World
Wide Web: Internet and Web Information Systems, vol. 6, no. 1, pp.
49-91, 2003.

S. Tai, T. Mikalsen, I. Rouvellou, J. Grundler, and O. Zimmer-
mann, “Transactional Web services,” in Service-Oriented Comput-
ing, G. Georgakopoulos and M. Papazoglou, Eds. ~MIT Press,
November 2008.

S. Loecher, “Model-based transaction service configuration for
component-based development,” in Component-Based Software En-
gineering, vol. LNCS 3054. Springer, 2004, pp. 302-309.

P. W. P. J. Grefen, “Combining theory and practice in integrity
control: A declarative approach to the specification of a transac-
tion modification subsystem,” in 19th International Conference on
Very Large Data Bases, R. Agrawal, S. Baker, and D. A. Bell, Eds.
Morgan Kaufmann, 1993, pp. 581-591.

C. Sun and M. Aiello, “Requirements and evaluation of protocols
and tools for transaction management in service centric systems,”
in IEEE Int. Ws. on Requirements Engineering For Services at IEEE
COMPSAC, 2007, pp. 461-466.

A. Lazovik, M. Aiello, and M. Papazoglou, “Planning and moni-
toring the execution of Web service requests,” International Journal
on Digital Libraries, vol. 6, no. 3, pp. 235-246, 2006.

M. Aiello and A. Lazovik, “Monitoring assertion-based business
process,” International Journal of Cooperative Information Systems,
vol. 15, no. 3, pp. 359-390, 2006.

B. Haugen and T. Fletcher, “Multi-party electronic business trans-
actions. Version 1.1,” UN, Tech. Rep., 2002.

M. Little, “Transactions and web services,” Communication of the
ACM, vol. 46, no. 10, pp. 49-54, 2003.

OASIS, “Business transaction protocol,” OASIS, Tech. Rep., 2004.
BPEL, “Business Process Execution Language for Web Services
Version 1.1,” IBM, Microsoft, BEAT, SAP and Siebel Systems, Tech.
Rep., 2003.

C. Sun, D. Hammer, G. Biemolt, and H. Groefsema, “An evalu-
ation of desctiption- and management- standards and languages
for Web service transactions,” Univ. of Groningen/SeCSE Project,
Tech. Rep., 2006.

OASIS, “WS-Security Specification,” OASIS, Tech. Rep., 2006.

C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel, M. Dumas,
and A. ter Hofstede, “Formal semantics and analysis of control
flow in BPEL,” Sci. Comput. Program., vol. 67, pp. 162-198, 2007.

G. Chiola, “A reachability graph construction algorithm based
on canonicaltransition firing count vectors,” in Petri Nets and
Performance Models, 2001, pp. 113-122.

S.  Consortium, “http://www.secse-project.eu/,”
Union, Tech. Rep., 2005-2007.

The SECSE Team, “Designing and deploying service-centric sys-
tems: The secse way.” in Service Oriented Computing: a look at the
Inside (SOC@Inside’07), 2007.

Various Authors, “Report on methodological approach to de-
signing service compositions (final), version 4.0 SeCSE A3.D3,”
ESI, CA and CEFRIEL, Tech. Rep., 2005, http://www.secse-
project.eu/.

——, “Report on methodological approach to design service
compositions (v2.0) SeCSE A3.D3.2.b,” CEFRIEL Unisannio, Tech.
Rep., 2006, http:/ /www.secse-project.eu/.

ActiveBPEL, “Activebpel engine
http:/ /www.activebpel.org.

JBoss, “JBoss transaction service 4.2.2 -Web service transactions
programmers guide,” 2008.

A3.DY, “Preliminary design of transaction management. SeCSE
A3.DY,” Univ. of Groningen, Tech. Rep., 2006, http://www.secse-
project.eu/.

Drools, “Java rule engine,” 2006, http://www.drools.org.
[Online]. Available: http://www.drools.org

J. Moss, Transactions: an approach to reliable distributed computing.
MIT Press, 1985.

P. A. Bernstein, “Transaction processing monitors,
ACM, vol. 33, no. 11, pp. 75-86, 1990.

European

2.0, 2009,

”

Commun.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Gunthor, and
C. Mohan, “Advanced transaction models in workflow contexts,”
in Proc. 12th International Conference on Data Engineering, New
Orleans, February 1996., 1996, pp. 574-581.

A. ]J. Bonner, “Workflow, transactions and datalog,” in PODS
'99: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. New York, NY, USA:
ACM, 1999, pp. 294-305.

J. Eder and W. Liebhart, “Workflow recovery,” in Conference on
Cooperative Information Systems (CooplS 96), 1996, pp. 124-134.

S. R. Van, T. D. Meijler, A. Aerts, D. Hammer, and R. L. Comte,
“TREX, workflow transactions by means of exceptions,” in EDBT
Ws on Workflow Management Systems, 1998, pp. 21-26.

L. Zeng, H. Lei, ]. jang Jeng, ]J.-Y. Chung, and B. Benatallah,
“Policy-driven exception-management for composite Web ser-
vices,” in CEC '05: Proceedings of the Seventh IEEE International
Conference on E-Commerce Technology. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 355-363.

A. Erradi, P. Maheshwari, and V. Tosic, “Recovery policies for
enhancing Web services reliability,” in ICWS ‘06: Proceedings of
the IEEE International Conference on Web Services. ~Washington,
DC, USA: IEEE Computer Society, 2006, pp. 189-196.

J. McGovern, S. Gyagi, S. Stevens, and S. Mathew, Java Web
Services Architecture. Morgan Kaufmann, 2003.

W. Emmerich, M. Aoyama, and ]. Sventek, “The impact of
research on middleware technology,” ACM SIGSOFT Software
Engineering Notes, vol. 32, pp. 21-46, 2007.

P. Greenfield, A. Fekete, J. Jang, and D. Kuo, “Compensation is not
enough,” in Proceedings of the 7th International Enterprise Distributed
Object Computing Conference, EDOC 2003, pp. 232-239.

D. Kuo, A. Fekete, P. Greenfield, J. Jang, and D. Palmer, “Just
what could possibly go wrong in B2B integration?” in Proceedings
of the Workshop on Architectures for Complex Application Integration
(WACAI2003) at COMPSAC. IEEE Computer Society, 2003, p.
544.

A. Portilla, “Providing transactional behavior to services coordi-
nation,” VLDB Ph.D. Workshop, vol. 170, 2006.

I. Vasquez, J. Miller, K. Verma, and A. Sheth, “Openws-
transaction: Enabling reliable web service transaction,” in Int.
Conf. on Service Oriented Computing (ICSOC05), vol. LNCS 3826.
Springer, 2005, pp. 490-494.

A. Green and P. Furniss, “BPEL and Business Transaction Man-
agement,” 2003, submission to OASIS WS-BPEL Tech. Committee.
M. Schifer, P. Dolog, and W. Nejdl, “An environment for flexi-
ble advanced compensations of Web service transactions,” ACM
Trans. Web, vol. 2, no. 2, pp. 1-36, 2008.

B. Limthanmaphon and Y. Zhang, “Web service composition
transaction management,” in Australian Computer Society. Aus-
tralian Computer Society, Inc, 2004, pp. 171-179.

WS-AT, “Web Services Atomic Transaction for Web-
Sphere  Application Server (WS-AT for WAS),” 2003,
http:/ /www.alphaworks.ibm.com/tech/wsat. [Online]. Avail-

able: http:/ /www.alphaworks.ibm.com/tech/wsat

Apache, “Kandula,” 2005, http://ws.apache.org/kandula.
[Online]. Available: http://ws.apache.org/kandula

S. Maple, “Distributed transaction with WS-
AtomicTransaction an JTA,” 1BM, Tech. Rep.,
2004,  http://www-128.ibm.com/developerworks/library /ws-
transjta/?ca=dnt-54. [Online].  Available:  http://www-
128.ibm.com/developerworks/library /ws-transjta /?ca=dnt-54

O. Zimmermann, J. Grundler, S. Tai, and F. Leymann, “Architec-
tural decisions and patterns for transactional workflows in SOA,”
in Int. Conf. on Service Oriented Computing (ICSOC07), vol. LNCS
4749. Springer, 2007, pp. 81-93.



