
Concept mapping for faster QoS-Aware Web Service Composition

Viktoriya Degeler, Ilče Georgievski, Alexander Lazovik, and Marco Aiello
Distributed Systems Group, Johann Bernoulli Institute

University of Groningen
Nijenborgh 9, 9747 AG, The Netherlands

{v.degeler, i.georgievski, a.lazovik, m.aiello}@rug.nl

Abstract—The availability of Web services with similar
functionality but different QoS values creates new challenges
for Web services composition: not only functional properties of
the composed service must be satisfied, but also non-functional
properties such as response time and throughput.

We present RuGQoS’10 system for QoS-Aware Web services
composition. The concept mapping technique allows to find the
best possible composition w.r.t. some QoS parameters without
performing a brute-force search.

I. INTRODUCTION

With the introduction of Web services came the possibility
of services composition [1]–[3], the process of combining
basic services to satisfy complex tasks. Recently, the quality
of service values increasingly affect the satisfaction of a
user with respect to a composition of Web services [4].
While the number of simple Web services that are used in a
composition, or the actual composition structure is usually
not important for the end users, the combined non-functional
values, like response time or bandwidth throughput, of a
composed service directly affect the willingness of end users
to use the composed service.

The Web Services Challenge [5], [6] is a yearly venue
with the purpose of bringing together researchers active on
Web services composition and offering a uniform benchmark
for their proposals. Contestants are expected to create a
composition system that is able to return a composition with
the best possible QoS values, given large sets of synthetically
generated service descriptions [7].

An entry to the challenge receives as an input three
description files: (1) A Web Service Description Language
(WSDL) file contains a set of services interface descriptions.
The interface is defined by concepts that a service needs
as an input, and concepts, that a service provides as an
output. The number of services can vary greatly. (2) A
Web Ontology Language (OWL) file contains a taxonomy of
concepts, relating the classes of the WSDL files. A certain
concept may be a specialized version of another concept,
which means that it can be used as an input and as an
answer to a query instead of a more general one. (3) A Web
Service Service Level Agreements (WSLA) [8] file contains
the QoS non-functional properties for each service in terms
of response time and throughput.

One or more queries are sent to the system. Each query is
a set of input concepts and output concepts that, in general,
require a composition of services to be satisfied.

The output of a composition system to each query is
a Business Process Execution Language for Web Services
(BPEL) schema of two compositions that satisfy the query:
the service composition with the lowest response time and
the service composition with the highest throughput.

In this context, response time is expressed in time units
and indicates the delay between the time a request is received
by a Web service and the time a reply to the request
is sent. The throughput measures the amount of requests
that a web service can handle in a given time unit. When
composing services the qualities of the individual services
are aggregated in the following way: (i) the response time of
all services in a sequence equals to the sum of all response
times of those services; for services that run in parallel
the maximum response time among them is taken; (ii) for
throughput, the minimum value among all services is taken,
whether they run in a sequence or in parallel.

II. THE RUGQOS SYSTEM

Given a set of services with corresponding QoS and OWL
descriptions, our system RuGQoS, is able to satisfy queries
of a user that requests a certain complex functionality, given
in terms of input/output parameters. The answer of RuGQoS
is the composition with the fastest response time and the one
with the highest throughput, if such compositions exist.

The Quality of Service aware Web service composition
system RuGQoS’10 is the evolution of the University of
Groningen systems RuGCo’08 [9] and RuGQoS’09 [10], that
participated in WS-Challenge in previous years.

With respect to RuGCo, RuGQoS’09 creates richer index
structures to take into account the QoS descriptions and
utilizes a breadth-first search composition algorithm. The
RuGQoS’10 is further improved by devising a new compo-
sition algorithm with lower computational complexity than
the previous one.

The architecture of RuGQoS’10 underwent no major
changes, as the architecture proved to be robust and ade-
quate, thus we do not further describe it here but rather
refer to [9], [10].



III. COMPOSITION ALGORITHM

The composition algorithm is the core of the RuGQoS
system. We next describe the composition algorithm for
finding the minimum response time. The algorithm for
finding the maximum throughput is similar.

The main idea of our composition that radically improves
performances in comparison to RuGQoS’09 is that one does
not need to find all possible compositions in order to find
we the best response time.

The composition that gives the best response time for
output concepts Co, also gives the best response time for all
intermediate concepts of the critical path that are calculated
along the way. Ad absurdum, if this was not the case, and
there existed a solution with a better response time for some
concept along the critical path, one could use this solution
instead, as it would mean having intermediate concepts with
faster response times, thus a better overall solution.

Thus, for each concept one should only keep and update
the currently found best time and the composition that gives
such optimal response time. In fact, for each concept one
only needs to know the last service of this composition (the
service that has this concept as an output). All previous ser-
vices in the composition one can find by looking recursively
on the input concepts to the last service.

We create the concept map CMP for this. The map has
all concepts as keys. For each concept it keeps the currently
found best response time and the last service, that returns
the concept as an output. The initialization of this map is
shown in Algorithm 1.

Algorithm 1 Initialisation of CMP map and queue

1: queue← ∅
2: for all concept ∈ C do
3: if concept ∈ Ci then
4: CMP (concept)← (0, ∅)
5: Add concept to queue
6: else if concept ∈ generalizations(Ci) then
7: CMP (concept)← (0, ∅)
8: else
9: CMP (concept)← (inf, ∅)

10: end if
11: end for

The best time for input concepts Ci and their general-
izations is 0, and these concepts do not have an associated
last service, since they are given as input. In other words,
one does not need to execute anything in order to know
their values. The best time for all other concepts is initially
set to infinity. That means that at the current level of our
knowledge those concepts cannot be satisfied. We also have
a queue of concepts, that “improved their response time,
and should be processed”. At the beginning the queue only
contains input concepts Ci.

Before running the main composition loop, we create a
map of all input services per concept. During the compo-
sition loop, it is required to know which services use the
particular (or more general) concept as an input. Creating
such a map at the beginning saves time instead of searching
the needed services each time they are requested, thus
improving the algorithm’s performance. The map is used
on line 4 in Algorithm 2.

Now we can describe the main loop of the composition
algorithm as shown in Algorithm 2.

Algorithm 2 Service composition
1: while queue is not empty do
2: concept← poll(queue)
3: for all services inserv that have concept as input do
4: starttime← 0
5: for all inconc ∈ inserv.input do
6: (t, s)← CMP (inconc)
7: starttime← max(t, starttime)
8: end for
9: endtime← starttime+ inserv.resptime

10: for all outconc ∈ inserv.output do
11: (tbest, s)← CMP (outconc)
12: if endtime < tbest then
13: CMP (outconc)← (endtime, inserv)
14: for all g ∈ generalizations(outconc) do
15: CMP (g)← (endtime, inserv)
16: end for
17: Add outconc to queue
18: end if
19: end for
20: end for
21: end while
22: (composition, besttime)← ReturnSolution(CMP )

We continue until we have concepts in a queue. With
each run of a loop we process and remove one concept
from the queue. When we get a concept from the queue, we
know, that this concept has improved its response time with
respect to the previously known information. Therefore, it
is possible that concepts that are calculated after the current
one in a solution also improve the response time. We check
this on lines 4-20, for all services inserv that have concept
as a part of input. The earliest possible starting time of the
service inserv is the maximum among response times of
all its input concepts. We calculate this time on lines 4-9.
If the concept taken from the queue was the one with the
maximum response time, the new possible starting time for
the service will decrease. Note that in case that at least one
of the input concepts is not yet satisfied, its response time (as
well as the services’ starting time) will be equal to infinity.

The updated response time of the output concepts of
service inserv equals to the service’s starting time plus its



own response time. We can now check if any of the output
concepts had its response time decreased. In this case, we
add it and its generalizations to the queue (cf. lines 11-18).

When the queue is empty, we know the best response
time of all concepts. We can now give an answer to the
composition query. This is shown in Algorithm 3. We find
the maximum response time among all concepts of the
output set Co, and return this as a result to the query. If
at least one response time is still set to infinity, the query is
unsatisfiable.

Algorithm 3 Return solution
1: besttime← 0
2: for all concept ∈ Co do
3: (time, service)← CMP (concept)
4: if time = inf then
5: return Unsatisfiable
6: end if
7: besttime← max(besttime, time)
8: Add service to composition
9: AddService(service)

10: end for
11: return (composition, besttime)
12:
13: function AddService(service)
14: if composition doesn’t contain service then
15: for all conc ∈ service.input do
16: (t, inserv)← CMP (conc)
17: if inserv 6= ∅ then
18: Add inserv to the composition as a predecessor

of service
19: AddService(inserv)
20: end if
21: end for
22: end if

To construct a service composition, we start by adding
all services that are the last for each of the output concepts.
Naturally, we add each service only once. Then for each
such a service we check all of its input concepts. If an input
concept has its own last service, we add it as a predecessor,
and recursively process it in the same way. We do it until
we meet a concept with no last service. These concepts are
the ones from the input set Ci.

IV. COMPOSITION EXAMPLE

We illustrate the proposed algorithms on a simple com-
position example. Table I presents a services taxonomy.
Suppose the query provides concepts a, b and demands for
the concept f . Table II shows a run of the algorithm for this
query.

We start by assigning the time 0 to all provided concepts
(a, b) and putting them into the queue (step 0). All other
concepts are unsatisfied, thus their time is set to infinite.

Table I
SERVICES TAXONOMY

s1 s2 s3 s4 s5 s6
in-concepts a,b c b,e a c d

out-concepts c e f d d f
responce time 3 4 5 10 6 7

Table II
A RUN OF THE COMPOSITION ALGORITHM

Step CMP map CurrentQueuea b c d e f concept
0 (0,∅) (0,∅) (inf,∅) (inf,∅) (inf,∅) (inf,∅) ∅ a,b
1 (0,∅) (0,∅) (3,s1) (10,s4) (inf,∅) (inf,∅) a b,c,d
2 (0,∅) (0,∅) (3,s1) (10,s4) (inf,∅) (inf,∅) b c,d
3 (0,∅) (0,∅) (3,s1) (9,s5) (7,s2) (inf,∅) c d,e
4 (0,∅) (0,∅) (3,s1) (9,s5) (7,s2) (16,s6) d e,f
5 (0,∅) (0,∅) (3,s1) (9,s5) (7,s2) (12,s3) e f
6 (0,∅) (0,∅) (3,s1) (9,s5) (7,s2) (12,s3) f ∅

At step 1, we process the concept a extracted form the
queue. Services s1, s4 use this concept as an input, and they
both can be started directly (for s1 the starting time of both
its input concepts a and b is 0). So we update the possible
starting time and service of concepts c and d, and put them
into the queue.

At step 2, we check the concept b, but nothing can be
improved. Service s1 returns response time 3 for a concept
c, but we already have this value in a map, and service
s3 cannot be invoked, because its other input concept e is
unsatisfied.

At step 3, we check the concept c. By running service s5
we can improve the starting time of the concept d from 10 to
9, thus we update the entry for this concept. We would also
add d to a queue, if it is not already present. We can also
satisfy the concept e now, by running service s2. Its starting
time 7 is equal to a sum of the starting time of concept c
and the running time of service s2.

At step 4, we finally satisfy the concept f , by running
service s6 with response time 16. We do not stop however,
because the queue is not yet empty. We check the concept
e at step 5 and we see that it improves the response time of
the concept f to 12. At the last step, we check the concept
f , however no service has it as an input, so nothing can be
improved. The queue is empty now, so the algorithm has
finished its work. The best response time of the concept f
is 12, and the composition for this can be seen in Figure 1.

Figure 1. Example composition



V. EVALUATION

To evaluate RuGQoS’10 and for testing purposes we
generated 80 taxonomies with varying number of services,
concepts and solution depths. Figures 2 and 3 indicate that
effect of the number of services and the number of concepts
on the complexity of the algorithm is very low. However,
as illustrated by Figure 4, the composition time greatly
increases with the increasing of the solution depth.

Figure 2. Average computation time vs number of services

Figure 3. Average computation time vs number of concepts

Figure 4. Average computation time vs depth of solution

VI. CONCLUDING REMARKS

RuGQoS’10 is the University of Groningen 2010 entry to
the Web services challenge and evolution of the 2008 and
2009 entries. In Table III, we compare the performance of
the new system and we remark the radical improvement with
respect to the previous year entry.

ACKNOWLEDGMENT

We want to acknowledge the work of Patrick Ratelband
on RuGQoS’09 system.

Table III
COMPARED PERFORMANCE OF RUGQOS’09 AND RUGQOS’10

Testset Parameters RuGQoS’09 RuGQoS’10
’09 Lowest response time 750 500

Challenge Highest Throughput 15000 15000
set 1 Composition time(ms) 202 88
’09 Lowest response time 2200 1690

Challenge Highest Throughput 6000 6000
set 2 Composition time(ms) 3627 141
’09 Lowest response time 810 760

Challenge Highest Throughput 4000 4000
set 3 Composition time(ms) 2601 188
’09 Lowest response time / 1470

Challenge Highest Throughput / 4000
set 4 Composition time(ms) Out of time 266
’09 Lowest response time 5410 4070

Challenge Highest Throughput 4000 4000
set 5 Composition time(ms) Out of time 519

The research is supported by NWO Jacquard SaS-
LeG contract no. 638.000.000.07N07. Project website:
http://www.sas-leg.net.

REFERENCES

[1] F. Casati, M. Sayal, and M. Shan, “Developing e-services
for composing e-services,” in Conf. on Advanced Information
Systems Engineering (CAiSE), ser. LNCS 2068. Springer,
2001, pp. 171–186.

[2] A. Lazovik, M. Aiello, and M. Papazoglou, “Planning
and monitoring the execution of web service requests,” in
Int. Conf. on Service-Oriented Computing (ICSOC-03), ser.
LNCS 2910. Springer, 2003, pp. 335–350.

[3] S. Tai, R. Khalaf, and T. Mikalsen, “Composition of co-
ordinated Web services,” ACM/IFIP/USENIX Int. Conf. on
Middleware, vol. 78, no. 5, pp. 294–310, 2004.

[4] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut,
“Quality of service for workflows and web service processes,”
Journal of Web Semantics, vol. 1, no. 2, pp. 281–308, 2004.

[5] (2010) The Web Services Challenge. [Online]. Available:
http://www.wschallenge.org/

[6] M. Blake, W. Cheung, M. Jaeger, and A. Wombacher, “WSC-
06: The Web Service Challenge,” in Joint Proceedings of the
CEC/EEE 2006, 2006.

[7] S. Bleul, T. Weise, and K. Geihs, “The web service challenge
– a review on semantic web service composition,” in Service-
Oriented Computing (SOC’2009), Mar. 5 2009.

[8] E. Keller and H. Ludwig, “The WSLA framework: Specifying
and monitoring service level agreements for web services,” J.
of Network and Systems Management, vol. 11, p. 2003, 2003.

[9] M. Aiello, N. van Benthem, and E. el Khoury, “Visualizing
compositions of services from large repositories,” in Joint
Proceedings of the IEEE CEC/EEE 2008, 2008, pp. 359–362.

[10] M. Aiello, E. el Khoury, A. Lazovik, and P. Ratelband,
“Optimal qos-aware web service composition,” in Joint Pro-
ceedings of the IEEE CEC/EEE 2009, 2009.


