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ABSTRACT

Commonsense knowledge about the surrounding phys-
ical world and quantitative theories of space, such as
metric geometry, can be viewed as two extremes on how
human beings relate to space. Qualitative spatial rep-
resentation and reasoning places itself in between these
two approaches. Qualitative spatial reasoning is a set of
high-level theories which abstract from the quantitative
details and attempt to mimic the human commonsense
knowledge about space as much as possible. Successful
approaches to spatial reasoning may impact many ap-
plication areas of AI, most notably, robotics, computer
vision in its broader sense, and natural language pro-
cessing.
In this paper, we briefly overview a modal approach
to spatial representation and reasoning, called topo-
approach, presented in the PhD thesis “Spatial Reason-
ing: Theory and Practice,” winner of the AI*IA disser-
tation award for 2003.

1 Reasoning about space

Spatial structures and spatial reasoning are essential to
perception and cognition. Much day-to-day practical
information is about what happens at certain spatial
locations. Moreover, spatial representation is a power-
ful source of geometric intuitions that underlie general
cognitive tasks. How can we represent spatially located
entities and reason about them? To take a concrete do-
mestic example: when we are setting a table and place a
spoon, what are the basic spatial properties of this new
item in relation to others, and to the rest of the space?
Not only, there are further basic aspects to perception:
we have the ability to compare different visual scenes,
and recognize objects across them, given enough ‘sim-
ilarity’. More concretely: which table settings are ‘the
same’? This is another task for which logic provides
tools.
Constraining space within the bounds of a logical the-
ory and using related formal reasoning tools must be

performed with particular care. One cannot expect
the move from space to formal theories of space to be
complete. Natural spatial phenomena will be left out
of logical theories of space, while non-natural spatial
phenomena could try to sneak in (cf. the account of
Helly’s theorem implications on diagrammatic reasoning
in [29]). Paraphrasing Ansel Adams’ concern of space
bound in a photograph [1], one could say that space in
nature is one thing; space confined and restricted in the
bounds of a formal representation and reasoning system
is quite another thing. Connectivity, parthood, and co-
herence should be correctly handled and expressed by
the formalism, not aiming at a complete representation
of space, but focusing on expressing the most perspicu-
ous spatial phenomena.
The preliminary and fundamental step in devising a spa-
tial reasoning framework lays, thus, in the identification
of which spatial behaviors the theory should capture
and, possibly, in the identification of which practical
uses will be made of the framework. A key factor is in
appropriately balancing the right amount of expressive
power, completeness with respect to a specific class of
spatial phenomena and computational complexity. The
blend of expressivity and tractability we are aiming at
points us in the direction of modal logics as a privileged
candidate for the formalization task (see for instance
[18]). We assume the reader has some basic knowl-
edge of modal logics and its best-known Kripke seman-
tics (also named possible world semantics). Strangely
enough, even assuming knowledge of Kripke semantics,
we are going to make little use of it, and rather resort to
topological semantics, introduced about 30 years earlier
by Tarski [42]. Modern modal logics of space need old
modal logic semantics.
The attention to spatial reasoning stems, in the case of
the presented research effort, from the interest in ap-
plications in the domains of image processing and com-
puter vision, therefore, the sub-title of the thesis Theory
and Practice. But this is only one of the many motiva-
tions for which spatial logics have been considered in the
past. These range from the early philosophical efforts



[48, 31] to recent work motivated by such diverse con-
cerns as spatial representation and vision in AI [40, 36],
semantics of spatial prepositions in linguistics [27, 49],
perceptual languages [22], or diagrammatic reasoning
[26, 25]. The resulting logics are diverse, too. Theories
differ in their primitive objects: points, lines, polygons,
regions (contrast [42] against [43]). Likewise, theories
differ in their primitive spatial relations: such as inclu-
sion, overlap, touching, ‘space’ versus ‘place’, and on
how these should be interpreted: [35, 17, 13]. There
are mereological theories of parts and wholes, topolog-
ical ones (stressing limit points and connection) and
mereotopological ones (based on parthood and exter-
nal connection). Systematic accounts of the genesis of
spatial vocabulary date back to Helmholtz’ work on in-
variants of movement, but no generally agreed primitive
relations have emerged on the logic side. Moreover, ax-
ioms differ across theories: [21] vs. [34] vs. [20]. Even
our modal approach has its predecessors: of which we
mention [38, 41, 17, 46, 15, 30].
The remainder of the paper is organized as follows. In
Section 2, we review the topo-approach to spatial rea-
soning. In Section 3, we look at various modal languages
of increasing expressive power. Section 4 deals with two
AI applications of modal spatial logics. Conclusions are
summarized in Section 5.

2 The topo-approach

In the topo-approach regions of a topological space are
denoted by modal formulas. Consider, for instance, the
real plane with its standard topology and draw a spoon
on it, as shown in Figure 1. One may want to identify
the handle of the spoon, or the small shallow bowl, or the
point where these two components are joined. This can
be achieved by ‘naming’ the spoon with a proposition
letter, say p, and then by means of boolean and modal
operators identifying the other relevant regions of the
spoon p. Lets see how this is feasible using a modal
logic.
In the 30s, Tarski provided a topological interpreta-
tion and various completeness theorems [32, 37] mak-
ing the modal logic S4 the basic logic of topology. In
the topological interpretation of a modal logic, each
propositional variable represents a region of the topo-
logical space, and so does every formula. Boolean oper-
ators such as negation ¬, or ∨, and ∧ are interpreted as
complement, union and intersection, respectively. The
modal operators diamond and box, become the topolog-
ical closure and interior operators. More precisely, the
modal logic S4, called L onward, consists of:

• a set of proposition letters P ,

• two constant symbols >,⊥,

• Boolean operators ¬,∧,∨,→, and

• two unary modal operators 2,3.

(a) (b) (c) (d) (e) (f)

singleton

open

Figure 1: A formula of the language L identifies a re-
gion in a topological space. (a) a spoon, p. (b) the
containing part of the spoon, 2p. (c) the boundary of
the spoon, 3p∧3¬p. (d) the container part of the spoon
with its boundary, 32p. (e) the handle of the spoon,
p ∧ ¬32p. In this case the handle does not contain
the junction point handle-container. (f) the joint point
handle-container of the spoon, 32p ∧ 3(p ∧ ¬32p): a
singleton in the topological space.

Formula Interpretation
> the universe
⊥ the empty region
¬ϕ the complement of a region
ϕ ∧ ψ intersections of the regions ϕ and ψ
ϕ ∨ ψ union of the regions ϕ and ψ
2ϕ interior of the region ϕ
3ϕ closure of the region ϕ

Figure 2: Formulas of L and their intended meaning.

Formulas are built by means of the following recursive
rules:

• p such that p ∈ P is a well formed formula,

• >,⊥ are well formed formulas,

• ¬ϕ, ϕ∨ψ, ϕ∧ψ are well formed formulas if ϕ and
ψ are well formed formulas,

• 2ϕ and 3ϕ are well formed formulas if ϕ is well
formed formula.

In Figure 2, the intended meaning of some basic for-
mulas is summarized. The intuitions about the lan-
guage are reflected in its semantics. Topological models
M = 〈X,O, ν〉 are topological spaces (X,O) plus a val-
uation function ν : P → P(X).

Definition 1 (topological semantics of L) Truth
of modal formulas is defined inductively at points x in
topological models M :



M,x |= ⊥ never
M,x |= > always
M,x |= p iff x ∈ ν(p) (with p ∈ P )
M,x |= ¬ϕ iff not M,x |= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M,x |= ϕ ∨ ψ iff M,x |= ϕ or M,x |= ψ
M,x |= ϕ→ ψ iff if M,x |= ϕ, then M,x |= ψ
M,x |= 2ϕ iff ∃o ∈ O :

x ∈ o ∧ ∀y ∈ o : M,y |= ϕ
M,x |= 3ϕ iff ∀o ∈ O :

if x ∈ o, then ∃y ∈ o : M,y |= ϕ

As usual we can economize by defining ϕ∨ψ as ¬ϕ→ ψ,
and 3ϕ as ¬2¬ϕ.

One of Tarski’s early results was this. Universal validity
of formulas over topological models has the modal logic
L as a sound and complete proof system. The axioma-
tization is:

2> (N)
(2ϕ ∧2ψ) ↔ 2(ϕ ∧ ψ) (R)
2ϕ→ ϕ (T)
2ϕ→ 22ϕ (4)

Modus Ponens and Monotonicity are the only rules of
inference

ϕ→ ψ ϕ

ψ
(MP)

ϕ→ ψ

2ϕ→ 2ψ
(M)

In addition, consider the following derived theorem of
L:

2A ∨2B ↔ 2(2A ∨2B) (or)

Axiom (N) says that the whole space is open. (R) is
the finite intersection condition on a topological space.
Next, (or) says that open sets are closed under finite
unions. (Closure under arbitrary unions requires an in-
finitary extension of the modal language.) Finally, ax-
iom (T) says every set contains its interior, and (4) ex-
presses inflationarity of the interior operator. Further
principles of L may define special notions in topology.
For instance, the derived rule

if 2(ϕ↔ 32ϕ), then 2(2¬ϕ↔ 232¬ϕ)

says that if a set is closed regular, so is its ‘open com-
plement’.
There is a natural question on whether we are ‘correctly’
interpreting modal languages with respect to topological
spaces. The first answer is due to McKinsey and Tarski.

Theorem 1 L is the complete logic of any metric sep-
arable dense-in-itself space.

This, though, is not the only completeness result avail-
able for the topological version of S4. In fact, in [11]
we prove completeness using modern modal logic tech-
niques such as the construction of canonical models.

Figure 3: A spoon is bisimilar to a ‘chop-stick’.

Theorem 2 For any set of formulas Γ,

if Γ |=L ϕ then Γ `L ϕ.

In [11] we also derive a number of results relating S4 to
specific topological spaces such as finite well-connected
topological spaces and the Cantor space. We also intro-
duce the logic of serial sets for the real line, that is, the
logic of regions which are finite unions of convex sets of
the real line. The properties of finite unions of convex
sets have proved to be useful on the practical side [3, 2].

2.1 Topological bisimulation

Once we have a language for expressing properties of
visual scenes, we can also formulate differences between
such scenes. This brings us to the notion of ‘sameness’
for spatial configurations associated with L, and hence
to techniques of comparison. The following is the topo-
logical version of a well-known notion from modal logic
and computer science [44, 33].

Definition 2 (topological bisimulation) Consider
the language L and two topological models 〈X,O, ν〉,
〈X ′, O′, ν′〉. A topological bisimulation is a non-empty
relation � ⊆ X ×X ′ such that if x � x′ then:

(i) x ∈ ν(p) ⇔ x′ ∈ ν′(p) (for any proposition letter p)

(ii) (forth condition): x ∈ o ∈ O ⇒ ∃o′ ∈ O′ : x′ ∈ o′

and ∀y′∈o′ : ∃y∈o : y � y′

(iii) (back condition): x′ ∈ o′ ∈ O′ ⇒ ∃o ∈ O : x ∈ o
and ∀y ∈ o : ∃y′ ∈ o′ : y � y′

We call a bisimulation total if it is defined for all elements
of X and of X ′. We overload the symbol � extending
it to models with points: 〈X,O, ν〉, x � 〈X ′, O′, ν′〉, x′
requires also that x � x′. If only the atomic clause (i)
and the forth condition (ii) hold, we say that the second
model simulates the first one.

To motivate this definition, one can look at the ‘topolog-
ical dynamics’ of the back and forth clauses, seeing how
they make x, x′ lie in the same ‘modal setting’. Further
motivations come from a match with modal formulas,
and basic topological notions.



Example 1 (spoon and chop-stick) Is a spoon the
same as a chop-stick? The answer depends of course on
how we define this cutlery. Suppose we let the spoon
be a closed ellipse plus a touching straight line and the
chop-stick a straight line touching a closed triangle (cf.
Figure 3). Let us regard both as the interpretation of
some fixed proposition letter p in their respective mod-
els. Then we do have a topo-bisimulation by matching
up (a) the two ‘junction points’, (b) all points in the
two handles, and likewise for (c) the interiors, (d) the
remaining boundary points, and (e) all exterior points
in both models.
Many more examples and cutlery related pictures of
topologically bisimilar and not spaces can be found
in [10].

Crucially, modal spatial properties are invariant for
topo-bisimulations:

Theorem 3 Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν′〉 be
models with bisimilar points x ∈ X, x′ ∈ X ′. For all
modal formulas ϕ, M,x |= ϕ iff M ′, x′ |= ϕ.

To clinch the fit, we need a converse. In general this fails,
and matters become delicate (see [18]). The converse
does hold when we use an infinitary modal language—
but also for our finite language over special classes of
models. Here is a nice illustration: finite modally equiv-
alent pointed models are bisimilar.

Theorem 4 Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν′〉 be
two finite models, x ∈ X, and x′ ∈ X ′ two points in
them such that for every ϕ, M,x |= ϕ iff M ′, x′ |= ϕ.
Then there exists a bisimulation between M and M ′ con-
necting x and x′.

2.2 Topo-bisimilar reductions

In many contexts, bisimulations and simulations are
used to find minimal models. This is useful, for instance,
to find minimal representations for labeled transition
systems having certain desired properties modally ex-
pressible. Topo-bisimulation can be used for finding a
minimal representation for a determined spatial config-
uration. For example, consider a spoon with two han-
dles, as depicted in Figure 6.a. The spoon has 7 ‘salient’
points; these satisfy the formulas reported in Figure 4.
It is easy to find a L Kripke model satisfying the 7 for-
mulas above, for instance, the one in Figure 6.a. By a
bisimulation one ‘reduces’ it to a minimal similar one.
The topo-bisimilar reduction is presented in the table
on the right of Figure 6.
From the reduced model one can ‘reconstruct’ the pic-
torial example, that is, a spoon with only one handle,
Figure 6.b. Checking the topo-bisimilarity of Figure 6.a
and Figure 6.b is an easy task to perform. We do not
spell out the general method used here for transforming
topological models into Kripke ones (and back); but it
should be fairly clear from the example.

Point Formula
1 2p
2 3p ∧3¬p
3 2¬p
4 p ∧ ¬32p ∧32¬p
5 32p ∧3(p ∧ ¬32p)
6 p ∧ ¬32p ∧32¬p
7 32p ∧3(p ∧ ¬32p)

Figure 4: Formulas true at points of the model in Fig-
ure 5.

1

3

7

2

5

4

 6

(a) (b)

Figure 5: The reduction of a topological model to a
minimal topo-bisimilar one.

The claim is not that one should move back and forth
from topological and Kripke semantics to find minimal
models. Our goal is to show that topo-bisimulations en-
able the reduction of spatial models in the same way
that bisimulations enable the reduction of Kripke mod-
els. A general algorithm for deciding topo-bisimulation
is still missing, but for a specific class of models it does
exist [6].

2.3 Games that compare visual scenes

Topo-bisimulation is a global notion of comparison. But
in practice, we are interested in fine-structure: what are
the ‘simplest differences’ that can be detected between
two visual scenes? For this purpose, we introduce topo-
games between first-order models [24]. Similarity and
difference between visual scenes will then have to do
with strategies for players comparing them.

Definition 3 (topological game) Consider two
models 〈X,O, ν〉, and 〈X ′, O′, ν′〉, a natural number
n and two points x1 ∈ X, x′1 ∈ X ′. A topological
game of length n, with starting points x1, x

′
1—notation

TG(X,X ′, n, x1, x
′
1)—consists of n rounds between two

players: Spoiler and Duplicator. Each round proceeds
as follows:

(i) Spoiler chooses a model Xs and an open os contain-
ing the current point xs of that model
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(a) (b)
1 1
2 2
3 3
4 4
5 5
6 4
7 5

(a)

5

2 31 4
p p p −p

p

(b)

Figure 6: The reduction of the spoons of Figure 5 via
a bisimulation on the corresponding Kripke models. In
the table, the bisimulation relation.

(ii) Duplicator chooses an open od in the other model
Xd containing the current point xd of that model

(iii) Spoiler picks a point x̄d in Duplicator’s open od in
the Xd model

(iv) Duplicator finally picks a point x̄s in Spoiler’s open
os in Xs

The points x̄s and x̄d become the new current points
of the Xs and Xd models, respectively. After n rounds,
two sequences have been built:

{x1, o1, x2, o2, . . . , on−1, xn} {x′1, o′1, x′2, o′2, . . . , o′n−1, x
′
n}

with xi ∈ oi, and oi ∈ O (analogously for the second
sequence). After n rounds, if xi and x′i (with i ∈ [1, n])
satisfy the same atoms, Duplicator wins. (Note that
Spoiler already wins ‘en route’, if Duplicator fails to
maintain the atomic match.) A winning strategy (‘w.s.’
for short) for Duplicator is a function from any sequence
of moves by Spoiler to appropriate responses which al-
ways ends in a win for Duplicator. The same notion
applies to Spoiler. An infinite topological game is one
without a finite limit to the number of rounds. In this
case, Duplicator wins if the matched points continue to
satisfy the same atoms.

Example 2 (playing on spoons) Consider the three
configurations in Figure 7. (a) The leftmost game starts
with a point on the boundary of the spoon versus an
interior point of the other spoon. Spoiler can win this
game in one round by simply choosing an open set on the

1 Round 2 Rounds 3 Rounds

(a) (b) (c)

Figure 7: Games on two spoons with two different start-
ing points. On top, the number of rounds needed by
Spoiler to win.

right spoon completely contained in its interior. Dupli-
cator’s open response must always contain a point not in
the spoon, which Spoiler can then pick, giving Duplica-
tor no possible response. (b) In the central game, a point
on the handle is compared with a boundary point of the
spoon’s container. Spoiler can again win the game, but
needs two rounds this time. Here is a winning strategy.
First, Spoiler chooses an open on the left spoon con-
taining the starting point but without interior points.
Any open chosen by Duplicator on the other spoon must
contain an interior point. Spoiler then picks such an in-
terior point. Duplicator’s response to that can only be
a boundary point of the other model (on the handle)
or a point outside of the spoon. In the latter case, she
loses at once – in the former, she looses in one round,
by reduction to the previous game. (c) Finally, on the
left the junction between handle and container is com-
pared with a boundary point of the container. In this
game, Spoiler will chose an open on the right model,
avoiding points on the handle of the spoon. Duplicator
is forced to chose an open on the left containing points
on the handle. Spoiler then picks such a handle point.
Duplicator replies either with an interior point, or with
a boundary point of the right spoon. Thus we are back
with game (b), and Spoiler can win in the remaining
two rounds.

The fine-structure provided by games measures differ-
ences in terms of the minimum number of rounds needed
by Spoiler to win. These same differences may also be
formulated in terms of our modal language. To see this,
we need the notion of modal rank, being the maximum
number of nested modal operators in a formula. For in-
stance, the modal ranks of the formulas in Figure 1: p,
2p, p∧¬2p, 32p, p∧¬32p, 32p∧3(p∧¬32p), are
0, 1, 1, 2, 2, and 3, respectively. Here is the relation
between games, L and topological models.

Theorem 5 (adequacy) topological game!adequacy
Duplicator has a w.s. in TG(X,X ′, n, x, x′) iff x and
x′ satisfy the same formulas of modal rank up to n.

This is the usual version of adequacy: slanted toward
similarity. But in our pictorial examples, we rather



looked at Spoiler. One can also set up the proof of
Theorem 5 so as to obtain an effective correspondence
between (a) winning strategies for Spoiler, (b) modal
‘difference formulas’ for the initial points. Here is an
illustration.

Example 3 (matching strategies with formulas)
Look again at Figure 7. The strategies described for
Spoiler are immediately linked to modal formulas that
distinguish the two models. Suppose the spoons are
denoted by the proposition letter p and hence the back-
ground by ¬p. In the game on the left, 2p is true of the
starting point of the right spoon, and its negation 3¬p is
true of the starting point of the other spoon. The modal
depth of these formulas is one and therefore Spoiler can
win in one round. In the central case, a distinguishing
formula is ¬32p, which holds for the starting point on
the left spoon, but not for that on the right. The modal
depth is 2, which is the number of rounds that Spoiler
needed to win the game. Finally, a formula of modal
depth 3 that is only true of the point on the left spoon
of the leftmost game is: 3(p ∧ ¬32p). The negation of
this formulas is true on the other starting point, thus
justifying Spoiler’s winning strategy in 3 turns.

There is still more fine-structure to these games. E.g.,
visual scenes may have several modal differences, and
hence more than one winning strategy for Spoiler. Also,
recall that topo-games can be played infinitely. Then
the winning strategies for Duplicator (if any) are pre-
cisely the various topo-bisimulations between the two
models.

2.4 Topo-distance

Topo-bisimulations are an equivalence relation, so one
may very well use them to define identity of patterns.
Via simulations, one can also consider issues of a pattern
being a sub-pattern of another one. Then, topo-games
are a refining notion of topo-bisimulations. Therefore,
one may use topo-games to define a measure of differ-
ence among spatial patterns. Think of it this way. The
less it takes Spoiler to win a game, the more different
must the spatial patterns be, the more unsimilar. On
the opposite, the longer Duplicator can resist, the more
similar are the spatial patterns. In the limit, if Duplica-
tor can resist forever, i.e., in the infinite round game, the
two patterns are topologically bisimilar. Now comes the
technical problem. Topo-games are defined as a way of
comparing two given topological models, exactly in the
spirit of the original definition of first-order model com-
parison games à la Ehrenfeucht-Fräıssé , but we need
a similarity measure on the whole class of models; we
need a measure that behaves uniformly across all models
for L.
The first intuition on turning model comparison games
into a similarity measure may be misleading in a pes-
simistic direction. To get to a similarity measure, we

need to define a distance in terms of topo-games. Dis-
tances require considering more than just two models
at a time. Consider, for example, three models and the
three model comparison games that can be played. The
formulas, the points and open sets picked in the three
games may be completely unrelated one game from each
other, therefore, one may be discouraged and conjecture
that model comparison games are not related across dif-
ferent models of the same class.
Even though the remark on the unrelatedness of the
strategies for different games is true. It turns out that
there is still an interrelation between model comparison
games over two given models and the whole class. Most
importantly, the relation can be defined to satisfy the
three properties defining a distance measure. Here is
how.

Definition 4 (isosceles topo-distance) Consider
the space of all topological models T . Spoiler’s shortest
possible win is the function spw : T × T → IN ∪ {∞},
defined as:

spw(X1, X2) =



n if Spoiler has a winning strategy
in TG(X1, X2, n),
but not in TG(X1, X2, n− 1)

∞ if Spoiler does not have a
winning strategy in
TG(X1, X2,∞)

The isosceles topo-model distance (topo-distance, for
short) between X1 and X2 is the function tmd : T×T →
[0, 1] defined as:

tmd(X1, X2) =
1

spw(X1, X2)

The distance was named ‘isosceles’ since it satisfies the
triangular property in a peculiar manner. Given three
models, two of the distances among them (two sides of
the triangle) are always the same and the remaining
distance (the other side of the triangle) is smaller or
equal. In [3, 2], it is shown that indeed tmd behaves as
a distance measure.

Theorem 6 (isosceles topo-model distance) tmd
is a distance measure on the space of all topological
models.

3 Extensions

So far we have presented a modal language of basic
topology and we have equipped ourselves with a num-
ber of tools: (1) a topological semantics to interpret
formulas as regions; (2) topological bisimulations to as-
sess the equivalence of patterns, which comes with the
notion of simulations and of reductions; (3) topological
games to compare any two given patterns; and, finally,



(4) topological distance to measure globally the similar-
ity of any pattern expressible with the given language.
Though, the language L used to introduce the topo-
approach is not very powerful. One can merely express
simple topological properties at a given point. Thus, one
may wonder how general the topo-approach to space is.
In [9, 6], we identify a number of modal languages for
which the same approach is viable. Some of these are
already well-known in the field of spatial reasoning, such
as the extension of S4 with a universal operator [17]
others are new. Here we simply provide an overview
following two roads: that of extending the logical power
of L and that of extending the geometrical power.

3.1 Extensions of the logical power

An extremely useful technique in modal logics to gain
expressive power without leaving the guarded area of
decidable languages is to add a modal operator. For
instance, if one needs to express notions connected to
equality of states in Kripke semantics, one may add a
difference operator Dϕ which reads “there is a state dif-
ferent from the current one that satisfies ϕ.” This is
exactly what the sort of extensions we are after. We
consider important topological relations not captured
by L alone which can be safely expressed by ‘adding’
appropriate new modal operators [23].
The first limitation to overcome is L’s locality. The for-
mulas are evaluated at points and provide local infor-
mation, e.g., the point x is in the open set given by the
intersection of the interior of ϕ and ψ (M,x |= 2ϕ∧2ψ).
By this information we know a lot about the point x, but
very little about the set denoted by 2ϕ∧2ψ, we merely
know that there is one point satisfying it, the point x.
Introducing an universal (or global) modality is the solu-
tions to this problem. For instance, with L+(the univer-
sal modality) one is able to express whether a topolog-
ical space is connected or not, which is clearly a global
property of the space and not a local one of some points
of the space.
The truth definition of L is extended with the following:

M,x |= Eϕ iff ∃y ∈ X, M, y |= ϕ

M,x |= Uϕ iff ∀y ∈ X : M,y |= ϕ

The definition reads, for Eϕ, “there exists a point in the
model satisfying ϕ,” and dually for Uϕ, “all the points
in the model satisfy ϕ.”
Some basic facts are that U and E modalities follow
the axiomatization of S5 [17] and that it is possible to
identify normal forms [6]. But, in the context of this
article, the more interesting feature is that notions of
topo-bisimulation, of topo-games and topo-distance ex-
ist. The adequate version of topo-bisimulation follows
the definition of that for L with the addition that the
relation must be defined for all points of the two mod-
els. As for the games, the difference lies in the fact that
these are no longer defined for a given starting point and
that two types of rounds are now possible. One as in

the games for L plus the following one:

global


(i) Spoiler chooses a model Xs and picks

a point x̄s anywhere in Xs

(ii) Duplicator chooses a point x̄d anywhere
in the other model Xd

It is up to Spoiler to decide which type of round he wants
to engage Duplicator in.
The universal extension is not the only possibility to
enhance the logical power. An alternative is that of
using hybrid modal references, cf. [12]:

M,x |= @Aϕ iff ∀y ∈ ν(A) M,y |= ϕ

M,x |= @aϕ iff ∃y ∈ ν(A) M,y |= ϕ

The last increase of logical power we refer to is that of
using an operator analogue to the well-known tempo-
ral logics operator Until [28]. If one abstracts from the
temporal behavior and interprets the modality in spaces
with dimensionality greater than one, one gets an oper-
ator expressing something to be valid up to a certain
boundary region, a sort of fence surrounding the cur-
rent region. Here is a natural notion of spatial ‘Until’ in
topological models:

M,x |= ϕUψ iff ∃A : O(A) ∧ x ∈ A ∧ ∀y ∈ A.ϕ(y)∧
∀z(z is on the boundary of A ∧ ψ(z))

A graphical representation of the Until operator is pre-
sented in Figure 8. Its expressiveness is strictly richer
than that of the basic modal language of space.

ϕ ϕ

ϕψ

ψ
ψ

ψ

ψ

ϕ ϕϕ

ϕ ϕ

ψ

ψ
ϕ

ϕ

Figure 8: The region involved in ϕUψ.

3.2 Geometrical extensions

Rather than simply using more expressive logical op-
erators, an alternative way of extending the expressive
power of a modal language of space is that of enriching
the spatial structure of the models. A first elementary
example is the property of a point’s being in the convex
closure of a set of points. That is, there exists a seg-
ment containing the points whose end-points are in the
set. Capturing convexity modally involves a standard
similarity type, that of frames of points with a ternary
relation of betweenness: M,x |= Cϕ iff

∃y, z : M,y |= ϕ ∧M, z |= ϕ ∧ x lies in between y and z



This definition is slightly different from the usual notion
of convex closure. It is a one-step convexity operator
whose countable iteration yields the standard convex
closure. One-step convexity exhibits a modal pattern
for an existential binary modality:

∃yz : β(yxz) ∧ ϕ(y) ∧ ϕ(z)

We are now moving in the domain of affine spaces.
These have a strong modal flavor, as shown by [15, 14,
47], where two roads are taken. One merges points and
lines into one sort of pairs 〈point, line〉 equipped with
two incidence relations. The other has two sorts for
points and lines, and a matching modal operator. But
there are more expressive classical approaches to affine
structure. In [43], Tarski gave a full first-order axiom-
atization of elementary geometry in terms of a ternary
betweenness predicate β and quaternary equidistance δ.
More precisely, betweenness β(xyz) means that the
point y lies in between x and z, allowing y to be one of
these end-points. Line structure is immediately avail-
able by defining collinearity in terms of betweenness:

xyz are collinear iff β(xyz) ∨ β(yzx) ∨ β(zxy)

Ternary betweenness models a binary betweenness
modality <B>: M,x |= <B>(ϕ,ψ) iff

∃y, z : β(yxz) ∧M,y |= ϕ ∧M, z |= ψ

Note that this is a more standard modal notion than the
earlier topological modality: we are working on frames,
and there are no two-step quantifiers hidden in the se-
mantics. But what about our topo-approach, can we
find an adequate notion of bisimulation for affine lan-
guages? The answer is again positive.

Definition 5 (affine bisimulation) Given two affine
models 〈X,O, β, ν〉, and 〈X ′, O′, β′, ν〉, an affine bisim-
ulation is a non-empty relation � ⊆ X ×X ′ such that,
if x � x′:

(i) x and x′ satisfy the same proposition letters,

(ii) (forth condition): β(yxz) ⇒ ∃y′z′ : β′(y′x′z′) and
y � y′ and z � z′

(iii) (back condition): β′(y′x′z′) ⇒ ∃yz : β(yxz) and
y � y′ and z � z′

where x, y, z ∈ X and x′, y′, z′ ∈ X ′.

We may be after even more structure than just affine
point and line patterns. Tarski’s equidistance also cap-
tures metric information. There are various primitives
for this. Tarski used quaternary equidistance—while
ternary equidistance would do just as well (x, y and
z lie at equal distances). An alternative choice, which
we stress in [9], is that of considering a ternary rela-
tion of relative nearness (originally introduced in [45]):
N(x, y, z) iff

y is closer to x than z is, i.e., d(x, y) < d(x, z)
where d(x, y) is any distance function.

This is meant very generally. The function d can be
a geometrical metric, or some more cognitive notion of
visual closeness (van Benthem’s original interest [45];
cf. also Gärdenfors ‘Conceptual Spaces’), or some util-
ity function with metric behavior. Randell et al. [36]
develop the theory of comparative nearness for the pur-
pose of robot navigation, related to the region calculus
RCC [35]. Note that relative nearness defines equidis-
tance by Eqd(x, y, z) : ¬N(x, y, z)∧¬N(x, z, y), further-
more, Tarski’s quaternary equidistance is expressible in
terms of N as well. The relation naturally maps to a
binary modal operator defined as: M,x |= <N>φ,ψ iff

∃y, z : M,y |= ψ ∧M, z |= ϕ ∧N(x, y, z)

With this operator one can amuse himself with various
well-known geometrical constructions [6], such as, the
Mascheroni construction (where one can build elemen-
tary geometry by using the compass alone), Voronoi dia-
grams (where regions of influences of a given set of points
are separated), and Delaunay triangulation (where the
space is partitioned into triangles).
Finally, one may consider vector spaces as the models
for modal languages. For brevity, we omit the treatment
of this here and refer to [6] for a speculation on the
relation between mathematical morphology [39, 19] and
linear and arrow logics.

4 Applications

The topo-distance—build on the games played by two
antagonist which challenge each other in finding differ-
ences among spatial patterns—is a similarity measure
between spatial configurations. There are many pos-
sible uses for similarity measures in computer vision.
A robot may compare what it sees with a database of
known patterns. A natural language system may give
various semantics to the phrase ‘part-of’, ‘same’, ‘just
like’ when the object of qualification are spatial. An-
other possibility is that of using similarity measures for
retrieving images from a database.
We have approached this last task with the proto-
type IRIS (Image RetrIeval based on Spatial relation-
ships) [3, 2]. The similarity measure of IRIS is based
on the topo-distance for the language L extended with
the universal modality. This allows expressing region
properties such as the ‘man inside the car’ or the ‘ball
touching the foot’ in a pictorial manner. The prototype
has shown the applicability of the topo-approach. On
the negative side, the distance assigns similarity values
which are not close to human intuition. In addition, the
system shows brittleness as the quality of the segmen-
tation of the images decreases.
Another application of spatial reasoning we have investi-
gated is that of logical structure detection in the context
of document image analysis. The task is that of recon-
structing the intended meaning of document images an-
alyzing the layout of the document. The approach uses



a topological language of the plane with weak geomet-
rical expressive power. Extensive experimentation has
been performed showing positive results [7, 8, 4]. The
results are even more encouraging if one considers the
heterogeneity of the document collections used for ex-
perimentation (different journals, magazines, one-page
ads, etc.).

5 Conclusions

The research underlying [6] is an attempt to bring to-
gether two research areas: the standard mathematical
approach to space (topology, geometry, and linear alge-
bra) with a computational analysis of visual processing
tasks. To build such a bridge, we proposed a modal
logic approach, which connects up with both: one, more
tractable levels of spatial structure inside mathematical
theories; and two, more expressive power in computa-
tional tasks. The results in [6] show the connection
meaningful by providing a number of tools which are
both useful for ‘deconstructing mathematics’ and for
the analysis and redesign of computational tasks. In
particular, the topo-approach we propose is a frame-
work for topological reasoning with a modal language of
visual patterns, emphasizing bisimulation and compari-
son games as a means of calibrating similarity of visual
scenes. Moreover, a pleasing side-effect is a new take
on elementary topology. Laying the basis for a more
ambitious program of ‘modal geometry’, exploring new
fine-structure of tractable fragments of geometry; just
as modal logic itself does for first-order logic.
Our analysis of space and of applications of spatial theo-
ries is only a small step which generates more questions
than answers. We identified many new open problems
along the way in the thesis. Thus, our work may also
serve as a pilot study for a broader modal geometry de-
veloped with a view to potential applications.
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