
Modeling and Managing the Variability of

Web Service-based Systems

Chang-ai Sun a,∗, Rowan Rossing b, Marco Sinnema b,
Pavel Bulanov b, Marco Aiello b

aDepartment of Computer Science and Technology, University of Science and
Technology Beijing, 30 Xueyuan Road, Haidian District, 100083 Beijing, China
bDepartment of Mathematics and Computer Science, University of Groningen,

P.O. Box 800, 9700 AV Groningen, The Netherlands

Abstract

Web service-based systems are built orchestrating loosely coupled, standardized,
and internetworked programs. If on the one hand, Web services address the inter-
operability issues of modern information systems, on the other hand, they enable
the development of software systems on the basis of reuse, greatly limiting the ne-
cessity for reimplementation. Techniques and methodologies to gain the maximum
from this emerging computing paradigm are in great need. In particular, a way to
explicitly model and manage variability would greatly facilitate the creation and
customization of Web service-based systems. By variability we mean the ability of
a software system to be extended, changed, customized or configured for use in a
specific context.

We present a framework and related tool suite for modeling and managing the
variability of Web service-based systems for design and run-time, respectively. It is
an extension of the COVAMOF framework for the variability management of soft-
ware product families which was developed at the University of Groningen. Among
the novelties and advantages of the approach are the full modeling of variability
via UML diagrams, the run-time support, and the low involvement of the user. All
of which leads to a great deal of automation in the management of all kinds of
variability.

Key words: Service Engineering, Variability modeling, Variability management,
Web services

∗ Corresponding author.
Email addresses: casun@ustb.edu.cn (Chang-ai Sun),

rowan.rossing@itsround.nl (Rowan Rossing), mail@msinnema.nl (Marco
Sinnema), p.bulanov@rug.nl (Pavel Bulanov), aiellom@cs.rug.nl (Marco

Preprint submitted to The Journal of Systems and Software 22 July 2009



1 Introduction

Information systems today are not computational islands, but rather systems
that need to communicate and interoperate over the Internet or corporate
intranets. Supermarkets automatically order new products when stocks run
low. On-line loan providers communicate with banks and loan registers. All
these computer systems are different and there is no uniform way of access-
ing them, which complicates communication. Consider for example an on-line
travel agency. If one wants to purchase a vacation package, the travel agency
has to poll multiple companies to get the prices on airline tickets, hotels and
rental cars. Each of these companies likely uses different, incompatible applica-
tions for pricing and reservations, making interaction more difficult (Curbera
et al., 2002). Web services aim to solve the interoperability problem by provid-
ing a standardized way of exchanging data between these information systems.
They use basic Web protocols for communication and are based on open XML
standards, making them platform independent and developer friendly. Systems
can be composed that are largely or entirely built on Web services. These sys-
tems are known as service-oriented systems, service-centric systems, or Web
service-based systems (Curbera et al., 2002; Peltz, 2003).

Variability is the ability of a software system or artifact to be extended,
changed, customized, or configured for use in a specific context (Sinnema
et al., 2006a). Two important concepts related to variability are variation
points and variants. Variation points are locations in the design or implemen-
tation at which variation will occur, and variants are the alternatives that can
be selected at those variation points (Bachmann and Bass, 2001). Consider
again the example of the on-line travel agency. Due to a dynamic network
environment, the Web service of a particular airline can become unavailable.
In that case, the Web service of a different airline that offers the same flight
can be used. This kind of variability can be captured in a variation point for
selecting a particular airline Web service. The variants in this case are the
different Web services that can be selected.

COVAMOF 1 is a variability management framework, developed at the Uni-
versity of Groningen, to handle the issues in variability management relevant
for the software industry (Deelstra et al., 2005; Sinnema et al., 2006a, 2004,
2006b). It offers facilities to model the variability in a software system over
multiple layers of abstraction. The COVAMOF framework is designed specifi-
cally for use with software product families. The idea behind software product
families is intra-organizational reuse through the explicitly planned exploita-
tion of similarities between related products (Linden, 2002). Individual prod-

Aiello).
1 http://www.covamof.com/

2



ucts are derived from a shared set of reusable components. The COVAMOF
framework helps developers in deriving these individual products by providing
an associated tool suite, called COVAMOF-VS, which is an add-in for Mi-
crosoft Visual Studio .NET (Microsoft Visual Studio .NET Web site, 2007).
COVAMOF has already been validated to be very useful in industry (Deelstra
et al., 2005).

It is important to consider variability management in Web service-based sys-
tems such as the system for the on-line travel agency. The dynamic execution
environment of Web services makes it possible to change such systems at run-
time; in fact Web services can be replaced or can be reconfigured to adapt to
different circumstances. Explicit variability management in Web service-based
systems provides the following advantages (Koning et al., 2009):

• It helps in meeting the Quality of Service. When a currently configured
service performs inadequately, it can be replaced by a better performing
one, or parameters can be changed to achieve better performance.

• It can enhance the availability of the system. When a service becomes un-
available, a backup service with the same functionality can be used as a
replacement.

• It can be used to optimize the quality attributes, by changing the configu-
ration of the system.

• It allows for run-time flexibility. Rebinding of services can be performed at
run-time, and potentially automatically when needed.

Variability modeling for Web service-based systems differentiates from the one
for traditional product families. The main difference lies in that the former
has to provide more flexible run-time support due to the Service Oriented Ar-
chitecture (SOA), while the latter focuses more on compile-time support. We
now want to leverage the potential of the COVAMOF framework for variabil-
ity management in Web service-based systems. This is a challenge, because
the COVAMOF framework is geared towards software product families and
therefore does not yet focus on run-time reconfiguration.

In (Koning et al., 2009), we took a first step towards the application of the
COVAMOF framework to Web service-based systems. The Business Process
Execution Language (BPEL) (Business Process Execution Language (BPEL)
Web site, 2007) was extended to support variability. BPEL is an XML-based
programming language that can be used to describe the interaction between
Web services at the message level; in this way it also describes their com-
position. The newly developed language, called VxBPEL, has extra XML
elements to support variation points and variants in a BPEL process. We
used the COVAMOF framework to view the variability in VxBPEL processes.
However, the approach of only using VxBPEL is not fully compatible with
the COVAMOF framework, because not all of its variability concepts are sup-

3



ported. Also, with VxBPEL variability is still only modeled in the implemen-
tation layer, and not in higher layers of abstraction.

Thus, we focus on modeling variability also at the architectural level. Architec-
tural modeling is important in Web service-based systems for the same reason
it is important in software product families: it helps in understanding the com-
position of the system. Also, to make full use of the COVAMOF framework,
we need to describe Web service-based systems at multiple layers of abstrac-
tion. These considerations are generalized in the following question: “How can
one model variability in the architecture of Web service-based systems, and
can this variability be managed at run-time?”

To answer these questions, we have designed and developed a profile for
the Unified Modeling Language (UML) (Unified Modeling Language (UML)
Web site, 2007) for modeling variability in Web service-based systems at
the architectural level. This UML profile is conceptually compatible with the
COVAMOF framework. We have also extended the COVAMOF-VS tool suite,
to allow it to view and configure the variability in a Web service-based sys-
tem. Furthermore, to manage the variability in Web service-based systems at
run-time, we have proposed a variability management process that requires
only minimal involvement from the end-user. This management process is
driven from the COVAMOF-VS tool suite, and makes use of our approach for
architectural variability modeling.

Incidentally, we remark that multiple views of the architecture may become
inconsistent while making variability choices. We believe that ensuring the
consistency of such multiple views of the architecture should be left to the
software engineer. In other words, it is the responsibility of the software engi-
neer to model the variability consistently over the different views of the archi-
tecture, or to employ a modeling tool that can detect inconsistencies. In the
proposed approach, we use the UML tool (ArgoUML Web site, 2007), which
provides some abilities of checking the inconsistency over different views.

In summary, this work includes the following contributions:

• A general extension to UML for modeling variability in UML diagrams.
• Full architectural modeling of variability of Web service-based systems via

UML diagrams.
• A full application of the COVAMOF framework to Web service-based sys-

tems. This is a major change from product families.
• A management process driven by the COVAMOF-VS tool suite to automate

the management of variability in Web service-based systems at run-time,
with low involvement of the user.

The remainder of the paper is organized as follows. In Section 2, we provide
three examples that are amenable to the techniques we propose here. In Sec-

4



tion 3, we describe the underlying concepts and techniques of our method.
In Section 4, we define the UML profile we designed to model variability in
the architecture of Web service-based systems. In Section 5, we describe how
to use our UML profile to model the different types of variability that can
occur in Web service-based systems. In Section 6, we propose a variability
management process for managing variability in Web service-based systems
at run-time. In Section 7, we describe our extensions to the COVAMOF-VS
tool suite. In Section 8, we provide an overview of related work. The conclusion
is reported in Section 9.

2 Examples

There are many examples of software products whose realization can benefit
from variability modeling and management. Here we report three examples.
First, a supply chain. A classical example for which we go into details and
we use throughout the paper to exemplify concepts related to the proposed
methodology. Second, we give an example of a controlled environment: that of
customization of laws in local governmental bodies. Third, the case of adapting
the same domotic software to many different houses by modeling variations.

2.1 Supply chain

As an example of a Web service-based system we use the application proposed
in (Chapman et al., 2003) by the Web services Interoperability Organization
(WS-I) (Web Services Interoperability Organization (WS-I) Web site, 2007),
which is extended in (Baresi et al., 2003). The sample application describes a
Supply Chain Management System (SCMS). It has an extensive architecture,
consisting of multiple views, and the architectural diagrams are in UML.

Supply chain management is the process of planning, implementing, and con-
trolling the operations of the supply chain with the purpose to satisfy cus-
tomer requirements as efficiently as possible. The SCMS consists of consumer
services, retailer services, warehouse services, shipping services, and manufac-
turer services. The consumer Web service can be a vendor Web site where
consumers can order goods. There may be multiple retailer services, multi-
ple warehouse services, multiple shipper services, and multiple manufacturer
services. So, there are plenty of opportunities for variability.

The SCMS can be described at three layers of abstraction, i.e., the feature
layer, the architectural layer, and the implementation layer. At the implemen-
tation layer the actual implementations of the Web services exist, but also

5



Consumer Retailer

Shipper Warehouse

Manufacturer
n m

m

n

m

n
m

n

Fig. 1. Composition view of the SCMS.

ShipperWarehouseRetailerConsumer

SubmitOrderRequest

InquireGoodsRequest InquireGoodsResponse

ShipGoodsOrder

AckShipGoodsOrder

SubmitOrderResponse

Fig. 2. Business process view of the SCMS.

WSDL files describing the interfaces of the services, and other files needed to
deploy and run the system. The feature layer describes the high-level features
and requirements of the system. However, our focus is primarily at the archi-
tectural layer, which describes the architecture of the system using multiple
different views.

For the purpose of this paper, we have simplified the architecture of the SCMS
to one UML diagram per architectural view. The architecture consists of the
following views:

• The composition view models the composition of the Web service-based
system. It uses UML class diagrams to model the Web services and their
interconnecting relationships. Figure 1 shows the composition view of the
SCMS architecture.

• The business process view models the processes executed by the Web service-
based system. The individual processes are modeled through UML activity
diagrams. Figure 2 shows the business process view of the SCMS architec-
ture.

• The use case scenario view models possible use case scenarios in the Web
service-based system. These exchanges of messages between Web services
are modeled through UML sequence diagrams. Figure 3 shows the use case
scenario view of the SCMS architecture.

• The deployment view details the distribution of Web services over the net-
work. UML deployment diagrams are used for this. Figure 4 shows the de-
ployment view of the SCMS architecture.

6



Consumer Retailer ShipperWarehouse

OrderRequest(132)

GoodsRequest(132)

GoodsResponse(132)

ShipGoods(132)

AckShipGoods(132)

OrderResponse(132)

Fig. 3. Use case scenario view of the SCMS.

Consumer system

«artifact»

Consumer

Retailer system

«artifact»

Retailer

«artifact»

Warehouse

Shipper system

Manufacturer system

«artifact»

Shipper

«artifact»

Manufacturer

Fig. 4. Deployment view of the SCMS.

2.2 Local eGovernment

Most laws governing local bodies, such as municipalities, are defined by the
central government and have an impact on the business processes and infor-
mation systems of the local entities. If the laws can be formalized as formal
process with variability taking into account the business and technical differ-
ences of the various municipalities, one can have great advantages from reuse.
Consider the Dutch case where there are 441 municipalities and a regulation
such as the WMO law 2 that mandates, for instance, the rules for providing
publicly subsidized wheel chairs to citizens by the municipalities.

Now there are two roads to manage the translation from law to “instance of
giving out a wheel chair in municipality X.” One way is to give the inter-
pretation document to all municipalities and let each one of them implement
the law autonomously, as it is done today. The other way is to provide a for-
malized and generic process including variability describing the law and let
the municipalities customize it according to their organizational structure and

2 Wet maatschappelijke ondersteuning, Social Support Act approved in 2007 in the
Netherlands.

7



their ICT infrastructure.

Fig. 5. An example of an e-Government process for obtaining a wheelchair.

To follow the second road to law implementation, a number of key ingredients
are necessary. First, the law interpretation document has to be as close as
possible to the implementation level or, more realistically, someone has to
translate the interpretation law document into some kind of workflow language
(cf. Figure 5) using standard ontologies (e.g., Breuker et al. (2003)). Second,
the implementing body must have a Service-oriented organization and ICT
architecture (cf. the discussion about the Italian case in Mecella and Pernici
(2001); Baldoni et al. (2008)). In fact, once the process implementing the law
is in place, it will have to invoke services available in the municipality to
complete its execution. These may be both performed by a software element
or a human being. Third, one needs to have a way to express the generic
process describing the law and a framework for the adaptation of this to the
implementing parties. The process must be unambiguous and as general as
possible, while the adaptation must be as easy and automatizable as possible.

This example is the object of a separate study in the context of the Dutch
project Software As Service for the varying needs of Local eGovernments (Aiello
et al., 2008).

2.3 Domotics

Domotics is the field where housing (domus) meets technology in its various
forms (informatics, but also robotics, mechanics, ergonomics, and communi-
cation) to provide better homes from the point of view of safety and comfort.
The typical situation of any home is that many heterogeneous devices populate
it (Aiello and Dustdar, 2008). Nevertheless, people run similar processes, just
using different tools. For instance, one may use a microwave to warm water
for a tea while somebody else might use a gas stove. As home appliances are
becoming ready for internetworking and interoperation, home human-driven
processes can be (semi-)automatically managed and new home software prod-
ucts can emerge.

Since homes are different in the devices that populate them, there is a definite
need to model variation when designing home products. Variation points are

8



Fig. 6. The architecture of a generic Web service-based domotic middleware (den
Dulk, 2009).

then necessarily instantiated at run-time in a specific home. In (den Dulk,
2009), we model the process of organizing a house party. The modeling takes
into account various different homes and the possibility that of having different
devices or that the same type of device has varying capabilities. Despite these
differences, the same process runs in the homes. This is possible when the
home devices are available as Web services. den Dulk (2009) proposes a Web
service-based architecture based on VxBPEL, illustrated in Figure 6. In the
architecture, we remark the component controlling the variability in the BPEL
engine (top left), the devices exposed as WSDL interfaces (top-right), and
the variability controller at the home level currently based on a visualization
and simulation (ViSi) environment (bottom-left). The ViSi tool is described
in Lazovik et al. (2009).

9



3 Background

The COVAMOF framework, VxBPEL, and the UML extension mechanisms
represent the concepts and techniques used by our architectural variability
modeling approach.

3.1 The COVAMOF framework

In (Sinnema et al., 2004), we have shown why existing variability modeling
approaches are inadequate to handle the variability issues relevant for indus-
trial purposes. In response, the COVAMOF framework was proposed to assist
developers in the modeling and managing of variability in software product
families (Sinnema et al., 2004, 2006a,b; Deelstra et al., 2005).

The COVAMOF framework offers modeling facilities to model variation points
and dependencies uniformly over multiple layers of abstraction, i.e., the feature
layer, architectural layer, and implementation layer. Dependencies are system
properties whose value is influenced by the selection of variants at variation
points. Variation points and dependencies are modeled as first-class citizens,
which means they are explicit entities in the model, and can be used without
restriction.

Part of the COVAMOF framework is the COVAMOF-VS tool suite, which is
an add-in for Microsoft Visual Studio .NET. The tool suite can be used to
create variability models of a software product family, and these models can
then be used for the derivation of individual products.

COVAMOF enables providing different views on the variability within a prod-
uct family. At the moment, it supports two views: the variation point view and
the dependency view. This separation of views is possible thanks to variation
points and dependencies being treated as first-class citizens.

The variation point view shows which choices are available at the different
layers of abstraction. It also shows how these choices realize each other across
layers. This view contains the following entities: variation point, variant, re-
alization, and dependency. These entities are described in more detail below.
Using the variation point view, an engineer can configure individual products.

The dependency view shows how the dependencies interact with each other,
and it shows how to deal with these interactions. It contains the following
entities: dependencies and dependency interactions, which are explicitly part
of the variability model.

10



Product Variation Point Dependency

Variant

0..N

0..N 1..N

Association

0..N

Realization

0..N

2..N

Dependency 

Interaction

0..N

2..N

1..N

Reference Data

0..N

Fig. 7. The COVAMOF meta model.

In order to provide the different views, the tool suite maintains an integrated
variability model. Variability information is extracted from the files in the ac-
tive Solution in Visual Studio, which contains the artifacts of software product
family. All COVAMOF models conform to the COVAMOF meta model, which
is presented in Figure 7.

The different variability concepts within the COVAMOF meta model are the
following ones.

• Variation point and variant. Variation points represent a location at which
a choice is provided. A variation point has a number of properties, such
as variation type, abstraction layer, binding time, and rationale. Variants
represent the options available at a variation point. Variants have an effec-
tuating actions property, which specifies which effectuating actions should
be executed when the variant is selected.

• Realization. Variation points can exist at different layers of abstraction.
Realization relations specify rules that determine which variants at lower
layers of abstraction should be selected, in order to realize the choice at
variation points in higher layers.

• Dependency. A dependency represents a system property and specifies how
the binding of variation points influences the value of that property, i.e.,
how the selection of certain variants influences the value of that property.
Dependencies can have many variation points from different layers of ab-
straction associated with it and bridge multiple artifacts.

• Association. For each variation point associated to a dependency, an associ-
ation entity is part of the dependency. Associations refer to variation points
that affect the value of the system property. Each association defines the
relation with one variation point.

• Reference data. Besides associations, dependencies also contain so-called ref-
erence data elements. These entities contain information on the value of the
system property acquired through testing. They consist of a set of variation
point bindings, and the corresponding value of the system property.

11



3.2 VxBPEL

VxBPEL (Koning et al., 2009) is an extension to the process description and
definition language BPEL that allows for run-time variability and variability
management in Web service-based systems. It contains additional XML ele-
ments that store the relevant variability information in a BPEL file. Variabil-
ity information is defined inline in the process definition. This means adding
the variability information as extension elements inside the process defini-
tion itself, using a different namespace. This is in fact the recommended way
to extend an XML format like BPEL. The elements added to BPEL allow
for capturing the four different types of variability listed in (Topaloglu and
Capilla, 2004). Variation points can be added to the BPEL code, to support
service replacement, different service parameters, and changing the system
composition (Sun and Aiello, 2008).

To test whether VxBPEL works, i.e., if it can make processes variable, the
ActiveBPEL engine (ActiveBPEL Web site, 2007) was used. ActiveBPEL is a
tool that can read BPEL files and run the described processes. Modifications
to the tool were necessary to make it parse VxBPEL files, and to handle the
additional elements.

For managing the variability of the system externally at run-time JMX was
used. JMX (Java Management eXtensions) (Java Management Extensions
Web site, 2007) is a tool that explicitly exposes the functionality of objects,
in order to monitor and manage them. It was shown that using the modi-
fied ActiveBPEL engine in combination with JMX makes it possible to run a
VxBPEL process and manage it at run-time. The COVAMOF framework was
used to provide an overview of the variability within the Web service-based
system.

3.3 The UML extension mechanisms

The Unified Modeling Language is defined within a four layer meta-modeling
architecture. The top level is the meta-meta model layer, which defines a
language to construct the meta model layer. The meta model layer defines
how the UML models, i.e., the model layer, are constructed. Below the model
layer, there exists the user objects layer, which is used to construct specific
instances of a given model (Medvidovic et al., 2002; Sun, 2002; Sun et al.,
2003).

The architecture of a Web service-based system is described using the model
layer, with the meta model layer defining how the models should be specified.
So, our extensions to UML, which in the UML specification is called a profile,

12



«creator, clock»

StopWatch

<<clock>>

resolution = 2

<<creator>>

author = "Jones"

date = "02-04-15"

Fig. 8. Stereotypes and tagged values.

are defined by extending the meta model layer.

In UML, there are a number of language extension mechanisms to customize
and extend the semantics of model elements, i.e., constraints, tagged values,
stereotypes, and profiles.

• Constraints place added semantic restrictions on model elements. They are
denoted as constraint description. The constraint description can be in
any format, whether it be predicate calculus or natural language.

• Tagged values are used to extend modeling elements with extra information.
A tagged value is a pair consisting of a name (the tag) and a value, denoted
as tag=value. Model elements can have an unlimited number of tagged
values. The value part of a tagged value can have a special interpretation,
such as string, number, or Boolean value.

• Stereotypes allow groups of constraints and tagged values to be given de-
scriptive names, and applied to model elements. In this way, a new restricted
form of a meta class can be created, which can be used to construct models.
A stereotype is denoted by its name between� and�. Any model element,
such as a class or a relationship, can have a stereotype attached to it. An
example of the use of stereotypes and tagged values is presented in Figure 8.

• Profiles are predefined sets of stereotypes, tagged values, and constraints to
support modeling in specific domains.

4 A COVAMOF compatible UML profile for modeling architec-
tural variability of Web service-based systems

To model variability in the architecture of Web service-based systems we first
define a profile for the Unified Modeling Language (UML). This profile allows
us to model COVAMOF variability concepts in individual UML diagrams, and
to make variation points span over multiple UML diagrams.

We use UML, because it is very widely used for modeling software architec-
tures, has a straightforward graphical notation, and provides good extension
mechanisms. And, by making our profile compatible with the COVAMOF
framework, we make sure we can leverage COVAMOF’ full potential for vari-

13



<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

«variationPoint, variant»

ClassA

«variant»

ClassB
«variant»

ClassC<<variant>>

name=vp1_v2

<<variant>>

name=vp1_v3

Fig. 9. Variation point of type C1.

ability management.

To be compatible with the COVAMOF framework, the following variability
concepts are supported: variation point, variant, realization, dependency, as-
sociation, and reference data. Of these concepts, variation point and variant
are modeled directly in the individual diagrams, while the other concepts are
modeled by a separate UML diagram, the Variation point Interaction Dia-
gram (VID).

First, in Section 4.1 we define the extensions needed for variation points and
variants in class, activity, sequence, and deployment diagrams. Then, in Sec-
tion 4.2, we describe the Variation point Interaction Diagram.

4.1 Variation point and variant

4.1.1 Class diagrams

Class diagrams show the object-oriented relationships among classes. In class
diagrams, the following types of variability are possible:

C1 Selecting a class at a specific position in the diagram.
C2 Selecting an association at a specific position in the diagram.

A variation point with a choice between multiple classes at a specific position
in the diagram (C1 ) can be modeled as shown in Figure 9. The location of the
variation point is marked with the stereotype �variationPoint�. The class
with the �variationPoint� stereotype is always one of the variants, which
are marked with the �variant� stereotype. In this case, there is a choice
between three classes: ClassA, ClassB, or ClassC.

Variation points and variants have a number of attributes, but they are not
stored in this diagram. Variation points can span over multiple diagrams.
Therefore, it is desirable to place the attribute values in a central place,
to avoid inconsistencies. Variation points and variants in this diagram only

14



ClassA

ClassB

1

*

1

1

<<variant>>

name=vp1_v2

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variationPoint, variant>>
<<variant>>

Fig. 10. Variation point of type C2.

have a name attribute, through which they are referenced. Classes that are
�variant� but not selected for a variation point, are semantically not present
in the diagram.

Selecting an association at a specific position in the diagram (C2 ) is modeled
as in Figure 10. In this case, the choice is between two composition associa-
tions. The associations are both present in the diagram, but marked with the
�variant� stereotype. The first variant also holds the �variationPoint�
stereotype. The attributes are defined similarly to Figure 9.

Making a class or association optional can be done by creating an optional
variation point with just one variant. So, for this type of variability no extra
semantics is needed.

4.1.2 Activity diagrams

Activity diagrams focus on the flow of activities involved in a single process.
Two types of variability can be found in an activity diagram:

A1 Selecting a particular path within the diagram at a specific position. This
is different from simply using a branch element: only the paths of selected
variants are semantically present in the diagram.

A2 Selecting an entire swimlane (partition) in the diagram, but keeping the
elements within the swimlane unaltered.

A variation point for selecting a path in an activity diagram (A1 ) can be
modeled using the fork and join model elements. An example of a variation
point with a selection between two paths is shown in Figure 11. A fork element
with the �variationPoint� stereotype denotes the beginning of the variation
point. A join element with the �variationPointEnd� stereotype denotes the
end of the variation point. The variants are paths from the fork to the join.
Variants are marked with the �variant� stereotype on the first transition
of the path. If a variant is not selected, the entire path is semantically not
present in the diagram. All paths of a variation point have to join at the

15



<<variationPoint>>

<<variant>> <<variant>>

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variant>>

name=vp1_v2

<<variationPointEnd>>

Path 1 Path 2

Fig. 11. Variation point of type A1.

ObjectA ObjectB

<<variationPoint, variant>>

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variant>>

<<variant>>

name=vp1_v2

Activity1

Activity2

Activity1

Activity2

Fig. 12. Variation point of type A2.

�variationPointEnd�. There can be no disjoint paths. However, it is possible
to define a new variation point within a variant. All paths of this variation
point must end before the enclosing variation point ends.

Selecting an entire swimlane in the diagram (A2 ) can be modeled as shown in
Figure 12. The swimlane under selection has the �variationPoint� as well
as the �variant� stereotype. The alternative swimlanes are marked with
�variant� stereotypes. If a variant partition is not selected, it is semantically
not present in the diagram.

4.1.3 Sequence diagrams

A sequence diagram describes interactions between objects, by detailing what
messages are sent and when. Sequence diagrams are organized according to
time. In a sequence diagram, the following types of variability are possible:

16



ObjectA ObjectB ObjectC

Message1

Message3

Message2

Message4

<<variationPoint, variant>> <<variant>>

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variant>>

name=vp1_v2

Fig. 13. Variation point of type S1.

S1 Selecting an object at a specific position in the diagram.
S2 Selecting a message at a specific position in the diagram.

A selection between different objects (S1 ) can be modeled as shown in Fig-
ure 13. The object elements are marked with the �variant� stereotype.
The object in the position of the variation point is also marked with the
�variationPoint� stereotype. Attributes of the variation point and variants
are modeled in the usual manner. In this example, the variation point decides
which object should be in the position of ObjectB; the selection is between
ObjectB and ObjectC. Only selected lifelines are semantically present in the
diagram.

A selection between different messages (S2 ) can be modeled in a similar fash-
ion. Figure 14 shows an example of this. In this case, the selection is be-
tween Message1a and Message1b. The message arrows are marked with the
�variant� stereotype, and one of them also with the �variationPoint�
stereotype. Of the �variant� messages, only the selected messages are se-
mantically present in the diagram.

4.1.4 Deployment diagrams

Deployment diagrams show how artifacts are distributed over different loca-
tions in a network. In a deployment diagram the following types of variability
can be identified:

D1 Selecting an artifact at a specific position.
D2 Selecting a communication path between artifacts.
D3 Selecting a node at a specific position.

Selecting an artifact at a specific position in the diagram (D1 ) is modeled
as shown in Figure 15. The modeling of a variation point in this diagram is
similar to modeling a variation point in a class diagram.

17



Object Object

Message1a

Message3

Message2

Message4

<<variationPoint, variant>>

<<variant>>

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variant>>

name=vp1_v2

Message1b

Fig. 14. Variation point of type S2.

System 1 System 2

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variant>>

name=vp1_v2

«artifact»

ArtifactA

«artifact»

ArtifactB

«artifact, variationPoint, variant»

ArtifactC

«artifact, variant»

ArtifactD

Fig. 15. Variation point of type D1.

Selecting a communication path at a specific position in the diagram (D2 ) is
modeled analogous to associations in class diagrams. Figure 16 shows how to
model this type of variability in a deployment diagram.

Finally, selecting a node at a specific position in the diagram (D3 ) is modeled
as displayed in Figure 17. This modeling is similar to modeling partitions in
an activity diagram.

4.2 Variation point Interaction Diagram

Modeling variation points and variants in individual UML diagrams is not suf-
ficient, as we also want to model the concepts such as realization, dependency,
association, and reference data. Dependencies can have many variation points
from different layers of abstraction associated with it and bridge multiple ar-
tifacts. Therefore, it is not logical to model dependencies directly in specific

18



System 1 System 2

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variant>>

name=vp1_v2

<<variationPoint, variant>>

<<variant>>

«artifact»

ArtifactA

«artifact»

ArtifactB

«artifact»

ArtifactC

«artifact»

ArtifactD

Fig. 16. Variation point of type D2.

System 1 System 2

<<variationPoint, variant>> <<variant>>

<<variationPoint>>

name=vp1

<<variant>>

name=vp1_v1

<<variant>>

name=vp1_v2

«artifact»

ArtifactA

«artifact»

ArtifactB

«artifact»

ArtifactA

«artifact»

ArtifactB

Fig. 17. Variation point of type D3.

software artifacts. Besides, it is impossible to add dependencies in all possible
UML diagrams, because they are separate entities.

Therefore, we create an additional artifact, the Variation point Interaction
Diagram (VID). This is an extended UML class diagram that models the
interaction between variation points. In this diagram, all variation points,
variants, dependencies, associations, and reference data elements are modeled.
Also, all the attributes of these entities are stored. The VID is part of our UML
profile for variability; it is a required element of any Web service-based system
architecture that supports variability.

This approach has the following advantages. A clear visual overview of the
variability is provided in the software artifacts, making adding and editing
dependencies easier. Also, in this way the attributes of variation points and
variants are stored in a central location, which allows variation points to span

19



«dependency»

DependencyA

<<dependency>>

systemPropertyName=ErrorRate

systemProperyConstraint="ErrorRate<=[MaxErrorRate]"

systemPropertyFunction=none

documentedKnowledge=none

«referenceDataElement»

RDE1

<<association>>

associationClass=directional

impact=1

<<association>>

associationClass=logical

impact=1

<<referenceDataElement>>

variationPointBindings="vp1=vp1_v2;vp2=vp2_v1"

systemPropertyValue=7

«variationPoint»

VariationPointA

«variationPoint»

VariationPointB

<<variationPoint>>

variationPointName=vp1

variationPointType=alternative

abstraction=architecture

binding=runtime

<<variationPoint>>

variationPointName=vp2

variationPointType=optional

abstraction=architecture

binding=runtime

«dependency»

DependencyB

<<dependency>>

systemPropertyName=StackSize

systemProperyConstraint="StackSize<1024"

systemPropertyFunction=none

documentedKnowledge=none

<<association>>

associationClass=abstract

impact=1

«variant»

VariantA
<<variant>>

variantName=vp2_v1

variationPoint=vp2

effectuationActions=null

selected

«variant»

VariantB

«variant»

VariantC

<<variant>>

variantName=vp1_v2

variationPoint=vp1

effectuation_actions=null

<<variant>>

variantName=vp1_v1

variationPoint=vp1

effectuationActions=null

selected

realization="vp2=vp2_v1"

<<association>>

<
<

a
s
s
o

c
ia

ti
o

n
>

>

<<association>>

Fig. 18. A Variation point Interaction Diagram.

over multiple diagrams.

An example of the modeling of the Variation point Interaction Diagram is
shown in Figure 18. This example shows all the elements a VID can contain
and how they are modeled. Realization relations can be modeled in the VID as
an attribute of variants. This realization attribute has as its value a list that
defines the required bindings of variation points in lower layers of abstraction
in order to realize this variant.

A dependency entity can be associated to a variation point entity through
an �association� relation. A reference data element entity is linked to a
dependency entity by a UML dependency relation. A variant entity is linked
to its variation point entity also by a UML dependency relation. All stereotypes
have the attributes that are defined by the COVAMOF framework.

5 Modeling variability of Web service-based systems using the
UML profile

There are a number of different types of variability possible in Web service-
based systems that we need to support. In (Koning et al., 2009) we already
listed four of these types. Here, we add the ability to create complex depen-
dencies:

20



Consumer Retailer

«variationPoint, variant»

ShipperA

«variationPoint, variant»

WarehouseA

Manufacturer
«variant»

ShipperB

«variant»

WarehouseB

<<variant>>

name=WarehouseB

<<variationPoint>>

name=Warehouses

<<variant>>

name=WarehouseA
<<variant>>

name=ShipperB

<<variationPoint>>

name=Shippers

<<variant>>

name=ShipperA

Fig. 19. Composition view with variability.

T1 Replacing a service by a different service with the same interface.
T2 Replacing a service by a different service with a different interface.
T3 Changing the parameters with which a service is invoked.
T4 Changing the composition of the service-based system.
T5 Creating complex dependencies.

In the following, we describe for each type of variability how it can be modeled
over the different architectural views of the example system we described in
Section 2 and how these views are interconnected.

Suppose there are two shippers in the SCMS, ShipperA and ShipperB, which
both are represented by a Web services with exactly the same interface (T1 ).
There is variability in the SCMS architecture in the sense that there is a
selection between these two shippers. For this variability, a variation point
Shippers is added, which appears also in the different views of the architec-
ture. The variation point has two variants ShipperA and ShipperB, which
represent the choice between ShipperA and ShipperB.

In the composition view of the SCMS architecture, the variation point Shippers
is modeled as shown in Figure 19. The shipper Web services are also involved
in the business process view, so variation point Shippers is also present in
that view; it can be modeled as shown in Figure 20. ShipperB implements the
same interface as ShipperA, so the same activity can be performed by both
Web services without difficulty. In the use case scenario view, variation point
Shippers is modeled as shown in Figure 21. ShipperA can be replaced without
difficulty by ShipperB, because they have the same interface. In the deploy-
ment view, i.e., in the deployment diagram, variation point Shippers is also
present. It is modeled, as displayed in Figure 22. Variation point Shippers is
now present in all the necessary views. What remains, is modeling the Vari-
ation point Interaction Diagram, which stores the attributes of the variation
points and variants. This diagram, which is mandatory, is modeled in Fig-
ure 23.

Now suppose a retailer in the SCMS has access to two warehouses, WarehouseA
and WarehouseB, but the warehouses are represented by Web services with
different interfaces (T2 ). We add a variation point Warehouses to the SCMS
architecture for selecting one of the two warehouses. This variation point has
two variants, WarehouseA and WarehouseB.

21



WarehouseB

ShipperB

ShipperAWarehouseARetailerConsumer

SubmitOrderRequest
InquireGoodsRequest

InquireGoodsResponseA

ShipGoodsOrder

AckShipGoodsOrder

SubmitOrderResponse

<<variationPoint, variant>>

<<variant>>

InquireGoodsResponseB

<<variationPoint>>

<<variationPointEnd>>

<<variant>>

<<variant>>

<<variant>>

name=WarehouseB <<variant>>

name=WarehouseA

<<variant>>

name=ShipperB

<<variationPoint>>

name=Shippers

<<variant>>

name=ShipperA

Fig. 20. Business process view with variability.

Consumer Retailer ShipperAWarehouseA

OrderRequest(132)

GoodsRequestA(132)

GoodsResponse(132)

ShipGoods(132)

AckShipGoods(132)

OrderResponse(132)

ShipperB

<<variationPoint, variant>> <<variant>>

WarehouseB

<<variant>><<variationPoint, variant>>

GoodsRequestB(132)

<<variationPoint, variant>>

<<variant>><<variationPoint>>

name=Warehouses

<<variant>>

name=WarehouseA

<<variant>>

name=WarehouseB

<<variationPoint>>

name=WarehouseB

<<variant>>

name=ShipperA

<<variant>>

name=ShipperB

Fig. 21. Use case scenario view with variability.

Consumer system

«artifact»

Consumer

Retailer system

«artifact»

Retailer

«artifact, variationPoint,variant»

WarehouseA

ShipperA system

Manufacturer system

«artifact»

ShipperA

«artifact»

Manufacturer

ShipperB system

«artifact»

ShipperB

<<variationPoint, variant>>

<<variant>>

«artifact, variationPoint,variant»

WarehouseB

<<variant>>

name=ShipperB

<<variationPoint>>

name=Shippers

<<variant>>

name=ShipperA

<<variant>>

name=WarehouseB

<<variationPoint>>

name=Warehouses

<<variant>>

name=WarehouseA

Fig. 22. Deployment view with variability.

In the composition and deployment views (Figures 19 and 22) variation point
Warehouses can be modeled in the same way as Shippers, because the in-
terface plays no part in those views. However, in the business process and
use case scenario views (Figures 20 and 21) we need to model variation point
Warehouses differently, because a different exchange of messages is necessary.
Variation point Warehouses is also present in the VID (Figure 23).

22



«variationPoint»

Shippers

«variant»

ShipperA

«variant»

ShipperB

«variationPoint»

Warehouses

«variant»

WarehouseA

«variant»

WarehouseB

«dependency»

MST

<<dependency>>

systemPropertyName=MaximumShippingTime

systemPropertyConstraint=none

systemPropertyFunction=none

documentedKnowledge=none

<<association>>

<<association>>

<<association>>

associationClass=abstract

impact=1

<<association>>

associationClass=abstract

impact=1

<<variationPoint>>

name=Warehouses

type=alternative

abstraction=architecture

binding=runtime

<<variant>>

name=WarehouseB

variationPoint=Warehouses

effectuation_actions=null

selected=False

<<variant>>

name=WarehouseA

variationPoint=Warehouses

effectuation_actions=null

selected=True

<<variant>>

name=ShipperB

variationPoint=Shippers

effectuation_actions=null

selected=False

<<variant>>

name=ShipperA

variationPoint=Shippers

effectuation_actions=null

selected=True

<<variationPoint>>

name=Shippers

type=alternative

abstraction=architecture

binding=runtime

Fig. 23. The VID for the SCMS architecture.

Invoking a Web service with different parameters (T3 ) can be seen as sending a
different message to it. How to model a variation point for selecting a message
is already illustrated by variation point Warehouses. The only difference is
that there is no selection between services. This type of variability only affects
the business process and use case scenario views (Figures 20 and 21).

Changing the composition of a Web service-based system (T4 ) means replac-
ing a set of interconnected Web services by a different set of interconnected
Web services. Variation points Shippers and Warehouses already show how
it is done for one Web service. Replacing a larger part of the system in the
composition view can be done by following some rules. Any class that is part
of the variant is marked with the �variant� stereotype. When a variant is
replaced, all classes of the variant and any interconnecting associations are re-
placed by the other variant. The head of the variant is defined by the position
of the variation point. The names of the classes in the variants are used to
connect outward associations, if there are any.

The last type of variability we support is the modeling of complex depen-
dencies (T5 ). A dependency represents a system property and specifies how
the binding of variation points influences the value of that property. Complex
dependencies are the result of the combination of variants for various vari-
ation points. The COVAMOF framework supports the modeling of complex
dependencies, and since our UML profile is compatible with COVAMOF, we
can model complex dependencies in UML. The VID supports all the concepts
needed to do this.

Suppose there is a dependency MST that represents the system property maxi-
mum shipping time, which is the maximum time it takes to deliver an ordered
good to the consumer. The value of this dependency depends on the selec-
tion of variants at variation points Shippers and Warehouses. We model this

23



dependency as shown in the VID in Figure 23.

6 Run-time variability management

The behavior of a Web service-based system is completely defined by the soft-
ware artifacts of the implementation layer. The variability in these software
artifacts is viewed using the COVAMOF-VS tool suite. The tool suite is also
used to alter the software artifacts through their variation points. Owing to our
UML profile for architectural variability, we can model variability in all three
layers of abstraction. Using the COVAMOF-VS tool suite, a user reconfigures
variation points, which can be in any abstraction layer. Then, through realiza-
tion relations, COVAMOF-VS automatically configures the variation points in
lower layers of abstraction. The COVAMOF-VS tool suite uses so-called model
providers to keep the software artifacts consistent with the new binding. Af-
ter the variation points in the implementation layer have their new binding,
the change can also be effectuated to the actual system at run-time. For this,
we use the strategy developed in (Koning et al., 2009), i.e., reconfiguring the
system by using VxBPEL and Java Management eXtensions (JMX).

The process of managing variability in Web service-based systems at run-time
using COVAMOF and UML consists of the following steps.

(1) Create the feature layer of the system using XVL files. XVL is an XML-
based language for modeling variability concepts, developed as part of
the COVAMOF framework. The feature layer contains variation points
that describe the general settings of the system.

(2) Architecture:
(a) Create the architectural layer of the system by creating UML dia-

grams that describe its composition, business process, use case sce-
nario, and deployment views. Store these diagrams in the XML Meta-
data Interchange (XMI) format.

(b) Create variation points, dependencies, and other entities in the ar-
chitectural diagrams, to model the required variability.

(c) Create the Variation point Interaction Diagram (VID) containing all
the added entities. Add the required realization relations between the
variation points in the feature layer and the architectural layer.

(3) Implementation:
(a) Create the implementation layer of the system by implementing the

individual Web services using any technology, and the BPEL pro-
cesses that orchestrate the interaction between them.

(b) Create variation points in the VxBPEL code of the system, to al-
low for the required variability at the implementation layer. Add the
required realization relations between the variation points in the ar-

24



VxBPEL Server

MBean Server

Web Services

COVAMOF-VS

MX4J/Http Adaptor (JMX 

Management Console)

Feature Layer

Model Provider

UML-VWS

Model Provider

VxBPEL

Model Provider

Software Artifacts

Architecture using 

UML-VWS

Features

Implementation using 

VxBPEL

Fig. 24. Participants in the process.

chitectural layer and the implementation layer.
(4) Deploy and run the system, i.e., deploy the individual Web services, and

deploy the VxBPEL server using the VxBPEL files.
(5) Deploy an MBean server, which is needed for step 8. Let the variation

points in the VxBPEL server register their JMX interface at the MBean
server.

(6) Use the COVAMOF-VS tool suite to view the variability in the system,
and to reconfigure the variation points and dependencies to the user’s
wishes.

(7) Effectuate the new configuration using COVAMOF-VS. The variation
points in some layer of abstraction are configured, which leads automati-
cally, through the realization relations, to a configuration of the variation
points in lower layers of abstraction. The model providers effectuate the
configuration of all the variation points back to the software artifacts.

(8) Now that the VxBPEL files are changed, follow the steps described
in (Koning et al., 2009) to reconfigure the Web service-based system at
run-time. These are:
(a) Effectuate the new configuration of the variation points in the im-

plementation layer, i.e., in the VxBPEL process, by invoking the
MX4J/Http Adaptor (JMX Management Console) (MX4J Web site,
2007).

(b) The MX4J/Http Adaptor reconfigures the VxBPEL process in the
VxBPEL server through the MBean server.

(9) Repeat steps 6 – 8 whenever the system needs to be reconfigured.

Figure 24 shows a diagram of the participants in the variability management
process. The arrows indicate interaction between the participants. The par-
ticipants in the variability management process are:

• COVAMOF-VS is the Visual Studio add-in that is used to view and config-
ure the variability in the Web service-based system. No changes to COVAMOF-
VS itself are required; only its model providers require changes.

25



• The Feature Layer Model Provider translates between the XVL files of the
feature layer and the COVAMOF model. This model provider already exists
and does not need to be changed for this process.

• The UML-VWS Model Provider is a model provider we developed. It parses
the variability information in the architectural diagrams that make use of
our UML profile for variability. It reads variation points, variants, dependen-
cies, associations, and realization relations, and uses these entities to create
a COVAMOF model. It also effectuates changes back to the XMI file. This
model provider is used to manage the variability in the architectural layer.

• The VxBPEL Model Provider is the model provider developed in (Koning
et al., 2009). At present, it can only extract variability information from
a VxBPEL process to create a COVAMOF model. For our management
process, this model provider should be extended to allow it to:
· Effectuate changes in the COVAMOF model back the VxBPEL file.
· Automatically configure a VxBPEL server. The server should initially run

the VxBPEL process that is read by the model provider.
· Automatically invoke the MX4J/Http Adaptor in order to effectuate changes

in the variability to the VxBPEL server, i.e., to reconfigure the system at
run-time.

• MX4J/Http Adaptor is a tool that communicates with the MBean Server to
configure variation points through their JMX interface. The VxBPEL model
provider should use this tool (without user intervention) to reconfigure the
Web service-based system. So, the variability in the implementation layer is
viewed in COVAMOF-VS by parsing the VxBPEL files, but the effectuation
of a new configuration is performed by invoking the MX4J/Http Adaptor.

• The MBean Server is used to reconfigure the variation points in the VxBPEL
Server through their JMX interfaces, which they will register at this server.
The MX4J/Http Adaptor is used to control this server.

• In the VxBPEL Server, which is a BPEL server adapted for VxBPEL, each
variation point in the VxBPEL process registers their JMX interface at the
MBean Server. The VxBPEL model provider communicates with this server
to set up the initial VxBPEL process. The VxBPEL Server controls the Web
service-based system through the VxBPEL process.

• The process that the Web services execute is managed by the VxBPEL
Server.

7 Implementation

With the process and tools developed by us, one can automate the variability
of Web service-based systems. We below show major artifacts of the SCMS
using our approach.

The UML diagrams used in the architecture of the Web service-based system

26



Fig. 25. The VID of the SCMS in ArgoUML.

have to be stored in a machine readable format, in order for a model provider to
extract the COVAMOF variability model from it. Therefore, we use the XML
Metadata Interchange (XMI) (XML Metadata Interchange (XMI) Web site,
2007) format to store the UML diagrams (Sun et al., 2003). This is an OMG
standard for exchanging metadata information via XML. The most common
use of XMI is as an interchange format for UML models, and it is supported
by many UML tools.

We use ArgoUML (ArgoUML Web site, 2007) for creating the UML diagrams
that are part of the software artifacts. ArgoUML is an open source UML tool,
developed in Java. This tool provides all needed features, such as stereotypes
and tagged values, and allows for diagrams to be exported to the XMI format.

All the variability information COVAMOF-VS needs, is available in the Vari-
ation point Interaction Diagram (VID). All variation points, variants, depen-
dencies, and other COVAMOF entities, and their attributes are stored in this
diagram. Therefore, only this diagram needs to be parsed.

To illustrate ArgoUML and XMI, the VID of the SCMS presented in Figure 23
is modeled using ArgoUML and stored in the XMI format. Figure 25 shows a
screenshot of the diagram in ArgoUML.

Model providers in COVAMOF-VS are used to extract the variability infor-
mation from the software artifacts. For artifacts in the feature layer (XVL
files), and the implementation layer (VxBPEL files), we already have model
providers. For the architectural layer, i.e., the XMI file describing the VID, a
new model provider is required.

We developed this model provider, called the UML-VWS Model Provider,
which is a DLL file used by COVAMOF-VS. The model provider parses the
variability information from an XMI file of a VID. It reads variation points,
variants, dependencies, associations, and realization relations, and uses these

27



entities to create a COVAMOF model.

To effectuate the configuration of variation points in the architecture of a
Web service-based system, our model provider alters the XMI file, selecting
the correct variants for the variation points.

One can bind a variation point in the feature layer using COVAMOF-VS,
which leads automatically to bindings of other variation points in lower layers
of abstraction. The UML-VWS Model Provider takes care of the effectuation
to the architectural artifacts. By adapting the XMI file that represents the
VID, the software artifacts are kept consistent with the COVAMOF model.

8 Related work

Variability Management is an important reuse issue in product families (Lin-
den, 2002). Many variability modeling approaches have been reported (Sin-
nema and Deelstra, 2007). However, they are not adequate to handle vari-
ability issues relavant for industrial purposes (Sinnema et al., 2004). This ob-
servation resulted in the creation of the COVAMOF framework, a variability
management tool which has been tested and evaluated positively in industrial
settings (Sinnema and Deelstra, 2008). Next, we overview and discuss related
work on modeling variability of Web service-based systems.

The UML profile described in this paper builds on solid related work. Namely,
the way variation points are modeled resembles how Clauß models them (Clauß,
2001b,a). A similar use of stereotypes is also described by Oliveira Junior et
al. (2005) . However, there are important differences. The existing methods
only model variation points and variants, but not realizations, dependencies,
associations, and reference data. We do model all these concepts, in order
to be compatible with the COVAMOF framework. The existing methods only
model variability in UML class and use case diagrams, while our approach also
models variability in activity, sequence and deployment diagrams. In fact, our
modeling constructs can be applied to any type of UML diagram. The existing
methods define variability for class elements, but not for association elements,
while our approach also allows for variability in associations between classes.

In defining variation points and variants in class diagrams there are also some
differences with existing work. Clauß (2001 b,a) defines variation points in
UML class diagrams, but there are two differences with our approach. In
his approach, multiple variation points can be associated with a single class,
while in our approach we always replace the entire class to make a change. His
approach has the advantage that it can reduce the number of variation points
needed. The advantage of our approach is that it is more straightforward. He

28



uses the �optional� stereotype to define optional classes. In our approach
an optional element can be created by defining a variation point with its type
attribute set to optional.

Oliveira Junior et al. (2005) also define variation points and variants. In their
approach more stereotypes are used, such as�optional�,�alternative OR�,
�mandatory�, �mutex�, and �requires�. This makes it easier to model
some concepts, such as mutual exclusion, but it also requires more extensions
to UML. They define variability in UML use case diagrams; we see use case di-
agrams not as part of the views that are most important for Web service-based
systems.

K. Mohan and B. Ramesh (2003) present an approach that makes use of an
ontology for variability management in product and service families. An ontol-
ogy developed to catalogue the different concepts of variability, such as varia-
tion points and variants. Interviews with domain experts are used to identify
the initial concepts, their properties, and the relationships with other con-
cepts. The ontology contains domain specific concepts as well as more general
variability concepts. Such ontology for variability is represented electronically
using ontology tools. The ontology is integrated by a Knowledge Management
System (KMS) to assist designers of a system in implementing variability. Via
the KMS, the ontology can be queried for mechanisms used in past projects
or other members of the product that implement a specific type of variability.
The advantage of this approach is that it offers flexibility in the use of dif-
ferent mechanisms for implementing variability. Another advantage is that it
is domain independent, i.e., solutions from other domains can be used in the
current project. However, a drawback is that it requires major involvement
from the user. Which in turn it means that unfortunately the approach can
not be used for automatic reconfiguration of a system.

S. Robak and B. Franczyk (2003) introduce the concept of modeling the vari-
ability of Web services using feature diagrams. Feature diagrams allow for
the presentation of the commonalities and variabilities of the concept they de-
scribe. A feature is defined as a visible characteristic of a concept, which is used
to describe the concept and to distinguish different instances of the concept. A
concept can be anything, such as a system or a component. The feature model
indicates the intention of the described concept. The set of instances described
by the feature model is called the extension of the concept. The feature model
can be used to make a generic description for a range of systems. For a Web
service-based system a feature diagram can be created describing the com-
monalities and differences within the range of possible systems. This base can
then be used to specify specific systems to meet certain needs. The advantage
of this methodology is that it supports automated configuration of a system.
Another advantage is that it provides a clear overview of the variability and
commonalities within a system. However, describing variability only in this

29



manner means that realization relations and dependencies are not modeled.

K. Mantell (2005) describes a UML profile to model business processes, and
shows how a UML model of a business process can be mapped directly to
BPEL code. The profile allows developers to use normal UML skills and tools
to developWeb service processes in BPEL4WS. By describing a BPEL process
using UML, there is a higher perceived level of abstraction. Using UML to
model a BPEL process makes it more comprehensible for humans. However,
this approach does not include variability management.

9 Conclusion

We have designed a UML profile for architectural variability modeling in Web
service-based systems. This profile is compatible with COVAMOF, because
concepts such as variation point, variant, realization relation, dependency,
association, and reference data are explicitly modeled in the UML diagrams.
In addition, we have described how to use this UML profile to support the
five different types of variability in the architecture of a Web service-based
system. We did this by describing how the variability is modeled over the
different views of the architecture, and how variation points in these views
relate to each other through the Variation point Interaction Diagram.

To manage the variability in Web service-based systems at run-time, we have
developed a variability management process that requires only minimal in-
volvement from the end-user. This management process is driven from the
COVAMOF-VS tool suite extended by us, and makes use of our architectural
variability modeling approach.

Through this work, we have brought COVAMOF’s enormous potential for
variability management in industry to the fast growing world of Web service-
based systems. Through explicit variability management, service providers or
service composition designers can gain the advantages such as the Quality
of Service support, the availability enhancement, the quality attribute opti-
mization, and the run-time flexibility support. Moreover, with the proposed
methodology variability can be modeled also at the architectural level, which
enables systematic management of the variability.

COVAMOF and VxBPEL are first steps in providing tools that enhance
reusability. Two roads appear particularly interesting for future investigation.
First, there is the issue of managing the evolution of the variability models.
What happens if there is a modification to a model? Can these be translated
directly into the instantiated products? This is quite common in the case of
eGovernment, where updates and extensions to a law can be frequent and

30



imply modifications to all local instances of systems implementing the law.
Second, there is the issue of managing variability in open environments where
variation points are managed by independent actors. Then it is important to
add semantic descriptions to these. Ideally, one should be able to entirely au-
tomate the task of making variability decisions by selecting the best variation
based on semantic description of the pre- and post-conditions associated with
it. To make such annotations OWL-S (Martin et al., 2004) is a natural candi-
date,1 having the appropriate expressive power and being nicely integratable
into Web service-based architectures.

Acknowledgements

We thank everybody who has contributed to the implementation of the COVAMOF
and VxBPEL frameworks. Without them, this research would not have been
possible. The work is supported by the European Union Integrated Project
SeCSE (Service Centric Software Engineering, http://secse.eng.it) IST
Contract no. 511680,, NWO Jacquard project Software as a Service for the
varying needs of Local eGovernment (SaS-LeG, http://www.sas-leg.net),
contract no. 638.000.000.07N07; and the Science and Technology Foundation
of Beijing Jiaotong University (grant no. 2007RC099).

References

ActiveBPEL Web site, 2007. http://www.activebpel.org/.
Aiello, M., Avgeriou, P., Lazovik, A., Wortmann, H., 2008. Software as service

for the varying needs of local egovernments (sas-leg).
URL \url{www.sas-leg.net}

Aiello, M., Dustdar, S., 2008. Are our homes ready for services? a domotic
infrastructure based on the web service stack. Pervasive and Mobile Com-
puting 4 (4), 506 – 525.

ArgoUML Web site, 2007. http://argouml.tigris.org/.
Bachmann, F., Bass, L. J., 2001. Managing variability in software architec-

tures. In: ACM SIGSOFT Symposium on Software Reusability. pp. 126–
132.

Baldoni, R., Fuligni, S., Mecella, M., Tortorelli, F., 2008. The italian e-
government enterprise architecture: A comprehensive introduction with fo-
cus on the sla issue. In: Nanya, T., Maruyama, F., Pataricza, A., Malek, M.
(Eds.), Service Availability, 5th International Service Availability Sympo-
sium, ISAS 2008, Tokyo, Japan, May 19-21, 2008, Proceedings. Vol. 5017 of
Lecture Notes in Computer Science. Springer, pp. 1–12.

Baresi, L., Heckel, R., Thöne, S., Varró, D., 2003. Modeling and validation

31



of Service-Oriented Architectures: application vs. style. In: ESEC/FSE-11:
Proceedings of the 9th European Software Engineering Conference held
jointly with 11th ACM SIGSOFT international symposium on Foundations
of Software Engineering. ACM Press, pp. 68–77.

Breuker, J., Valente, A., Winkels, R., 2003. Use and reuse of legal ontologies in
knowledge engineering and information management. In: Law and the Se-
mantic Web: Legal Ontologies, Methodologies, Legal Information Retrieval,
and Applications. Vol. 3369. pp. 36–64.

Business Process Execution Language (BPEL) Web site, 2007. http://www.
oasis-open.org/.

Chapman, M., Goodner, M., Lund, B., McKee, B., Rekasius, R., 2003. Sam-
ple application supply chain management architecture (version 1.01). Web
Services Interoperability Organization.

Clauß, M., 2001a. Generic Modeling using UML extensions for variability. Pro-
ceedings of the OOPSLA Workshop on Domain-specific Visual Languages,
11–18.

Clauß, M., 2001b. Modeling variability with UML. Proceedings of the 3rd In-
ternational Conference on Generative and Component-Based Software En-
gineering (GCSE).

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.,
2002. Unraveling the Web services web: An introduction to SOAP, WSDL,
and UDDI. IEEE Internet Computing 6 (2), 86–93.

de Oliveira Junior, E. A., Gimenes, I. M., Huzita, E. H., Maldonado, J. C.,
Alencar, P., October 2005. Adding variability management to UML-based
software product lines. Tech. Rep. CS-2005-33, David R. Cheriton School
of Computer Science.

Deelstra, S., Sinnema, M., Bosch, J., 2005. Product derivation in software
product families: a case study. Journal of Systems and Software 74 (2),
173–194.

den Dulk, P., 2009. Variability in bpel as an infrastructure for domotics. Mas-
ter’s thesis, University of Groningen.

Java Management Extensions Web site, 2007. http://java.sun.com/

products/JavaManagement/.
Koning, M., Sun, C., Sinnema, M., Avgeriou, P., 2009. VxBPEL: Supporting

variability for Web services in BPEL. Information and Software Technology
51, 258–269.

Lazovik, E., Dulk, P. v., Groote, M. d., Lazovik, A., Aiello, M., 2009. Services
inside the smart home a simulation and visualization tool. submitted, video
available at http://www.youtube.com/watch?v=Fy83Apxi8sA.

Linden, F. v. d., 2002. Software product families in Europe: The Esaps & Café
Projects. IEEE Software 19 (4), 41–49.

Mantell, K., 2005. From UML to BPEL: Model driven architecture in a Web
services world. IBM developerWorks.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T. R., Sirin, E., Srinivasan,

32



N., Sycara, K., November 2004. Owl-s: Semantic markup for web services.
URL http://eprints.ecs.soton.ac.uk/12687/

Mecella, M., Pernici, B., 2001. Designing wrapper components for e-services
in integrating heterogeneous systems. VLDB J. 10 (1), 2–15.

Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., Robbins, J. E., 2002.
Modeling software architectures in the Unified Modeling Language. ACM
Transactions on Software Engineering and Methodology 11 (1), 2–57.

Microsoft Visual Studio .NET Web site, 2007. http://www.microsoft.com/
vstudio.

Mohan, K., Ramesh, B., 2003. Ontology-based support for variability manage-
ment in product and service families. In: Proceedings of the 36th Annual
Hawaii International Conference on System Sciences (HICSS’03) - Track 3.
p. 75.1.

MX4J Web site, 2007. http://mx4j.sourceforge.net/.
Peltz, C., January 2003. Web services orchestration, a review of emerging

technologies, tools, and standards. Tech. rep., Hewlett-Packard Company.
Robak, S., Franczyk, B., 2003. Modeling Web services variability with feature

diagrams. In: Revised Papers from the NODe 2002 Web and Database-
Related Workshops on Web, Web-Services, and Database Systems. Springer-
Verlag, pp. 120–128.

Sinnema, M., Deelstra, S., 2007. Classifying variability modeling techniques.
Information and Software Technology 49, 717–739.

Sinnema, M., Deelstra, S., 2008. Classifying variability modeling techniques.
Journal of Systems and Software 81, 584–600.

Sinnema, M., Deelstra, S., Hoekstra, P., 2006a. The COVAMOF derivation
process. In: Proceedings of the International Conference on Software Reuse
(ICSR). pp. 101–114.

Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., 2004. COVAMOF: A frame-
work for modeling variability in software product families. In: Proceedings
of the Software Product Line Conference (SPLC). pp. 197–213.

Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., 2006b. Modeling dependencies
in product families with COVAMOF. In: Proceedings of the 13th Annual
IEEE International Symposium and Workshop on Engineering of Computer
Based Systems (ECBS’06). pp. 299–307.

Sun, C., 2002. Contributions to software architecture construction and descrip-
tion and reconstruction. Ph.D. thesis, Beijing University of Aeronautics and
Astronautics.

Sun, C., Aiello, M., 2008. Towards variable service compositions using vxbpel.
In: Proceedings of the International Conference on Software Reuse (ICSR),
Lecture Notes in Computer Science, 5030. Springer-Verlag, pp. 257–261.

Sun, C., Cao, J., Jin, M., Liu, C., Lyu, M. R., 2003. Extendable and in-
terchangeable architecture description of distributed systems using uml and
xml. In: Proceedings of APPT 03, Lecture Notes in Computer Science, 2834.
Springer-Verlag, pp. 536–545.

Topaloglu, Y., Capilla, R., 2004. Modeling the variability of Web services from

33



a pattern point of view. Lecture Notes in Computer Science 3250, 128–138.
Unified Modeling Language (UML) Web site, 2007. http://www.uml.org.
Web Services Interoperability Organization (WS-I) Web site, 2007. http://
www.ws-i.org/.

XML Metadata Interchange (XMI) Web site, 2007. http://www.omg.org/

xmi/.

34


