Optimal QoS-Aware Web Service Composition

Marco Aiello, Elie el Khoury, Alexander Lazovik, and Patrick Ratelband
Distributed Systems Group
Mathematics and Computing Science Department
University of Groningen, The Netherlands
Emails: m.aiello@rug.nl, e.el.khoury@rug.nl, a.lazovik@rug.nl, ratelband @ gmail.com

Abstract

The availability of many independent services on an
open network opens the opportunity of composing individual
instances to achieve complex functionality. Most often there
are several possible compositions to achieve the same high-
level functionality; the advantage of choosing one composi-
tion instead of another one may lie in the different quality of
the composition, e.g., one might be cheaper; faster, or more
reliable. In this paper, we focus on services described with
XML documents and accessed via XML Protocols, known
as Web services, and enriched with semantic and Quality
of Service (QoS) annotations. We propose an algorithm
that, given a desired functionality, returns a composition of
services from a repository with the optimal response time or
throughput. Services are composed taking into account an
ontology of operation names expressed in OWL. RuGQoS is
the related implementation.

1. Introduction

The Web is evolving. From the original use as a vast
distributed multimedia hyperlinked content sharing system,
it is becoming more and more a computational infrastruc-
ture where not only content is shared, but also services.
An important step in this shift is the availability of open
standards, like those based on XML and collectively known
as Web services [1]. Such publicly available services open
a number of challenges and opportunities to be exploited:
services need to be found, they need to be invoked, but they
also can be composed together in order to achieve more
complex functionality. The recent years have witnessed quite
some effort on the last aspect, e.g. [2], [3], [4]. Here, we
concentrate on a related problem, that is, the composition of
services based on their advertised Quality of Service. The
latter is a somewhat less investigated topic [5]. Given a set of
services with corresponding QoS and OWL descriptions, the
system, which we name RuGQoS, is able to satisfy queries
of the user requesting a certain complex functionality given
in terms of input/output parameters. The answer of RuGQoS
is the composition with the fastest response time and the one
with the highest throughput, if such a compositions exists.

RuGQoS is the evolution of our earlier system RuGCo [6],
the main difference is that instead of returning all possible
compositions to the user, only the ones with best response
time and throughput are returned. To manage such change, a
modified version of the breadth first algorithm is developed
and the indexing of WSLA description is added to the former
RuGCo system. RuGQoS is the University of Groningen
2009 entry to the Web service challenge.

The remainder of the paper is organized as follows.
Section 2 contains an overview of the 2009 Web-service
challenge. In Section 3, we describe an entry for the
challenge, namely, RuGQoS. It also contains preliminary
considerations on how to evaluate the performance of a
system such as RuGQoS. Final considerations are presented
in Section 4.

2. Challenge Definition

The Web-Service Challenge focuses on the retrieval of
service definitions and their composition, given large sets of
synthetically generated descriptions [7]. In the last edition,
entities appearing in the descriptions were related via an
OWL ontology. The novelty of the fifth edition lies in the
appearance of quality of service annotation coupled with
service descriptions. Intuitively, a solution to the 2009 Web
service challenge can be seen as a tool to find chain of
services that optimally satisfy a user query.

First, let us consider all the elements given as input to
an entry to the 2009 Web service challenge. (1) A Web
Service Description Language (WSDL) file containing a set
of services interface descriptions. The files are synthetically
generated. The number of services can vary greatly. (2) A
Web Ontology Language (OWL) file containing a taxonomy
of concepts relating the classes of the WSDL files. (3)
A Web Service Service Level Agreements (WSLA) [8]
file containing the QoS non-functional properties for each
service in terms of response time and throughput. (4) One
or more queries to the system to be run against the repository
(WSDL, WSLA) and the ontology (OWL). Each query is a
set of input names and output names that, in general, require
a composition of services to be satisfied.

The output of an entry to the challenge is a Business Pro-
cess Execution Language for Web Services (BPEL) schema

pa®
4 Parsing

iy
WSDL Query |

Sending

Indexing

Data

Repository
WSDL)
Indaxing

Taxanomy |
LWL

Qa3 (WSLA)

guary
Indexed Query
rapositony sant

Composition BPEL generation

Updaied BFS '::';:‘;1' @
. L
bzl Tound
Two composiions ane found!
1.1

a5t rasponsa lima
w51 throughput

Figure 1. Data processing flow of RuGQoS.

of two compositions satisfying the user query: the service
composition with the lowest response time and the service
composition with the highest throughput. Response time is
expressed in time units and indicates the delay between the
time a request is received by a Web service and the time
a reply to the request is sent. The throughput measures the
amount of requests that a web service can handle in a given
time unit. When composing services the qualities of the
individual services are aggregated in the following way: (i)
for response time, we add the response time of all services
in a sequence and we take the maximum of those in parallel;
(ii) for throughput, we take the minimum value of all
services in a sequence or in parallel. In the challenge, entries
are evaluated mainly by finding the composition with the
lowest response time and the composition with the highest
throughput in the fastest time, without considering the time
necessary to parse the service repository description, WSLA
and ontology (Bootstrap phase).

3. The RuGQoS System

The Quality of Service aware Web service composi-
tion entry RuGQoS is the evolution of the University of
Groningen entry to the WS-Challenge 2008, RuGCo [6].
The main components are: (i) a XML parser that translates
the WSDL, WSLA and OWL descriptions into a set of
indexes where each WSDL operation name is associated
with a service and its response time and throughput quality;
(i) a composition engine based on a backward breadth
first search algorithm; (iii) a BPEL code generator used
to convert the compositions found by the engine into one
generic business process according with new response time
and throughput calculation rules. With respect to RuGCo,
RuGQoS creates richer index structures to take into account
the QoS descriptions and utilizes a different composition
algorithm, as described in the next section.

From the data processing point of view, the flow of
RuGQoS goes through four major phases, Figure 1. In the

first phase, all the challenge data is parsed. The service
information is used to create reverse indexes [9], that is,
operation names are linked to services and their QoS. The
OWL ontology is also used in this process. In fact, elements
within a message structure are annotated, linking an element
to a semantic individual, which is an instance of an OWL
ontology class. Complex elements are dealt with by looking
at their sub-elements. The ontology defines an hierarchy of
classes. The creation of indexes occurs once for each data
set. The other thing that is parsed is the user query. This
can be done several times for the same data set. For each
query the composition algorithm is invoked. This generates
graphs representing the solution to the query (Composition
phase). Finally, the solutions found are transformed into
BPEL format, as required by the challenge rules.

3.1. The Composition Algorithm

The core of the RuGQoS system lies in its composition
algorithm. This is based on an extended Breadth First Search
(BFS) algorithm that uses a priority queue with cost based
on response time and throughput. The priority queue con-
tains unfinished compositions, and thus, cost and selection
on partially completed compositions, with cost calculated
according to two different cost functions (response time and
throughput), we run the algorithm twice, and then combine
the results into one unique BPEL schema. The proposed
algorithm, shown in (Algorithm 1), always finds a solution
if it exists and returns a failure otherwise.

The Algorithm 1 takes as input the input/output query, the
cost function (different for response time and throughput)
and the indexes from the service description repository
(WSDL, OWL, WSLA processed data). The priority queue
contains compositions, where the priority is calculated by the
cost function f (line 3). Initially it contains one composition
with a single node, with attached the input operation names ¢
and initial cost 0. A priority queue g supports two operations
enqueue and dequeue, denoted by g < (x,*) and x < ¢. An

1: Input: Cost function f, input params i, desired output
params g, indexed repository r
2: QOutput: Optimal composition or failure if it is not found

3: initialize priority queue ¢ < (g,0)

4: repeat

5: c—q

6: if unsat(c) C i then

7: return ¢

8: else

9: for all parameters e € unsat(c) do
10: if find(r, e) is empty then

11: mark(r, ¢, e)

12: else

13: for all services s € find(r,e) do
14: q — {c+s, f(c+s))

15: end for

16: end if

17: end for

18: end if

19: until g is empty
20: return failure o .
Algorithm 1: Composition algorithm.

operation unsat (line 6 and 9) returns a set of yet unsatisfied
parameters for a given composition. An operation find (line
10 and 13) returns a set of services that satisfies (have as
output) the given parameter. In line 14 operation + adds
a service to a composition at a node where corresponding
parameters are required. An operation mark(r, ¢, €) removes
all services from the repository as well as all compositions in
q that require e. Note that the algorithm always terminates
as the number of parameters and services is finite, and at
each step we resolve at least one parameter and we do not
add services that are already part of the composition.

In the actual implementation of the algorithm, some
further performance enhancements are present. E.g., several
search steps are combined into one whenever possible by
satisfying several required inputs at a time; one also keeps
track of already used services and satisfied inputs to avoid
redundant service selection; one never adds duplicate entries
to the priority queue; moreover, whenever a single service
satisfies several inputs in different branches, one can share
it between all branches involved.

3.2. A run of the algorithm

Let us now consider a small example to illustrate the
working of the Algorithm 1. Consider the set of six Web
services listed in Table 1 with their respective inputs, outputs
and cost (response time in this example). For simplicity, we
use only simple types, omitting complex OWL taxonomy
and class inferences. Now consider the user query taking no
input and outputting a and b.

Initially (line 3 in Algorithm 1) the priority queue con-
tains one composition with one node, and {a,b} are the
unsatisfied parameters (top left corner in Figure 2).

Step 1. In the first step, one finds satisfying either a
or b, and then extend the composition. New services are
added as nodes, and a link is added from the new service
node to each of the nodes that new service resolves. Then,
we remove satisfied parameters, and add new ones from
the service input at the corresponding service node. In the
example, we have three services (ss3, s4, and s5) that satisfy
either a or b, and we add them all to the priority queue with
their corresponding response times.

Step 2-8. At each following iteration, we take the first
composition from the priority queue, and then for each
yet unresolved parameter we add it back with all possible
services that have this parameter as output, adding the
updated response time. Note that there a number of special
cases: at Step 3, we remove service sp from the repository
and from the priority queue as it has an input parameter d
which cannot be resolved by any other service and it is not
part of the global input (lines 10—11 in Algorithm 1). At step
4 we find a first solution, with a total response time equal to
5. From this point on, the priority queue will not contain any
composition that have response time equal or greater than 5.
At step 7, the priority queue already contains compositions
that are to be added and are dropped to avoid processing of
identical compositions twice. At step 8, we find a solution
with a total response time equal to 4, therefore we remove all
entries from the priority queue that have cost equal or greater
than 4. At the final step (lower left corner in Figure 2), one
cannot build a composition that has a response time less
than 4, thus, at the next step we extract the composition
from the queue which has no unresolved parameters, that is,
the solution (lines 67 in Algorithm 1).

Input | Output | Response Time
S1 - C 2
s2 | D C 1
s3 | C A 1
S4 - B 4
ss | E B 2
s6 | - CE 3

Table 1. A Sample input to RuGQoS.

4. Concluding remarks

RuGQoS is the University of Groningen 2009 entry to
the Web service challenge. It performs service composition
using a generalized backward breadth first search with cost
function based on two QoS parameters: response time and
throughput. Future research will focus on the following as-
pects: (i) performance evaluation of the system on syntheti-
cally generated data; (ii) tuning of the composition algorithm
to increase performance; (iii) combining into one search the
identification of the optimal composition with respect to
response time and throughput, rather than performing two

B \2\2|2|3|4\4|4|—9 B EIEIEIEIEIN

e
& /
{d\

)

solution, cost=5

\{3\%}“ \

{C}
s6 {a}

o) b}

dupllcatﬂd entries

|z|a|a|4|4|4|5|

t

NN A \\ -\;

\2|3\3|4\4|4|5\

b
tal ib}

Figure 2. A run with input: {-} and output: {a,b}.

independent searches. Doing so will lower the execution
time of the Algorithm, allowing results to be obtained faster,
although memory usage might be an issue in this case.
(iv) further improve the indexing algorithm to reduce the
bootstrap time of the system.

References

(1]

(2]

(3]

M. Papazoglou, Web Services: Principles and Technology.
Prentice Hall, 2007.

F. Casati, M. Sayal, and M. Shan, “Developing e-services
for composing e-services,” in Conf. on Advanced Information
Systems Engineering (CAiSE), ser. LNCS 2068. Springer,
2001, pp. 171-186.

A. Lazovik, M. Aiello, and M. Papazoglou, “Planning and
monitoring the execution of web service requests,” in Int. Conf.
on Service-Oriented Computing (ICSOC-03), ser. LNCS 2910.
Springer, 2003, pp. 335-350.

(4]

(5]

(6]

(7]

8]

(9]

S. Tai, R. Khalaf, and T. Mikalsen, “Composition of co-
ordinated Web services,” ACM/IFIP/USENIX Int. Conf. on
Middleware, vol. 78, no. 5, pp. 294-310, 2004.

J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut,
“Quality of service for workflows and web service processes,”
Journal of Web Semantics, vol. 1, no. 2, pp. 281-308, 2004.

M. Aiello, N. van Benthem, and E. el Khoury, “Visualizing
compositions of services from large repositories,” in IEEE
EEE/CEC 2008, 2008, pp. 359-362.

S. Bleul, T. Weise, and K. Geihs, “The web service challenge
— a review on semantic web service composition,” in Service-
Oriented Computing (SOC’2009), Mar. 5 2009.

E. Keller and H. Ludwig, “The WSLA framework: Specifying
and monitoring service level agreements for web services,” J.
of Network and Systems Management, vol. 11, p. 2003, 2003.

M. Aiello, C. Platzer, F. Rosenberg, H. Tran, M. Vasko, and
S. Dustdar, “Web service indexing for efficient retrieval and
composition,” in IEEE EEE/CEC 2006, 2006, pp. 63-65.

