Continual Planning with Sensing for Web Service Composition

Eirini Kaldeli, Alexander Lazovik, Marco Aiello
University of Groningen
AAAI 2011

Abstract

Web Service (WS) domains constitute an application field
where automated planning can significantly contribute to-
wards achieving customisable and adaptable compositions.
Following the vision of using domain-independent plan-
ning and declarative complex goals to generate compositions
based on atomic service descriptions, we apply a planning
framework based on Constraint Satisfaction techniques to a
domain consisting of WSs with diverse functionalities. One
of the key requirements of such domains is the ability to ad-
dress the incomplete knowledge problem, as well as recover-
ing from failures that may occur during execution. We pro-
pose an algorithm for interleaving planning, monitoring and
execution, where continual planning via altering the CSP is
performed, under the light of the feedback acquired at run-
time. The system is evaluated against a number of scenarios
including real WSs, demonstrating the leverage of situations
that can be effectively tackled with respect to previous ap-
proaches.

Introduction

The ability to aggregate loosely-coupled software compo-
nents in order to provide added-value functionalities opens
up new prospects for the development of service-oriented
applications. Research in the discipline of Al planning can
provide deeper insight into the problem of dynamic integra-
tion of services, and contribute towards realising an infras-
tructure that is highly interactive and adaptive to different
user preferences. The common premise underlying this ap-
proach is that services come along with semantic markups
that describe their behaviour in some convenient format,
usually in terms of preconditions and effects.

Composition of services is commonly divided into two
complementary tasks: synthesis or vertical composition,
which is concerned with finding the right combination of
“abstract” services, each of which models the logic of the
provided functionality; and erchestration or horizontal com-
position, which involves instantiating the logical synthesis
into concrete WS components, since usually there are many
functionally equivalent providers (e.g. hotels, stores, etc.).
In this work, we show how the interchange between these
two aspects can satisfy a user’s request, under variant, un-
foreseen execution circumstances.

Regarding vertical composition, we propose the deploy-
ment of a domain-independent planner to build syntheses

automatically and on-demand, relying solely on individual
descriptions of decoupled services, and a goal specified by
the user. The idea is to maintain a generic and modular
repository that comprises a number of diverse service oper-
ations, from booking flights to arranging appointments with
a doctor, and can serve an variety of different user needs
with minimal request-specific configuration. This is differ-
ent from many previous approaches, which restrict the ap-
plicability of the domain to a set of anticipated user needs,
predefined in the form of some procedural template, be it
in the form of HTN methods (Au, Kuter, and Nau 2005),
Golog programs (Sohrabi, Prokoshyna, and Mcilraith 2006),
or OWL-S services manually inserted by the user (Agarwal
et al. 2005).

Unlike these approaches, we propose an extended lan-
guage which allows users to express their goals in a declara-
tive fashion, without having to know about the particularities
and interdependencies of the available services. Temporal
aspects, maintainability properties, and distinguishing be-
tween wish to observe the environment or change it are some
of the features this language supports. Both the domain and
the goal are modeled as a CSP (Constraint Satisfaction Prob-
lem), and a constraint solver is applied to compute a plan.
An important advantage of the CSP-based formulation is its
efficient handling of variables ranging over large domains,
which are very common in WS fields (e.g. dates, prices).
Some preliminary ideas about service composition via CSP-
based planning with extended goals have been presented in
(citation omitted due to anonymity), where the basic con-
cepts of the synthesis approach are presented.

Due to the conditions of incomplete knowledge and sens-
ing, as well as other sources of contingency (e.g. corrupt
responses, server failures etc.), the problem of composition
cannot be tackled without reference to the current environ-
mental context, that becomes visible only at execution time.
The problem of missing knowledge and non-determinism
in the field of WSs has been addressed from different per-
spectives, although recovery from unforeseen outcomes is
generally disregarded. Previous approaches either rely on
conditional plans and can therefore handle only a limited
range of non-deterministic action outcomes, e.g. (Pistore et
al. 2005), (Hoffmann, Weber, and Kraft 2010), or have
the queries about unknown information explicitly included
in the predefined WS procedure, e.g. (Au, Kuter, and Nau

2005), (Sohrabi, Prokoshyna, and Mcilraith 2006).

In this work, we employ a knowledge-level representa-
tion that enables plans to be automatically built based on the
agent’s knowledge and the way that this is changed by ac-
tions. To deal with the large number of possible outcomes
and unforeseen contingencies at runtime, we adopt an ap-
proach that interweaves planning, monitoring and execution.
Continual planning is performed, so that the upcoming plan
steps anticipated off-line can be revised as execution pro-
ceeds, in face of inconsistencies that stem either from the
newly acquired information or from service failures. In the
algorithm presented in this work, we show how dynamic
constraint solving, that allows efficient addition and removal
of constraints, can serve the need for constantly incorporat-
ing new facts about the environment or removing obsolete
ones, checking for inconsistencies, and reacting accordingly.

A motivating example

Let us suppose that a user is happy to learn that in the fol-
lowing days a singer he is fond of is making a tour in the
country where he lives. What he wants is to book a ticket
and a hotel room for the nearest upcoming concert whose
date and location meet some criteria referring to the weather
conditions, the distance from his hometown, and his avail-
ability according to his agenda, as well as about the price he
is willing to pay for his overnight stay. These requirements
are expressed by an extended goal (see the third section),
that specifies what (but not how) the user wants to achieve
and under which conditions.

The satisfaction of this goal requires the collaboration of
services coming from diverse business domains —namely re-
lated to travelling, entertainment events, maps, calendar and
weather services— in a manner that can be hardly anticipated
in advance. Depending on the information returned at run-
time, there are clearly many different possible ways that this
goal can be fulfilled. For example, it may turn out that the
place of the first upcoming concert is too far, or that there is
no hotel available on that date within his badget, etc. In such
cases, the original plan has to be interrupted and revised, so
that the conditions regarding the whereabouts and date of the
next concert are looked up. To further complicate things, at
any moment a service may fail. So, if e.g. the booking ser-
vice of the first selected hotel that meets the user’s criteria
happens to be in a permanent failure state, an alternative ho-
tel has to be searched, and depending on the result, the goal
may finally be satisfied or not. In the penultimate section,
we show a possible run of the continual planning algorithm
for this scenario, based on real data received by the services.

Representing the domain

A WS marketplace is conceived as a planning domain,
where the actions correspond to operations of abstract WSs.
We assume that the service domain description is carried out
by a domain designer, who formalises the individual WS op-
erations by providing the necessary markups. How existing
Semantic Web ontologies can be exploited in the context of
planning is an interesting topic, e.g. OWL-S used in (Agar-
wal et al. 2005), (Au, Kuter, and Nau 2005), however it is
not the focus of this paper.

Definition 1 (Service Domain). A service domain is a tuple
8D = (Var, Par, Act), where:

* Var is a set of variables. Each variable v € Var ranges
over a finite domain D".

* Par is a set of variables that play the role of input param-
eters to WS operations. Each variable p € Par ranges
over a finite domain D?.

+ Act is the set of actions. An action a € Act is a triple
a = (id(a), precond(a), effects(a)), where id(a) is a
unique identifier, e.g. “bookHotel”, precond(a) is a set of
propositions on variables and parameters, and effects(a)
is a set whose elements can be one of the followings:

- sense(var), where var € Var

- assign(var, v), where v is some constant or v € Var

— assign(var, f(vy, va)), where vy, ve € Var or vy, ve
are constants, and f the sum or the subtract function

- increase(var, v) or decrease(var, v), where v € Var
or v is some constant

A state s is defined as a tuple s = ((xy, D), ...,

(,, D)), where z; € Var U Par and D* C D*. The do-
main of x at state s is given by the state-variable function
x(s), so that x(s) = D¥ if (x,D¥) € s. If |[D¥| = 1,
this means that = at s has a specific value. The effects of
type sense(var) are called observational, i.e. they observe
the current value of a variable, while the other types of ef-
fects are world-altering, i.e. actively change the value of a
variable. An action may have both kinds of effects.

The domain is extended by additional variables to model
the knowledge level, and to distinguish between sensing and
world-altering actions. These variables are generated auto-
matically given a domain description SD. First, for each
var € Var U Par, a new boolean variable var_knouwn is
introduced, which indicates whether var is known at state
s (var_known(s) = true) or not (var_known(s) = false).
For every variable kvar € Var that participates in an ob-
servational effect, a new variable kvar_response is created,
which is a placeholder for the value returned by the respec-
tive sensing operation. Since this value is unknown un-
til execution time, kvar_response ranges over kvar’s do-
main (kvar_response € D¥very Moreover, we maintain
for every variable cvar € Var that is part of at least one
world-altering effect a boolean flag var_changed, which
becomes true whenever this effect takes place. All these
additional variables are created automatically, by parsing
the SD. Thus, we end up with an extended set of vari-
ables V = Var U Par U KbU Cv U Rv, where Kb is the
set of knowledge-base variables, C'v the set of the change-
indicative variables, and Rv the response variables.

Encoding the domain into a CSP

A constraint satisfaction problem is a triple CSP =
(X,D,C), where X = {xq,...,x,} is a finite set of n vari-
ables, D = {D',..., D"} is the set of finite domains of the
variables in X so that z; € D, and C = {c1,. . em}isa
finite set of constraints over the variables in X. A constraint
¢; involving some subset of variables in X is a proposition
that restricts the allowable values of its variables. A solution
to a CSP (X, D,C) is an assignment of values to the vari-

ables in X {x; = vi,...,2, = v,}, with v; € D', that
satisfies all constraints in C.

Following a common practice in many planning ap-
proaches, we consider a bounded planning problem, i.e. we
restrict our target to finding a plan of length at most £, for in-
creasing values of k. Considering a service domain extended
with the knowledge-level representation SD’ = (V, Act},
the target is to encode SD' into a CSP = (X¢gsp, D,C).
First, for each variable x € V ranging over D*, and for each
0< i < k, we define a variable z[i] in CSP with domain
D*. Actions are also represented as variables: for each ac-
tion a € Act and for each 0< 7 < k—1 a boolean variable
a[i] is defined. This way the computed plan can include par-
allel actions, a fact that may save time during execution. If
some action a; affects a variable that is part of the precon-
ditions of some other action a», or if both affect the same
variable, then a; and as are prevented from being put in par-
allel by an additional constraint.

Action preconditions and effects, as well as frame axioms,
are automatically encoded as constraints on the CSP state
variables. Due to space reasons, we do not give the details
of the constraint representation, but rather provide an exam-
ple of how two simple actions are modelled in the form of
constraints.
payin{amountPar, accldPar)

prec: B effects: increase(ace Balance, amountPar)
— Constraints:
prec constraints: [*parameters known*/
payln[i] = 1 =

(amountPar_knouwn[t] = true A accldPar_known = true)
effect constraints: Mworld-altering*/

payln(i] = 1 = (accBalance_changed[i + 1] = true

accBalanceli + 1] = accBalance[i] + amountPar(i])
findAccBalance(accldPar)
prec: B effects: sensel aceBalance)

— Constraints:
prec constraints: /*parameters known and accBalance yet unknown®/
findAccBalance[i] = 1 = (accldPar knouwn(i] = trueh
aceBalance knoun[i] = false)
effect constraints: [*sensing®/
findAecBalance[i] = 1 = accBalance known[i + 1] = trueA

aceBalanceli + 1] = accBalance_response[i + 1]

Extra knowledge preconditions that ensure that the
knowledge-base variables of all input parameters should be
true are added. It’s worth mentioning that most actions in
WS domains have only knowledge preconditions, like in the
above examples. Effects of the type sense(var), like in the
case of findAccBalance, are modelled by adding an extra
precondition that the variable to be sensed is unknown (to
avoid redundant sensing), assigning to var its correspond-
ing response variable, and setting the respective knowledge
variable to true. For each world-altering effect we add an ad-
ditional constraint that ensures that any variables participat-
ing in the second argument of the assignment effect should
be already known (in the case of payln this is already guar-
anteed by the preconditions), and states that the variable al-
tered becomes known.

By adopting such an encoding, the required sensing ac-

tions are determined pro-actively, depending on the goal
and the knowledge the user already possesses. The off-
line solver may assign arbitrary values to an unknown vari-
able var, however if the corresponding knowledge variable
var_known is false, this values is of no validity. The effect
of this behaviour is that the planner always generates an opti-
mistic plan, i.e. anticipating that all knowledge-gathering ac-
tions return information that is in accordance with the user’s
requirements, and all actions are executed successfully. This
initial plan is revised during execution as we will see in the
section about the continual planning algorithm.

The goal language

In (citation committed due to anonymity) a language for ex-
tended goals in the context of CSP planning for WS compo-
sitions is presented. This goal language has been enriched
with a few more constructs, so that more complex goals can
be formulated. Due to lack of space, we do not repeat the
syntax of the language here, or explain the formal seman-
tics, but rather give an impression of some of the supported
constructs through the following two examples:

Goal 1
achieve-maint(bookedConcert = TRUFE) under_condition

(find_out-maint(temperature > 0))

Goal 2
achieve-maint(bookedHotel = TRUE) A (
achieve-maint(bookedConcert = TRUE)

under_condition_or_not (find_cut-maint(temperature > 0)))

An achieve-maint(A;-prop;) subgoal on a con-
junction of propositions implies that A;-prop; has to
become true at some state, and stay true till the
final one. The under_condition structure im-
poses that Goal 1 is accomplished if s is the first
state at which bookedConcert = TRUE is satisfied, and
find_out-maint(temperature > 0) is satisfied in the
state sequence preceding s. If temperature < 0, then
Goal 1 fails. under_condition_or_not is a new
construct that elaborates the expressivity of the lan-
guage, allowing the expression of a kind of soft re-
quirements: goalp under_condition_or_not goal;
will also be fulfilled if goal; is not satisfiable, if how-
ever it is, then goalp has to be as well Thus,
Goal 2 will ensure that bookedConcert = TRUE will
be satisfied if the temperature is not below zero,
while if it is, then only bookedHotel = TRUE will be
looked after. It should be mentioned however that
the under_condition_or_not structure works as in-
tended only if the variables involved in goal; are known at
planning time. find_out (A;k-prop;) type of subgoals en-
force a hands-off requirement on the variables they involve,
i.e. the planner will try to satisfy the propositions at some
state without allowing any altering effect on these variables
(in the above examples find_out-maint is in practice
unnecessary because there is no way to change the weather).

An example of how the constraint encoding of the goal
looks like is provided for Goal I:

booked Concert[k] A booked Concert known[k] = true

Jori+— 0, k—1 /*maint constraints®/
for g +— 141,k
(bookedConcert[i] A booked Concert_known[i]) =
(bookedConcert[f] A bookedConcert _known[j])
knowledge variables should remain unchanged (find-out goal)/
—temperature.changed[k] A temperature known[k]
Jori+— 1.k
booked Concert[i]) =

[*under-condition goal*/

(temperature[i — 1] = 0 A temperature_knouwn[i — 1])

All variables and parameters not specified in the goal are
assumed to be undefined, and their respective knowledge-
level variables are set to false. Functions as part of
the goal are also allowed, and are translated to a set
of propositions, and this is how parameters are mapped.
Thus, in the last example, the user would rather specify
bookedHotel(hPlacePar, hDatePar), where hPlacePar
and hDatePar can be either a specific value (e.g. hPlca-
cePar="Freiburg”) or refer to some other variable, that may
correspond to the yet unknown outcome of some other ac-
tion (e.g. hDatePar = eventDate). This amounts to as-
signing the respective parameter to the provided value at the
initial state, or fix it to the specified variable at all states.

Orchestration by Continual Planning

After the invocation of the solver, an assignment to the ac-
tion variables is returned, which corresponds to an optimistic
plan, as already mentioned. Before resorting to the solver, a
preliminary pruning of the actions that are irrelevant to the
goal is performed. This initial step is important to avoid
redundant sensing or unwanted world-altering actions, and
also contributes to enhancing scalablity, since, given a large
set of WSs, usually only a minority is relevant to a particu-
lar goal. The off-line plan is then passed to the orchestrator,
whose task is to gradually update it, according to the infor-
mation it acquires from the actual physical service invoca-
tions. The ultimately successful plan—if one exists—is con-
structed step-by-step, by adding and removing constraints
from the constraint network. Since the off-line plan has no
way to anticipate any value that is to be observed, whenever
new information is sensed, some revision is needed. For
example, if the user wants to send some mail to a partic-
ular address, which is unknown and has to be supplied by
some address-providing service, then at the point when the
address becomes known, re-solving is required to instantiate
the right input arguments of the sensing actions that depend
on that information.

The orchestrating algorithm relies on the reasonable infor-
mation persistence assumption, i.e. that the knowledge col-
lected by the actions at run-time remains valid till the end of
the algorithm. Simple failures can also be seen as a form of
incomplete knowledge which require special handling. The
algorithm accommodates for simple types of flaws, assum-
ing that all failures are clean, i.e. either all world-altering ef-
fects of an action are materialised, or none of them is. Erratic
situations can only be avoided, if actions with potentially se-
vere world-altering effects, that e.g. involve a payment, are
reversible. The algorithm for orchestrating and adjusting the
initial plan proceeds as outlined in the pseudocode, while a

running example follows. In the description provided herein,
the generated plans are assumed to be serialized, because no
support for concurrent service calls is implemented yet.

Algorithm: Continual Planning

function ORCHESTRATE(plan)
for action of state € plan do
repeat
output = NEXT_INSTANCES(action, inPar (state));
good = CHECK_VIOLATION(output, state, action);
until output indicates flaw OFR no more instances OR good
if output indicates flaw then
Forbid action (with same input); BACKTRACK;
else if no more instances then
Add constraints about action’s inspected outputs;

if no more instances OR —good then
BACKTRACK; return ;

function CHECK _VIOLATION(output, state, action)
Bookkeeping information for output;
Check if output at state + I causes conflicts;
if no conflict then
Push {state, action, instance} to backtracking stack;
Compute newPlan from newlnitState; return true;
else return false;

function BACKTRACK

if backtracking stack not empty then
if backtrack due to violation and action had severe
committing effects then Undo action’s effects;
Pop {state, action, instance} from backtracking stack;
Update alternative instances for actions;
Compute newPlan from state;
if newPlan is found thenm ORCHESTRATE(newPlan);
else {BACKTRACK; return ; }

else
Compute newPlan from initial state;
if newPlan is found thenm ORCHESTRATE(newPlan);
else return fail; /*The goal cannot be satisfied*/

Let us now explain the algorithm step-by-step. For each
action in the plan, a list of physical instances that match
its functionality is kept. NEXT_INSTANCES is responsi-
ble for selecting the next alternative concrete service that
matches the logical action and execute it. The matchmak-
ing process may be based on Quality of Service metrics,
or also take into account user-specific preferences, e.g. see
(Skoutas et al. 2008), and is not the focus of this work.
NEXT_INSTANCES goes on with executing the next avail-
able instance, till it finds a service which returns no failure.
If no such service can be found, the algorithm starts back-
tracking from the previous state, to look for alternative plans,
after adding a constraint that forbids the action in question
to be chosen by subsequent plans. Moreover, in case the
output information of all meaningful instances has been col-
lected, following the persistence assumption, the algorithm
incorporates in the constraint network the knowledge that
whenever the respective action is invoked with the same ar-
guments, it returns one of the already sensed values.

In case of a flawless invocation that returns some new in-
formation, the CHECK_VIOLATION function is called to

inspect whether this output violates any constraints. World-
altering effects don’t have to be checked, since they are al-
ready reasoned about at planning time. If a violation is de-
tected, then the algorithm goes on with trying an alternative
physical service. For services whose output may differ de-
pending on the selected provider, such as stores returning the
availability or price of a requested item, it makes sense to try
alternative instances, while this is not the case for services
that provide information that is not instance-specific, such
as the weather, map etc. If all alternatives prove unsuccess-
ful, the algorithm tries to backtrack, otherwise the current
state of the world is recorded for prospective backtracking,
the planner computes an updated plan newPlan, and pro-
ceeds with executing it. The updated plan is computed af-
ter disregarding the previous solution (assignments to vari-
ables), and by considering as the initial state a new state
newlnitState, which reflects the state after the materiali-
sation of action’s effects. This newlnitState is constructed
based on the propagation of constraints entailed by action,
i.e. action’s effects, both observational and world-altering,
and the instantiation of relevant input parameters depending
on them (which were previously assigned to some arbitrary
convenient values). All variables for which the knowledge
base indicates they are unknown are restored to undefined.

When backtracking from a world state {state, action,
instance}, and action has lead to the materialisation of
some severe world-altering effects, then these should be un-
done. Note that the majority of services are usually purely
information-providing, so reversal of effects at this stage is
rarely necessary. Then, all possible instances for all other
actions except action are restored. The algorithm gener-
ates a new plan, under the light of the new constraints, fol-
lowing the same procedure as described above. If it fails,
then it backtracks to the previous stored world state, and the
same process is recursively repeated until either a new plan
is found, or the initial state is reached.

A running example

In the followings, we show a running instance of the or-
chestration algorithm for the motivating example described
in the introduction, with a user living in Stanford, CA, who
wants to attend a concert of the singer Tina Dico.

Initial plan: {getFirstEvent(Tina Dico), checkCalendarAvail(defaultDate), getDis-
tance(Stanford, defaultPlace), getTemperature(defaultPlace, defaultDate), bookCon-
certTicket(Tina Dico, defaultDate, defaultPlace), search4Hotel(defaultDate, default-
Place, 1, 1), bookHotel(hotel WS, defaultDate, defaultPlace, 1, 1)}

—+Call getFirstEvent(Tina Dico) :: eventDate=2011-02-05, eventPlace=Austin
—+Call checkCalendarAvail(2011-02-05) :: calendarAvail=true
—+Call getDistance(Stanford, Austin) :: distance=2793
Sensed value 2793 for distance violates constraints, Backtrack
No alternative meaningful instances for checkCalendarAvail, Backtrack
—+Call getSecondEvent(Tina Dico) :: eventDate=2011-02-08,
eventPlace=San Francisco
—+Call checkCalendarAvail(2011-02-08) :: calendarAvail=true
—+Call getDistance(Stanford, San Francisco) :: distance=62
—+Call getTemperature(San Francisco, 08 Feb 2011) ::temperature=11
—+Call bookConcertTicket(San Francisco, 2011-02-08) :: bookedConcTicket=true
—+Call searchdHotel A(2011-02-08, San Francisco, 1, 1) ::

hotelWS=Chancellor Hotel, hotelPrice=80

—+Call bookHotel{Chancellor Hotel, San Francisco, 1, 1) 2 null

A failure occurred, Backtrack

—+Call searchd4HotelB(2011-02-08. San Francisco, 1, 1) =
hotelWS=Fairmont Hotel, hotelPrice=100

—+Call bookHotel{Fairmont Hotel, San Francisco, 2011-02-08, 1, 1) =
hotelBooked=true

All services in this example, except the ticket and hotel-
booking ones, are real services available on the Web (so,
Tina Dico was indeed performing on the mentioned places
and dates, etc.). The Yahoo! weather service provides in-
formation such as the temperature or the weather condi-
tion, e.g. “rainy” or “cloudy”. Google calendar is used to
check whether a day is marked free or busy, and google
maps are used to find the distance between two locations.
The event ful. com service provides information about a
number of cultural events, and in this example it is used to go
through the list of concerts of a given band. The responses
of the actual services are XML documents, which are parsed
to extract the respective information. Because the Yahoo!
weather-related services require WOEIDs (Where on Earth
IDentifier) as the form of their location-related input param-
eters, an intermediate service operation call is performed to
map the location names to this format. Dates are also trans-
formed between different formats, depending on the specifi-
cation of each service. Notice also that the policy for dealing
with bookHotel’s failure response in this case is to consider
it a permanent one. Evidence about the time performance of
the algorithm is summarised in the third row, test [3a] of
Table 1. It should be mentioned that out of the 18.6 sec of
total execution time, 6 sec amount to the sum of the service
calls response times.

Empirical Evaluation

The aim of the evaluation scenarios for the planning and
orchestration framework is to test whether complex goals
can be accomplished within acceptable time, under differ-
ent unforeseen circumstances. The tests involve a mixture
of real and virtual services, derived from a variety of dif-
ferent application domains: making online appointments,
shopping, shipping, travelling, learning about entertainment
events, and obtaining general purpose information, e.g. from
maps or weather services. In total, the domain consists of
30 abstract service operators, 23 of which are knowledge-
providing. 45 service instances are used for the test pur-
poses, however it should be noted that scalability regard-
ing the number of physical components depends on the ef-
ficiency of the matchmaking process. To experiment with
failures, we have simulated “return null” responses to model
simple flaws. The experiments were performed on an In-
tel Core 15 2.26Ghz computer with 3GB of RAM, running
Java 1.6.0_12. The constraint solver standing at the core of
the planner is the Choco v2.1.1 constraint solving library
(www.emn.fr/x-info/choco-solver). The boot-
strap time for loading the domain description and translating
it into constraints is 3.2 sec.

The results of running a number of diverse scenarios are
summarised in Table 1. Each goal’s fulfillment requires a

4 actions in | Initial Test Total | gbacktracks/

Goal

od initial plan time | instance | time | fviolation checks
appointment 5 0.9 [1la] 11.9 s
select&buyCd 6 2.1 [2a] 2006 | 0/6

[3a] 186 |3/9

arrangeGoToConcert | 7 28
[3b] 164.7 | 12/16
buyBookd&ship 9 4.3 [4a] 327 |37
[5a] 275 | V8
arrangeTravel 12 4.6 [5k] 225 19/22
[5c] 344.3 | 23/30
combinedGoal 19 7.1 [Ba] 2163 | /16

Table 1: Results for different goals and execution circum-
stances (time in sec). The tests correspond to runs for the
same goal initial state, but different returned outputs and
failures. Total CPU time counts the time elapse between
issuing the goal and its satisfaction or failure.

Comibined go:
200

Total mnkme in see

2 4 8 B 10 12 14 16 18 20 22
MNumber of sensed variables checked lor constraint vialation

Figure 1: Total runtime in sec vs. the number of initially
unknown variables which have to be sensed and checked for
violation. Measurements are taken for a conjunctive goal is
tested towards different initial states, for a decreasing num-
ber of initially known variables.

different combination of services coming from the various
business fields covered by the domain, and for a given ini-
tial state, an off-line plan is generated. The test instances
correspond to variant runs of the orchestrator for this ini-
tial plan, depending on the different feedback received at
execution. The amount of backtracking is dependent on
the returned outputs, as well as on the order of invocations
instructed by the planner, while the response times experi-
enced by the same service may differ considerably at differ-
ent invocations. The reported times are the average over 3
separate runs of the same test instance. It should be empha-
sised that the test instances indicated by b or c are deliber-
ately modeled for experimenting with the orchestrator’s be-
haviour under extremely ill-behaved circumstances, where
alternative service instances consecutively fail to satisfy the
goal, e.g. all instances promise to provide the desired out-
put, i.e. they have a room, car etc. available, but at the last
moment the booking process fails. The time required for a
violation check depends on the constraints entailed by the
new information that is gathered.

The overall execution time is dominated by the time spent
on inconsistency inspections and re-planning according to
the feedback received at runtime. Therefore, in Figure 1
we plot the relation between total runtime and the number

of initially unknown variables that have to be sensed, and
which entail solving the new CSP instance. The goal used
for these tests is an artificial one, deliberately constructed
so as to require the invocation of all knowledge-gathering
actions under minimal initial knowledge. We see that the
algorithm can successfully solve problems with a high num-
ber of unknown variables, some of which are of high cardi-
nality. Although no direct comparison with other planning
approaches to WS composition can be made, given that they
use distinct testing domains and base on different assump-
tions and aims, it is worth mentioning that in (Au, Kuter,
and Nau 2005) only up to 9 unknowns can be dealt with, re-
quiring 100 sec. With respect to off-line synthesis time, the
CSP-based planner used herein is slower than FF employed
in (Hoffmann, Weber, and Kraft 2010) or SHOP2 in (Au,
Kuter, and Nau 2005), however this is due to the fact that it
supports complex goals instead of just mere statements that
should hold at the final state, while building the synthesis
without the need of premeditated processes.

Concluding remarks

We have designed, implemented and evaluated a planning
framework for generating automatic WS syntheses, that ac-
commodates for complex goals, a knowledge-level represen-
tation to model lack of information and proactive sensing in
presence of variables that range over large domains, as well
as an algorithm for monitoring execution and revising plans
in a dynamic environment. These features put together en-
hance the extent of scenarios that can be represented and
dealt with compared to previous approaches. Experimen-
tal evaluation confirms that the framework performs well in
different situations, with complex goals, real services, and
several combinations of unknowns and failure occurrences.

References
Agarwal, V.; Dasgupta, K.; Karnik, N.; Kumar, A.; Kundu,
A.; Mittal, S.; and Srivastava, B. 2005. A service Creation
Environment Based on End to End Composition of Web
Services. In I4th Intl. Conf. on World Wide Web.

Au, T.; Kuter, U.; and Nau, D. 2005. Web Service Com-
position with Volatile Information. In Int. Semantic Web
Conf. (ISWC’05).

Hoffmann, J.; Weber, L.; and Kraft, F. 2010. SAP Speaks
PDDL. In 4th National Conf. of the American Association
for Artificial Intelligence (AAAI'10).

Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005.
Automated Composition of Web Services by Planning at
the Knowledge Level. In 19th Int. Joint Conference on
Artificial Intelligence.

Skoutas, D.; Sacharidis, D.; Simitsis, A.; and Sellis, T.
2008. Serving the Sky: Discovering and Selecting Seman-
tic Web Services through Dynamic Skyline Queries. In 2nd
IEEE Int. Conf. on Semantic Computing.

Sohrabi, S.; Prokoshyna, N.; and Mcilraith, S. A. 2006.
Web Service Composition via Generic Procedures and
Customizing User Preferences. In Int. Semantic Web Conf.

