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Abstract

In a service oriented architecture, loosely coupled software components are
orchestrated as service in order to implement a working information system. How
services are orchestrated is decided by developers and is also referred to as service
composition.

To stimulate research in the field of automatic service compositioning, an an-
nual competition was started in 2005, called the Web Services Challenge (WSC).
The RugCo system is the entry from the University of Groningen to the 2008 edition
of the WSC.

RugCo automatically composes Web services from a repository based on the
semantics of a domain ontology and a user composition query. Using a beam search
algorithm with straight-forward ordering heuristics, the system was able to find
compositions for all challenge queries well within the time limit. In addition, RugCo
was recognized for its flexible architecture based on modifiability and integratebility.

This thesis decribes the RugCo approach and analyzes its results compared
to other participating systems as a base for future participation and contribution to
editions of the WSC.





Contents

1 Introduction 11

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 The Web Service Challenge 2008 . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Contribution and thesis organization . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15

2.1 The ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The service repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Solution format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 A formal look at the WSC’08 19

3.1 Web service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Parameter matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 WSC’08 challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 RugCo Approach 27

5



6 Contents

4.1 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Topological sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Tree based search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Parallel services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Correctness and complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Implementation 37

5.1 High level overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 XML parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 The service repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Composer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 XML Writers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Web service wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Results from WSC ’08 47

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Other WSC’08 approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusions 51

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Future of Web Service Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 52

References 53



List of Tables

5.1 Example index of service repository . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Properties of the WSC’08 challenge sets . . . . . . . . . . . . . . . . . . . . . 48

6.2 WSC’08 performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7





List of Figures

2.1 Object model of OWL subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Object model of WSDL service definition . . . . . . . . . . . . . . . . . . . . 16

2.3 Object model of MECE message annotation . . . . . . . . . . . . . . . . . . . 17

2.4 Object model of WSC’08 BPEL solution structure . . . . . . . . . . . . . . . . 18

3.1 Example taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Example composition graph and its transitive reduction . . . . . . . . . . . . . 22

3.3 Alternative composition dags . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Running example: the ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Running example: the service repository . . . . . . . . . . . . . . . . . . . . . 28

4.3 Running example: the composition query . . . . . . . . . . . . . . . . . . . . 28

4.4 Running example: the composition dag . . . . . . . . . . . . . . . . . . . . . 29

4.5 Running example: two topological orderings . . . . . . . . . . . . . . . . . . . 29

5.1 High level overview of RugCo architecture . . . . . . . . . . . . . . . . . . . 38

5.2 Object model of XML parsers . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Nested set model of ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9



10 List of Figures

5.4 Object model of ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Object model of service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Object model of composer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Object model of composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8 Object model of the bounded priority queue . . . . . . . . . . . . . . . . . . . 42

5.9 Object model of the BPELWriter . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.10 Example BPEL output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.11 Object model of the GraphMLWriter . . . . . . . . . . . . . . . . . . . . . . . 44

5.12 Example GraphML output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.13 Sequence diagram of RugCo system . . . . . . . . . . . . . . . . . . . . . . . 45



Chapter 1

Introduction

Service-Oriented Architectures (SOA) are becoming more popular and software engineers are
spending their time increasingly on developing services and making them interact [1]. The pro-
cess of making different services cooperate to achieve some user goal is usually referred to as
service composition. Currently, most SOA’s are based on an XML based technology known as
Web services [2]. Various services are considered as the building blocks of the software archi-
tecture and developers decide how to orchestrate them in order to have a working information
system. The more automation one can bring to the process, the more efficient the production of
SOA oriented software would be.

To stimulate research in the field of automatic service compositioning, the IEEE Conference
on Electronic Commerce (CEC) has started an annual competition back in 2005 around Web
service composition, the Web Services Challenge (WSC). Participants of the WSC are asked to
create software that will create a Web service composition to fulfill a query, using a provided set
of available Web services and a semantic annotation of of their in- and output elements.

The University of Groningen participated in the 2008 edition (WSC’08) with a team of four
people: master student Nico van Benthem, bachelor student Jaap Bresser, PhD student Elie el
Khoury, under the supervision of Marco Aiello from the Computer Science department. The
team was awarded in both prize categories: first place for their system architecture and first
runner up for the performance of their system.

This thesis describes the RugCo system which is the entry from the University of Groningen
to the WSC’08 . The RugCo system automatically composes Web services from repository
based on the semantics of a domain ontology and a user composition query.

1.1 Background

The main building blocks for the WSC’08 are Web services, OWL ontologies, semantic annota-
tion using MECE and the Business Execution Process Language (BPEL).

11



12 CHAPTER 1. INTRODUCTION

A Web service can be described as a reusable software component which can be invoked
over network like the Internet. An example of a Web service is an application that takes care of
booking a room at a specific hotel or a service that books a flight at a specific airline company.
Web services can be published using the Web Service Description Language (WSDL) which is a
standard containing all details on how to technically invoke the service in a machine processable
format (XML) [3]. Publishing WSDL allows efficient reuse of Web services and combining
them for fast development of SOA applications.

By default WSDL does not include semantics in the description of Web services. Two ser-
vices can have similar technical descriptions while the result of their invocation can be totally
different. Such ambiguities can be resolved by giving semantic meaning to the inputs and outputs
of a service, which is essential for the automation of service discovery and composition. One
of the technologies available is the Mediation Contract Extension (MECE) for Web services [4].
MECE allows semantic annotation of XSD message elements inside WSDL documents linking
service parameters to a concept of a knowledge domain.

Ontologies are formal representations of knowledge in a certain domain defined by a set
of concepts and relationships between them which enables reasoning about properties of the
domain. The Web Ontology Language (OWL) is a family of knowledge representation languages
based on a RDF/XML syntax [5].

Finally, the Business Process Execution Language (BPEL) is a standard for specifying inter-
actions with Web services [6]. BPEL is an orchestration language which centralizes control by
exchanging information solely through loosely coupled Web services. Services within the pro-
cess are unaware of the process responsible for their invocation and can therefor can be easily
interchanged or reused. A BPEL process itself can also be published as a Web service.

1.2 The Web Service Challenge 2008

The main focus of this years edition of the challenge is on the semantic composition of Web
services. Services available for composition are given semantic meaning by annotation using
MECE and OWL. In addition, the BPEL solution format of WSC’08 allows participants to
return compositions which include parallel and alternative invocation paths.

Given a repository of semantic Web services and an OWL ontology, users should be able to
submit requests to the participating composition software for service composition. A composi-
tion request is expressed by a service description of a non existing service. By using the same
semantic annotation the request describes the required semantic outputs of the composition and
which semantic inputs are available for the invocation of the services in the composition.

Participating systems are evaluated in two categories. First the performance of each system is
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compared to other entries, based on i) the time needed to return any composition ii) the minimal
number of services in any of the compositions returned and iii) the use of parallel invocation to
minimize the execution path length of the composition. The second evaluation category is the
architecture of the system based on quality attributes like modularity, scalability, flexibility etc.

1.3 Related work

The Web Service Challenge is related to the Semantic Web Service Challenge (SWS)1 which
also uses semantics for the automation of composition and discovery for Web Services. Unlike
WSC, the SWS challenge allows participants to provide additional semantic annotations of the
WSDL in order to solve the composition problem. In addition, the SWS challenge focuses on
the productivity of the developer and not the speed of the composition software. SWS provides a
platform for researchers and industry to show what their Web service discovery and composition
technology can do.

The Semantic Services Selection (S3) contest 2 is also related to the WSC. S3 evaluates
the retrieval performance of semantic Web service matchmakers commonly used for selecting
relevant semantic Web services in any application setting. WSC is complimentary to S3 because
service discovery is a rather small part of WSC whereas service composition is untouched by
the latter contest.

1.4 Contribution and thesis organization

This thesis presents the RugCo approach which combines an efficient search algorithm with an
flexible implementation architecture. RugCo uses a beam search algorithm to optimize compo-
sition size while reducing memory requirements. In addition, the RugCo system provides the
option to visualize compositions using an open XML standard for graph representation and a
compatible graph editor tool.

The second chapter of this thesis describes the details of the WSC’08 rules and formats. The
third chapter translates the WSC’08 rules into a formal definition of the composition problem. In
the fourth chapter, the RugCo approach for service composition is presented. The fifth chapter
explains the implementation details of the RugCo system. The sixth chapter presents the results
of the RugCo system at the challenge and discusses its performance by comparing its strong and
weak points with approaches from other entries to the challenge. The final chapter summarizes
the findings of this thesis and gives recommendations for future implementations of RugCo and

1Details on the SWS challenge can be found at http://sws-challenge.org/, checked December 1, 2009
2Details on the S3 can be found at http://www-ags.dfki.uni-sb.de/ klusch/s3/, checked December 1, 2009
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suggests possible focuses for future editions of the Web Service Challenge.



Chapter 2

Background

Given an ontology, a repository of web services, a set of semantic annotations and a composition
query, participating systems of the Web Service Challenge of 2008 (WSC’08) are required to
automatically create service compositions which follow the semantic evaluation of input and
output parameters of their services.

This chapter starts with describing the structure of the ontologies used as a base for the
semantic annotation of service parameters. After a brief description of the service repository,
the chapter handles the semantic annotation of service input and output messages elements. The
final section describes the solution format of the challenge.

2.1 The ontology

To enable reasoning about the semantics of service input and output paramaters, the WSC’08
makes use of the Web Ontology Language (OWL) [5]. The XML based language contains
an extensive vocabulary for defining relations between semantic concepts and their semantic
properties, but the challenge limits its use to the definition of classes, subclass relations and
semantic individuals as shown in figure 2.1.

Figure 2.1: Object model of OWL subset

Each OWL class corresponds to a semantic concept and the subclass relations corresponds
to a generalization of one concept by another concept. Semantic individuals represent instances
or members of a class and the subsumption relation between their classes also holds for their

15



16 CHAPTER 2. BACKGROUND

members.

For the remainder of this thesis, the term concept is used to refer to the underlying meaning
of an OWL class.

2.2 The service repository

Each challenge set provides a repository of virtual web services, available for service composi-
tions. The information about the fysical location of the service and the syntax of its input and
output parameters is specified using the Web Service Description Language (WSDL) [3].

The WSDL file also contains an XML Schema Definition Language (XSD) [7] section in
which the structures for service input and output parameters are described.

Figure 2.2: Object model of WSDL service definition with XS elements

All services of the challenge are synthetic and share the same simplified WSDL structure.
Figure 2.2 shows the object model of a single WSC’08 service definition.

The service element contains a single port element which refers to a specific binding. Binding
elements contain message format and protocol details for the port type element it refers to,
mapping the abstract operation element to a concrete format.

The port type element contains a single request-response operation element consisting of a
single input and a single output element. Both the operation input and the operation output
element refer to a input and an output message element respectively. The message elements
contain one or more message parts each refers to an schema element.

All schema element are either a simple type or a complex type where complex type elements
may consist of other simple and/or complex type elements.



2.3. SOLUTION FORMAT 17

2.2.1 Semantic annotation

The Mediator Contract Extension (MECE) [4] for WSDL makes it possible to add semantics to
the service messages structures. An MECE annotation links a message element to a semantic
individual in the ontology, giving meaning to the element within its message context. The se-
mantic information enables reasoning about service parameters as a base for semantic matching
between an output element of one service and the input element of another.

Figure 2.3: Object model of MECE message annotation

Figure 2.3 shows the object model of XML schema for the MECE extension of WSDL which
consists of two elements. A message extension element refers to any input or output message
of the service repository and contains one or more semantic extension. The semantic extension
element refers to element within the annotated message linking them to a semantic individual of
the OWL ontology.

For WSC’08 , only simple type elements within the message structure are annotated, so the
structure of complex elements is actually ignored.

2.3 Solution format

A service composition is an executable process in which each step involves using message el-
ements from previous steps to invoke the next service in the process. This orchestraction of
services can be done using the Business Process Execution Language (BPEL) [6]. The WSC’08
solution format is a subset of BPEL simplifying the evaluation process. Using BPEL, partici-
pating systems are able to describe a composition with alternative and/or parallel sequences of
service invocations.

Figure 2.4 shows the object model of the WSC’08 solution format. Each composition consist
of a single process element. Within the process element, the main sequence defines the require-
ment to receive the composition query input concepts before executing one of the alternative
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Figure 2.4: Object of WSC’08 BPEL solution structure

solutions in the main switch element. Each solution case element contains a sequence of invoke,
flow and/or switch elements. An invoke element refers to a web service to be invoked and two or
more sequences within a flow element indicate that these sequences can be executed in parallel.
Finally, a switch element contains two or more alternative sequences.



Chapter 3

A formal look at the WSC’08

In this chapter, the description of the WSC’08 is translated into a formal definition of the com-
position problem. Based on the semantic annotion of its message elements, the chapter starts
defining services as sets of input concepts and output concepts. Next, the chapter describes the
properties of the subsumption relation between semantic concepts as a base for the matching of
service parameters. The third section gives a formal definition of a service composition and dis-
cusses properties like composition size and execution length. At the end, the chapter concludes
these sections into a complete formal definition of the 2008 web service challenge as a base for
the RuGCo approach in the next chapter.

3.1 Web service

The matching of service parameters is based their semantics, rather than the structure of the
messages and their elements. Through semantic annotation, each simple element within the
message structure, whether or not part of a complex element, refers to a semantic individual in
the ontology. A semantic individual in turn is a member of an ontology class, linking the simple
element to a semantic concept. As a result, any service message m within the WSC’08 context
is reduced a set of concepts m ⊆ C, and any web service to a set input and output concepts.

Definition 3.1 (Service). A service s ∈ S is a pair of input message sin and output message
sout with sin, sout ⊆ C and service repository S:

s =
〈
sin, sout

〉
For example, service s3 = 〈{c7} , {c5, c6}〉 requires concept c7 as input for invocation and

returns semantic concepts c5 and c6 .

Similarly, a composition request q =
〈
qin, qout

〉
has an input message qin ⊆ C and an output

message qout ⊆ C containing the provided and required concepts of the challenge respectively.

For example, composition query q = 〈{c1, c2} , {c3, c4, c5}〉 is a request for a composition

19
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that provides output concepts c1, c2 and c3. Query input concepts c1 and c2 are available for the
invocation of the composition’s services.

3.2 Parameter matching

The input and output concepts of the composition query and services can be matched when the
set of semantic properties of the input concept is a subset of the set of semantic properties of
the output concept. In other words, concept ca subsumes concept cb when concept ca is equal to
concept cb or when concept ca is a specialization of concept cb.

In the OWL ontology, the subsumption relation between two concepts is defined by the sub-
class property between corresponding classes in the taxonomy.

Definition 3.2 (SubclassOf).

subclassOf(A,B) ≡ The set of semantic properies of classA

is a subset of the set of semantic properties of class B

Figure 3.1 shows an example food taxonomy, each class representing a concept of the ontol-
ogy. An apple is a subclass of fruit, which means that each member of the apple class is also a
member of the fruit class.

Figure 3.1: Example taxonomy

When class A represents concept cA and class B represents concept cB , a subclass relation
between class A and B directly translates to the subsumption relation between concept cA and
concept cB .

Definition 3.3 (Subsumes). Concept cA subsumes concept cB when either cA is a subclass of
cA or when there exists a concept cS such that cA is a subclass of cS and cS subsumes cB with
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cA, cB, cS ∈ C:

subsumes(cA, cB) =

{subclassOf(A,B) ∨ {∃cS ∈ C : subclassOf(A,S) ∧ subsumes(cS , cB)}}

For example, based the taxonomy of figure 3.1, concept capple subsumes concepts cfruit and
cfood. In constract, the proposition subsumes(capple, cvegetable) is false.

When looking for services to subsume an unmatched service input or query output concept,
it is necessary be able to determine all concepts that are subsumed by a set of output concepts.

Definition 3.4 (Subsuming). The set of all concepts subsuming a concept in the set of concepts
C are the subsuming concepts of C with C ⊆ C:

subsuming(C) =
⋃

c ∈ C

{cs ∈ C | subsumes(cs, c)}

Let C be a set of concepts {cpotato, ctomato}. The set of all subsuming concepts of C equals
{cpotato, ctomato, cvegetable, cfood}.

Note that for any c ∈ C the concept c subsumes all of its own semantic properties and therefor
{c} ∈ subsuming({c}).

3.3 The composition

The focus of WSC’08 lies on the order in which web services may be invoked. Before a web
service can be invoked, each of its input concepts must be subsumed by a concept provided by
the composition query or by an output concept of a previously invoked service.

For some service pairs this dependency defines the order in which the services may be in-
voked with respect to each other. Other pairs may have no such dependency and the order is
therefor undefined. In other words, the composition defines a partial order between participating
services.

Definition 3.5 (Composition). A web service composition W = 〈S,<〉 is a partial ordered set
of services S ⊆ S in which the binary relation < defines the requirement of invoking service sl
before s2 for one or multiple pairs of services (s1, s2) ∈ S.

For example, when service s2 ∈ S depends on one or more output concepts of service s1 ∈ S

then s1 < s2. Pairs for which no such relation exists (neither s1 < s2 or s2 < s1) can be invoked
independently from each other.

For services s1, s2, s3 ∈ S, the strict partial order relation < has the following properties:
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• ¬(s1 < s1) (irreflexivity: a service cannot depend on its own output);

• if s1 < s2 then ¬(s2 < s1) (antisymmetry: a service s1 cannot depend on the output of a
service s2 when s2 depends on output of s1);

• if s1 < s2 and s2 < s3 then s1 < s3 (transitivity: if service s2 depends on the output of
s1 and s3 depends on output of s2, then indirectly s3 depends on the output of s1);

3.3.1 Directed Acyclic Graph

The partial order relation < of a composition W can be visualized by a directed acyclic graph
(dag) GW = (S,E) in which there is a directed edge (s1 → s2) ∈ E between two services s1
and s2 exactly when s1 < s2. Graph GW is acyclic by definition since any path from a service
to itself would contradict either the irreflexivity or antisymmetry property of <.

(a) (b)

Figure 3.2: Example: (a) composition graph GW and (b) its transitive reduction G∗W

Figure 3.2(a) shows a dag GW = (S,E) consisting of five services s1 . . . s5 ∈ S with mul-
tiple dependencies between them. For example, service s3 requires at least one output concept
of service s1, which means that s3 may only be invoked after the successful execution of s1.
Similarly, service s4 can only be invoked after service s2 and s3 have finished their execution.

In the composition dag, source nodes are services without predecessors and have no incoming
edges. In figure 3.2(b) both service s1 and s2 are sources nodes and represent services for which
each input concept is subsumed by one of the query input concepts.

In contrast, service s4 has no services depending on its output. Nodes which have no outgo-
ing edges are sink nodes and represent services that provide at least one concept subsuming a
composition query output concept. The latter is based on the assumption that the composition
does not include any redundant services.
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Transitive reduction

The purpose of the directed acyclic graph representation is to record the order in which services
can be executed. With respect to this purpose, graph GW may contain edges that are redundant
because they are already implied by the transitive property of the partial order <. For example,
the edge (s1 → s4) implies that that service s1 has to be invoked before service s4. This order
is also implied by the combination of (s1 → s3) and (s3 → s4).

Definition 3.6 (Transitive reduction). The transitive reduction of GW is a graph G∗W with such
that: i) G∗W is a subset of GW ii) For every path between any two nodes in GW there is also a
path in G∗W iii) GW is minimal

The transitive reduction of GW is displayed in 3.2(b). For the remainder of this thesis the
transitive reduction of the dag will be used to visualize service compositions.

3.3.2 Valid compositions

A composition is executable when all input concepts of each service in the composition are
subsumed by either a query input concept or an output concept of a preceding service.

Definition 3.7 (Predeceding services). The predeceding services of service s are the services on
which s depends on for the subsumption of one or multiple of its input concepts with W = 〈S,<〉
and s ∈ S:

predecessors(W, s) = {sp ∈ S | sp < s}

In the composition of figure 3.2(b) the predecessors of service s4 are {s1, s2, s3}.

Definition 3.8 (Available concepts). The concepts available for the invocation of service s is the
union of the subsuming concepts of the query input message qin with the subsuming concepts of
the output message of each preceding service of s in W with W = 〈S,<〉 and s ∈ S:

available(W, s) = subsuming(qin) ∪
⋃

sp∈predecessors(W,s)

subsuming(sout
p )

For example, for the composition in figure 3.2(b) the concepts available for invoking service
s3 equals subsuming(qin) ∪ subsuming(sout1 ).

When all services in the composition have been invoked succesfully, the subsuming concepts
of each service output message are available to subsume the query output concepts.

Definition 3.9 (Unsatisfied concepts). The set of unsatisfied concepts of a composition W is the
union of: i) All query output concepts not subsumed by a service output concept in the composi-
tion ii) All service input concepts not subsumed by a concept in the set available concepts, with
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W = 〈S,<〉, s ∈ S and composition query q:

unsatisfied(W ) =

(
qout \

⋃
s∈S

subsuming(sout)

)
∪

(⋃
s∈S

(
sin \ available(s)

))

When the composition has no unsatisfied concepts it is a valid composition satisfying the
composition query:

unsatisfied(W ) = ∅

3.3.3 Parallel paths

In the composition dag, paths represent sequences of services that need to be invoked in a partic-
ular order. The longest path between any two services is called the critical path of the dag. The
2008 challenge solution format enables the specification of parallel paths, reducing the minimal
response time of the composition to the sum of the response times of the services on the critical
path. Parallel paths exist when there are pairs of services in W without dependency relation <.

Definition 3.10 (Execution length). The execution length of composition W is the number of
services on the longest path between any two services in the composition graph GW with W =

〈S,<〉.

Since all challenge services are considered to have equal response times, the minimal re-
sponse time of a composition equals the execution length of the composition.

In composition G∗W displayed in figure 3.2(b), there is no partial order relation between
service s2 and services s1 and s3. Therefor, service sequences [s2] and [s1, s3] are parallel
invocation paths in the composition and the longest path in the composition equals [s1, s3, s4].

3.4 WSC’08 challenge

For each composition query q /∈ S, service repository S and ontology classes C multiple solu-
tions may exist:

solutions(S,C, q) = {W ∈W | unsatisfied(w) = ∅ }

Definition 3.11 (Challenge goal). The goal of the challenge is to find the set of solutions con-
taining both the composition with the minimal number of services and the composition with the
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minimal height:

goal(S,C, q) = {W ∈ solutions(S,C, q) ∧W = 〈S,<〉 |
∀Wx ∈ solutions(S,C, q) ∧ Wx = 〈Sx, <〉 :

length(W ) ≤ length(Wx) ∨ |S| ≤ |Sx|}

Let W1 and W2 be two alternatives for composition GW displayed in figure 3.2(b) so solutions(S,C, q) =

{W,W1,W2}. The corresponding composition dags GW1 and GW2 are displayed in figures
3.3(a) and 3.3(b) respectively. The execution lengths of and the number of services in the these
compositions are:

length(GW ) = 3 , |W | = 4

length(GW1) = 2 , |W1| = 5

length(GW2) = 4 , |W2| = 5

Since composition W contains the least number of services and composition W1 has the shortest
execution length, the goal of the challenge equals goal(S,C, q) = {W,W1}.

(a) (b)

Figure 3.3: Alternative composition dags a) GW1
and b) GW2





Chapter 4

RugCo Approach

This chapter describes the RugCo heuristic based approach for finding challenge solutions .
The chapter starts with the introduction of a running example, to illustrate the algorithms and
heuristics introducted in this chapter. Secondly, the chapter describes the topologic sort of a
directed acyclic graph to represent compositions as a simple sequence of services. In the third
section, the search space of the challenge is defined as a base for tree based searching algorithms.
Next, the chapter explains the beam search algorithm as an optimized version of best-first to
reduce memory requirements, together with the order heuristics used. Then the search algorithm
as used for the WSC’08 is presented. The final section considers the correctness and complexity
of the algorithm.

4.1 Running example

The running example is based on the formal definition of the challenge presented in the previous
chapter and presents a challenge set consisting of an ontology C, a service repository S and a
composition query q.

Figure 4.1 shows ontology C which contains a taxonomy of thirtheen concepts. The sub-
sumes relation between two concepts is visualized by the dashed generalization arrow. For
example, concept c1 is subsumed by c5 and c6.

Figure 4.1: Running example: ontology C

27
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Repository S contains six services and is displayed in figure 4.2. The annotation of service
messages with semantic individuals from the ontology is represented by linking each service
directly to the concepts of the individuals. As a result each service in the repository is displayed
with one or more input and one or more output concepts. For example, service s4 requires input
subsuming concepts c6 and c9 to provide concept c11.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Running example: service repository S = {s1, s2, s3, s4, s5, s6}

In figure 4.3, the composition query q is displayed which has two input concepts and three
output concepts. The query calls for a composition that returns the set of concepts that subsume
each of the query output concepts c3, c4 and c5. To satisfy service inputs of the composition,
concepts c1, c2 are available.

Figure 4.3: Running example: composition query q

Figure 3.2(a) in the previous chapter shows composition W which is a solution for com-
position query q based on ontology C, service repository S. The dag in figure 4.4 shows the
same composition but includes the mappings between matched input and output concepts of its
services based on the subsumes relation. Concepts c1 and c2 are query input concepts and are
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mapped directly to the input concepts of service s1 and s2 respectively. The output concepts c9
of service s2 and c7 of service s1 subsume query output concepts c3 and c4. The third and final
query output concept c5 is provided by service s3 directly.

Figure 4.4: Running example: composition dag GW with parameter mappings

4.2 Topological sort

Each composition can be executed as a single sequence in which each service is invoked after the
previous service in the sequence has returned its output. This sequence is not unique when one
or multiple pairs of services exist in the composition for which no such partial order is defined.

Definition 4.1 (Topological sort). A topologic sort TW of composition W = 〈S,<〉 is a linear
ordering of services in which each service s ∈ S is listed after all services sp ∈ predecessors(s)
it depends on.

For example, for the execution of GW in figure 3.2(b) it is irrelevant whether service s2 or
s3 is invoked first, just as long as they are both finished before service s4 is invoked. Figure 4.5
shows the two corresponding topological orderings of GW .

Figure 4.5: Running example: Two topological orderings of dag GW

4.3 Tree based search

The RugCo approach uses a tree based search algorithm to find compositions that satisfy the
challenge set. The order in which each node in the search tree is visited depends on the specific
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search algorithm that is used.

In the search tree, each node T corresponds to a topological sort of a services. The root
of the tree Tr, is an empty list with unsatisfied(Tr) = qout. Node Tg is a leaf node with
unsatisfied(Tg) = ∅ and is the goal of our search. All other leaf nodes are nodes that cannot be
expanded. The algorithm terminates as soon as the goal node is reached or when there are no
more nodes left to expand.

4.3.1 Node expansion

When a search node T is visited and it is not identified as a goal node, the node has unsatisfied
concepts. When expanding the node, one or more of these concepts are eliminated by adding a
new service to the composition. For each child node a different service is introduced.

Definition 4.2 (Providing services). The set of providing services for a concept c is the set of
services having one or more output concepts that subsume concept c with c ∈ C:

providers(c) =
{
sp ∈ S | c ∈ subsuming(soutp )

}
Any node T that has an unsatisfied concept cu with providers(cu) \ T = ∅ cannot be on the

path to a goal node because this concept will never be satisfied and therefor cannot be expanded.
To further reduce the branching factor of the search tree, this idea is extended for search nodes
for which providers for all unsatisfied concepts exist. Instead of extending T with the complete
set of providers for each of its unsatisfied concepts, the algorithm determines which concept cu
has the least number of providers and only extends the node with these concepts.

Definition 4.3 (Promising services). The set of promising services for a search node T is the
smallest set of providing services for any unsatisfied concept cu ∈ unsatisfied(T ) not already
in T :

promising(T ) =

{sp ∈ providers(cu) \ T | ∀cx ∈ unsatisfied(T ) :

| providers(cu) \ T | ≤ | providers(cx) \ T |}

Consider the root node Tr = ∅ of the running example. The set of unsatified concepts is equal
to the set of query output concepts: unsatisfied(Tr) = {c3, c4, c5}. The corresponding sets of
providing services for these unsatisfied concepts are providers(c3) = {s2, s5}, providers(c4) =

{s4} and providers(c5) = {s3, s5}. Since there is only one provider for concept c3, service s4
has to be part of the composition. Therefor the set of promising services for Tr equals {s4}.
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Algorithm 1 below shows how the expansions for search node T are generated in which the
function expand(T, sp) contains the logics of adding the promising service sp to composition
T .

Algorithm 1: E = expansions(T )

Input: Search node T

Output: A set E with expansions of T

begin1

E ←− ∅2

foreach sp ∈ promising(T ) do3

T ′ ←− expand(T, sp)4

add T ′ to E;5

return E6

end7

Adding a promising service to a composition eliminates unsatisfied concepts but can also
introduce new unsatisfied concepts because the input concepts of the new service must now also
be satisfied by either the query input concepts or output concepts of existing services in the
composition.

Algorithm 2: T ′ = expand(T, sp)

Input: node T , promising service sp
Output: expansion T ′ of T with sp
Data: composition query q

begin1

T ′ ←− T2

newEliminated←− unsatisfied[T ] ∩ acquired(
{
soutp

}
)3

i←− 04

dependencyFound←− false5

while not dependencyFound and i < size(T ) do6

s←− T [i]7

if sin ∩ newEliminated 6= ∅ then8

dependencyFound←− true9

else10

i++11

insert service sp at position i in T ′12

return T ′13

end14
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Algorithm 2 shows the algorithm for expanding a composition with a promising service. To
preserve the topological ordering of services and to mininimize the new unsatisfied concepts,
the promising service is inserted into the sequence in front of the first service having an unsat-
isfied input concept eliminated by the output of the new service. This maximises the number of
services the newly introduced service can depend on for the satisfaction of its own inputs.

Let T = [s2, s4] be a search node in the search tree of the running example with unsatisfied(T ) =

{c5, c6} and sp = s3. The set of new eliminated concepts now equals {c5, c6}∩{c5, c6, c1, c0} =

{c5, c6}. Since sin4 ∩ CE = {c6} service s3 will be added in front of service s4 and therefor
T ′ = expand(T, s3) = [s2, s3, s4].

4.4 Beam Search

The RugCo system uses an optimized version of a the best-first search. At each search step, the
algorithm determines which unexplored node in the search tree is the most promising one and
expands it by generating its child nodes. Typically the selection of the next candidate node is
based on a priority queue in which nodes are ordered by some heuristic ordering function.

Because the total number of search nodes to be explored can rapidly increase with the ex-
pansion of nodes, memory often is a bottleneck when the search space is significantly large.
The beam search used by the RugCo system, reduces this memory requirement by limiting the
number of nodes that are kept in the priority queue. At each level of the search tree, only the b

most promising nodes are saved.

Because there is a possibility that the nodes on the path to the goal node are not considered
to be in the set of b most promising nodes, there is a risk that the algorithm might not find any
solutions or may not find the best solution. Preliminary results showed that the beam search did
find good solutions fast.

Algorithm 3 shows the beam search used for the challenge. The size of priority queues Pb

and P ′b is limited by beamwidth b so only the most promising nodes are kept in the queue. The
algorithm starts by inserting the root node Tr into priority queue Pb. At each level of the search,
each node T in priority queue Pb is extended. For each child node T ′ ∈ expansions(T ) the
algorithm checks whether it is the goal node TW . If not, T ′ is inserted in the next level priority
queue. The algorithm finishes as soon as the goal node Tw was found or when there are no nodes
left to expand.
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Algorithm 3: TW = beamSearch(q)

Input: composition query q and root node Tr

Data: priority queues Pb and P ′b with limited size b

Output: goal node TW or null when no solution exists
begin1

Pb ←− P ′b ←− ∅2

insert Tr into Pb3

while P is not empty do4

pop T from Pb5

foreach T ′ ∈ expansions(T ) do6

if unsatisfied(T ′) = ∅ then7

TW ←− T ′8

return TW9

else insert T ′ into P ′b10

Pb ← P ′b11

end12

return null13

4.4.1 Ordering heuristics

The ordering of search nodes is based on heuristics. The heuristic comparator function compares
two search nodes to determine which of the two is more likely to be on the path of the goal node.

With the pending deadline of WSC’08 , little time was spend on determining and optimiz-
ing appropriate heuristics. Experimenting with these heuristics may reveal additional or more
appropriate properties. For the same reason, the execution length of the composition defined in
3.10 is currently not included in the heuristics while minimizing the value of this property is part
of the challenge.

The heuristic ordering of search nodes used for the WSC’08 is based on the following two
composition properties:

• The number of unsatisfied concepts. The composition having the least number of unsat-
isfied concepts is more likely to be close to a solution since the tree search algorithm is
based on eliminating these concepts.

• The number of acquired concepts. The composition that has acquired the most concepts
is closer to the goal node since this composition will more likely have less new unsatisfied
concepts when a new service is added.

Algorithm 1 shows the comparator function used by priorities queues Pb and P ′b in algorithm 3.
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Algorithm 4: r = compare(T1, T2)

Input: Tree search nodes T1 and T2

Output: r ∈ Z with r <= 0 when T1 is more or equal promising compared to T2 and r > 0 when
T2 is more promising

begin1

if | unsatisfied(T1) | 6= | unsatisfied(T2) | then2

return | unsatisfied(T1) | − | unsatisfied(T2) |3

else return | acquired(T1) | − | acquired(T2) |4

end5

When the number of unsatisfied concepts of search nodes T1 and T2 are not equal, the com-
position with the least number of unsatisfied concepts will be placed before the other in the
priority queue. If equal, the nodes are compared based on the number of of acquired concepts.

Let T1 = [s2, s3, s4] and T2 = [s2, s6, s4] with unsatisfied(T1) = {c7} and unsatisfied(T2) =

{c7, c8}. Because |{c7}| 6= |{c7, c8}| and |{c7}| < |{c7, c8}| the result of the comparator func-
tion will be r = compare(T1, T2) = −1 and thus T1 can be considered to be closer to the goal
node then T2.

4.5 Parallel services

After goal node W = {S,<} is found, the RugCo system determines which services of the
composition can be invoked in parallel before the composition can be exported to a BPEL pro-
cess.

Definition 4.4 (Service depth). The depth of a service s in composition W is the longest path
from any node in dag without predecessors to service s in composition dag GW with W = 〈S,<〉
and s ∈ S.

The services are grouped by their depth in the composition. Services in the same group can
be invoked in parallel.

For example, the depth of the services in composition W of the running example are:

depth(GW , s1) = 0

depth(GW , s2) = 0

depth(GW , s3) = 1

depth(GW , s4) = 2

Because the depths of services s1 and s2 are both 0, these services can be invoked in parallel.
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4.6 Correctness and complexity

After each iteration of the while loop in algorithm 3, all candidate compositions in the priority
queue have of an equal number of services. The heuristic ordering function determines which
of these search nodes are more likely to be the path to the goal node. When beam size b is
large enough the goal node will not be purged and therefor the algorithm will return a solution
composition which has the least number of services.

Theorem 4.1 (Worst case complexity)
The worst case complexity of the RugCo search algorithm equals O(b × |S|), with beam width
b and service repository S.

Proof. The number of iterations of the while loop in algorithm 3 is limited by the maximum
number of services in a composition. In the worst case scenario, the number of nodes in the
priority queue exceeds beam width b and all node in the queue are on the path to a composi-
tion node containing all services of S. In each of the |S| iterations, all b nodes are expanded.
Therefor, the worst case complexity of the RugCo composition algorithm equals the beam width
b times the number of services in repository S.





Chapter 5

Implementation

This chapter describes the details of the RugCo system which was implemented entirely using
the Java programming language. The first section gives a high level overview of the main com-
ponents of the system where the following sections go into more detail of each component. The
final section lists the tools used for the development of the RugCo system.

5.1 High level overview

The architecture of the RugCo system is designed to be highly flexible to enable future changes
in technology standards, challenge requirements and search strategies.

Figure 5.1 shows a high level view of the RugCo system which is divided into five main
components. The 1 components are loosely coupled and the arrows indicate the direction of
control. The following list describes the functionality of each main component before going
into detail in the following sections:

XML parsers The parsers required to process the WSC’08 input documents to load the ontol-
ogy and the service definitions into appropriate Java class representations.

Service repository Keeps track of all services available for the composition of services and
provides an index for the fast retrieval of service providers for an unsatisfied concept.

Composer The main component of the RugCo system providing the composition search ca-
pability. The composer encapsulates all composition logic including the beam search
algorithm.

XML writers The document writers required to export a composition to the WSC’08 solution
format or to an intermediate graph definition language which can be used to visualize
compositions.

Web service interface A wrapper for the RugCo system which enables the composer to be
invoked as a web service by the WSC’08 client software.

37
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Web Service Wrapper

RugCo

Composer

XML Writers

GraphMLWriter

BPELWriter

XML Parsers

WSDLParser

OWLParser

Service Repository

Figure 5.1: High level overview of RugCo architecture

5.2 XML parsers

The RugCo system uses SAX1 for processing XML files, which is a popular parsing API for
XML. SAX does not require reading the complete input file into the memory but reads an XML
file sequentially and raises an event each time it encounters the start or the end of an XML
tag. These events can then be handled by custom methods in which the required actions for
processing the specific XML element are implemented.

+startElement()

+endElement()

SAXDefaultHandler

+parse(in ontologyURL)

OWLParser

+parse(in individuals, in wsdlURL)

WSDLParser

Figure 5.2: Object model of XML parsers

Figure 5.2 shows how the OWL parser and the WSDL parser both extend the default SAX
handler. Both parsers are described in detail in the following two subsections.

1The SAX project can be found at http://www.saxproject.org, verified December 1, 2009
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5.2.1 OWL parser

The OWL parser extends the SAX default handler to process the XML elements of concept, the
subclass property and individual. When finished, the parser returns a set of individuals, each
refering to a concept within the taxonomy.

The concept taxonomy is a tree like structure and validating the subsumption relation between
two concepts holds would normally require searching for the first concept in the descendants of
the second concept. To disable the need of traversing the taxonomy tree, RugCo uses the nested
tree model [8]. Each tree element is labeled with a left and a right value depending on the
number of child elements and the left value of its parent element. To determine whether or not
a concept subsumes another concept, it now suffices to check whether or not the left and right
value of the first concept lies in range of the left and right values of the second concept.

Figure 5.3 below shows the hierarchy of the example ontology of figure 2.1 in a nested sets
representation.

Food

Fruit

Apple Pear10 11 12 13 1498

Vegetable

Tomato Potato4 5 6 7321

Figure 5.3: Nested set model of example ontology

In the example, the concept of apple has a left value of 9 and a right value of 10. The
concept food has a left value of 1 and a right value 14. The subsumption relation between the
two concepts holds because 1 ≤ 9 and 10 ≤ 14.

+left

+right

NestedSetElement

+subsumes(in other : Concept)

+id

Concept

+hasChildren *

+hasParent

1

+id

Individual

+refersTo*

1

Figure 5.4: Object model of ontology

Figure 5.4 shows the object model of the ontology. Each individual is associated with a
concept and the concept extends a nested set element. The nested set element has a left and right
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value and keeps references to its parent and child elements in the hierarchy.

5.2.2 WSDL parser

The WSDL parser is used to process the service descriptions in the repository as well as the
service decription of the composition query. When a WSDL file is offered to the parsed, the set
of ontology individuals is included in the call. This enables the parser to map the annotations of
the message service elements directly to the concept of the individual and return service objects
as sets of input and output concepts.

+name

+portType

+operation

Service

Message

+hasInputMessage 1

1

+hasOutputMessage
1

1

Concept

+refersTo

0..1 1..*

Figure 5.5: Object model of service

Figure 5.5 shows the object model of a single service. Each service has a single input and
a single output message and each message refers to one or more concepts of the ontology. In
addition, the service object holds invocation details through its name, porttype and operation
attributes.

5.3 The service repository

The services returned by the WSDL parser are loaded into the service repository. The service
repository provides access to all services available for creation compositions. A hashmap is used
to provide a constant lookup time for services that provide a certain concept, independent of the
number of services in the repository. When a service is loaded into to the repository, the set of
its output concepts is extended to include all concepts subsumed by one of its members. Next,
the service is added to the set of service providers for each concept in the resulting set.

concept providers concept providers
c0 {s1, s2, s3} c1 {s3}
c2 {s1} c3 {s2}
c5 {s3} c6 {s3}
c7 {s1} c9 {s2}

Table 5.1: Example index of service repository
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Table 5.1 shows an example index for services s1 . . . s3 of the running example displayed in
figure 4.2 of the previous chapter. It is easy to see that services s1, s2 and s3 have an output
concept that subsumes concept c0.

5.4 Composer

The composer is the main component containing all composition logic and is the main control
unit of the RugCo sytem. Next to the initialization and query methods, the composer has private
methods implementing the composition logic of the previous chapter.

The composer makes use of two important subcomponents. A composition component which
represents a candidate composition and a bounded priority queue to order the candidate compo-
sitions for the beam search algorithm.

-getPromisingServices(in composition : Composition)

-getExpansions(in composition : Composition)

-beamSearch(in compositionQuery : Service)

+initialize(in repositoryUrl, in ontologyUrl)

+executeQuery(in queryWSDL)

Composer

-serviceRepository : ServiceRepository

Figure 5.6: Object model of composer

Figure 5.4 shows the object model of the composer. Adding a different or additional search
algorithm then the current beam search algorithm can be done relatively easy by implementing
the new search method in the composer class and reusing the existing components.

The composition component is a simple topological ordered list of composition services and
holds the corresponding set of unsatisfied concepts of the candidate solution. The composition
component itself contains no composition logic but relies on the composer to add services and
determine the unsatisfied concepts.

-unsatisfiedConcepts

Composition
Service

+refersTo

0..* 0..1

Figure 5.7: Object model of composition

Figure 5.7 shows the object model of a composition. Both services and unsatisfied concepts
are stored by reference to reduce memory requirements.
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5.4.1 Bounded priority queue

The bounded priority queue is an extension of a default priority queue implemented using the
fast priority heap algorithm [9]. The worst case complexity of adding an element to priority
queue with n elements equals O(log n) and the complexity for retrieving the head of the queue
is only O(1). Elements in the queue are compared using a comparator function with determines
whether the priority of one element is less, equal or greater than the second element.

RugCo implements the bounded priority queue by extending the default Java priority queue.
When an element is added, the number of elements in the queue is compared with the beam
width which is the maximum size of the queue. When the queue size exceeds the beam width,
the last element of the priority queue is deleted from the queue.

BoundedPriorityQueue

-maximumSize

+offer(in composition : Composition)

+poll() : Composition

PriorityQueue

Figure 5.8: Object model of the bounded priority queue

Figure 5.8 shows the object model of the bounded priority queue. To compare two composi-
tion elements in the queue, RugCo uses the compare function defined in algorithm 1.

5.5 XML Writers

The RugGo system enables the export of composition to two different XML output format. By
default, the composition is exported to a BPEL document, which is the solution format of the
WSC’08 . In addition, compositions can be exported to GraphML which is an extensive XML
language for defining graphs.

5.5.1 BPELWriter

To export the composition to a BPEL document, the BPELWriter needs to determine which
services can be invoked in parallel, based on the depth of each service in the composition. Invo-
cation elements of services with equal depth are nested into a single flow element and the order
of flow elements is determined by a surrounding sequence element.

Figure 5.9 shows the object model of the BPELWriter which has private methods to create the
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+getBPEL(in composition : Composition)

-createInvokeElement(in service : Service)

-createFlowElement(in services : Service[])

-createReceiveElement()

-createProcessElement()

BPELWriter

Figure 5.9: Object model of the BPELWriter

different types of BPEL elements. Figure 5.10 below shows the result of exporting composition
graph Gw of the running example to a BPEL document.

<?xml version="1.0" encoding="UTF-8"?>

<bpel:process

xmlns:bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:service="http://www.ws-challenge.org/WSC08Services/"

name="WSC08"

targetNameSpace="http://www.ws-challenge.org/WSC08CompositionSolution/">

<bpel:sequence name="main">

<bpel:receive name="receiveQuery" portType="solutionProcess" variable="query"/>

<bpel:flow>

<bpel:invoke

name="service:s1"

operation="service:s1Operation"

portType="service:s1PortType"/>

<bpel:invoke

name="service:s2"

operation="service:s2Operation"

portType="service:s2PortType"/>

</bpel:flow>

<bpel:invoke

name="service:s3"

operation="service:s3Operation"

portType="service:s3PortType"/>

<bpel:invoke

name="service:s4"

operation="service:s4Operation"

portType="service:s4PortType"/>

</bpel:sequence>

</bpel:process>

Figure 5.10: Example BPEL output of running example composition Gw
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5.5.2 GraphMLWriter

To export to a GraphML document, the GraphMLWriter simply converts the composition nodes
and edges of the composition graph to their GraphML element equivalents. The writer does not
add any layout information to the output document since compatible graph editors tools exist,
capable of visually arranging the nodes and edges of the graph in various layouts.

+getGraphML(in composition : Composition)

-createNodeElement(in service : Service)

-createEdgeElement(in source : Service, in target : Service)

-createGraphElement()

GraphMLWriter

Figure 5.11: Object model of the GraphMLWriter

Figure 5.11 shows the object model of the GraphMLWriter which has private methods to
create the different types of GraphML elements. Figure 5.12 below shows the result of exporting
composition graph Gw of the running example to a GraphML document.

<?xml version="1.0" encoding="UTF-8"?>

<graphml

xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:y="http://www.yworks.com/xml/graphml"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

<graph edgedefault="directed" id="mygraph">

<node id="s1"></node>

<node id="s2"></node>

<node id="s3"></node>

<node id="s4"></node>

<edge source="s1" target="s2"></edge>

<edge source="s2" target="s4"></edge>

<edge source="s3" target="s4"></edge>

</graph>

</graphml>

Figure 5.12: Example GraphML output of running example composition Gw

5.6 Web service wrapper

The WSC’08 rules place no restrictions on how the composition systems are be implemented.
The only requirement is that participating systems can be deployed as a webservice themselves
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through a predefined interface (WSDL) provided by the WSC’08 . In addition, a Java class stub
was provided as a ready to deploy service wrapper the composition systems.

ClientInterface CompositionSystemInterface RugCo

initialize(repositoryUrl, ontologyUrl)

initialize(repositoryUrl, ontologyUrl)

startQuery(queryUrl)

void

executeQuery(queryUrl)

BPELDocument

result(BPELDocument)

Figure 5.13: Sequence diagram of interaction between WSC client and RugCo system

Figure 5.13 shows the interaction of the RugCo system with the WSC’08 client software
through the service wrapper. Using the client software the user can select the ontology OWL
file and the repository WSDL file of the challenge set to be submitted to the composer system.
When the RugCo system finishes initializing the user can select a composition query file and
execute the query by submitting it to the RugCo system. As soon RugCo finds a solution the
composition is exported to a BPEL document and send back to the client.

5.7 Tools

The following tools were used for the implementation of the RugCo system:

Eclipse An development platform which includes an extensive set of Java development tools.
Eclipse is free and can be downloaded from the Eclipse project website2.

yEd graph editor A free tool to create and edit graphs. yEd can be used to load GraphML
files and automically arrange graph nodes and edges in the preferred layout. All graph
figures in this thesis are created with this tool. The yED tool can found on the website of
yWorks3.

2http://www.eclipse.org
3http://www.yworks.com
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Subversion (SVN) An open source version control system to maintain current and historical
versions of source code and related documents. More information can be found on the
SVN project page4.

TortoiseSVN A popular free client for Subversion which integrates as a shell extension in Win-
dows. The tool is free and can be downloaded from the TortoiseSVN project page5.

4http://subversion.tigris.org
5http://tortoisesvn.net
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Results from WSC ’08

This chapter describes the results of the participation of the RugCo system to the Web Service
Challenge 2008. The challenge was held on site of the 10th IEEE Conference on E-Commerce
Technology (CEC’ 08) and the 5th IEEE Conference on Enterprise Computing, E-Commerce
and E-Services (EEE ’ 08) which took place from July 22nd until July 24th, 2008 in Washington,
DC.

The first section describes the components used for the performance evaluation of the par-
ticipating systems and presents the results. Next, the results are discussed and the final section
gives a brief overview of other WSC’08 participants.

6.1 Results

Evaluation was done in two categories. First the performance of the participating systems was
measured bases on predetermined evaluation rules. The second category was the architectural
challenge were the systems were judged based on the overall structure of their implementation
regarding modularity, scalability and flexibility.

6.1.1 Evaluation components

The performance evaluation of the composition systems was based on three components:

Composition size For all valid compositions generated by the system, the composition consist-
ing of the least number of services is considered to be the best solution with respect to
composition size.

Composition length For all valid compositions generated by the system, the composition with
the shortest critical path is considered to be the best solution with respect to parallelization.
The critical path in a directed acyclic graph is the longest path from any source node to
any sink node.

47
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Execution time The time measured from the moment the system receives the actual composi-
tion query until the moment the BPEL description of a valid solution is returned. When
no results are returned after a maximum execution time of twenty minutes, the system is
terminated and considered to have failed in finding any valid solutions.

Note that when multiple solutions exist, the composition with minimum length is not nec-
essarily the same as the composition involving the least number of services. In this case, the
composition system that returns both types of optimal compositions in their solution set is con-
sidered better than systems returning just one.

6.1.2 Challenge Sets

Before receiving the actual compositon query, the composition systems were presented with the
challenge set containing the ontology, the service descriptions and annotations. Each partici-
pating system was evaluated using the same three sets and corresponding composition queries.
Table 6.1 shows the main properties of the three sets.

Challenge Number of services Number of concepts Number of individuals
set 1 1041 3135 6162
set 2 1090 3067 6258
set 3 2198 12468 24744

Table 6.1: Properties of the WSC’08 challenge sets

The test sets vary in terms of search space size and solution complexity but there exists at
least one solution for each composition query. The time needed to parse and optionally index
preprocess the challenge set data was not taken into account.

6.1.3 Performance evaluation results

Table 6.2 shows the results of the performance challenge. For each evaluation component par-
ticipating teams received six points for the best, four points for the second best and two points
for the third best score. The RugCo system found a solution for each challenge set and was
rewarded second place.

6.2 Discussion

During the preperation for the challenge, the evalution rules were subject to changes. Initially
the completeness of the solution was also an evalution component. Participating systems would
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Challenge Evaluation Thingua University of Pennysylvania University
University Groningen State University of Kassel

set 1 size 10 10 10 10
length 5 5 5 5
time (ms) 312 219 28078 828
points 12 18 12 12

set 2 size 20 20 20 21
length 8 10 8 8
time (ms) 250 14734 726078 300219
points 18 10 12 6

set 3 size 46 37 - -
length 7 17 - -
time (ms) 306 241672 - -
points 12 10 0 0

total points 46 38 24 22

Table 6.2: Performance results for WSC’08

be rewarded for returning the largest set of alternative compositions. Due to lack of a proper
evalution method, this evaluation component was eventually ignored. The remaining evalution
components are conflicting. Finding the optimal solution in size and/or length will most likely
take longer than finding any composition that satisfies the query.

The search strategy of the RugCo system was to find the composition with the least number
of services as fast as possible. With respect to the final WSC’08 evaluation rules this is probably
not the best approach. The focus on finding the composition with the least number of services
is already at cost of the optimal execution time. A better approach might be to focus on finding
the composition with the shortest possible length as well, prior to optimizing execution time.

Memory optimization using beam search a large drawback. When the search space is too
large, search nodes are pruned and an optimal solution can no longer be guaranteed. For future
composition challenges this might impose a big problem, but one should also consider that
the challenge is based on artifially generated concepts, services and composition queries. The
solution set of third challenge set contains composition with more than thirty-five services which
may be much larger than any practical composition in the near future.

The execution time of the RugCo system depends on the beam width used for the search al-
gorithm and the depth of the solution. For the challenge, a fixed beam width was used regardless
of the properties of the challenge sets. The execution time grows exponentially with the depth
of the solution until the beam width limits the maximum number of nodes in the priority queue.
After the beam width is reached the execution time is close to lineair with respect to the solution
depth at the cost of pruning potential solution candidates.
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6.3 Other WSC’08 approaches

The best performing composition system at the WSC’08 is based on an AND/OR Graph algo-
rithm which finds parallel optimized compositions efficiently [10]. The algorithm constructs a
services dependency graph (SDG) which links the input concepts of each service in the repos-
itory with each subsuming output concept and its providing service. Mapping concept nodes
to OR nodes and service nodes to AND nodes, the algorithm finds a directed sub-graph of the
SDR as solution to the query. The SDR efficiently stores dependencies between services in the
repository during intialization, while the RugCo approach requires to determine these dependen-
cies on the fly. In addition the current implementation of the RugCo system keeps a topological
sort representation of each candidation solution in memory while the memory requirements of
the AND/OR graph is strongly related to the number of concepts in the ontology. Finally, the
AND/OR graph search optimizes composition length while RugCo optimizes the composition
size.

A multi agents approach focusses on scalability and building from open standards [11]. The
system extends the RDF triples of the ontology by translating service descriptions and annota-
tions. The RDF triples are then stored in an AllegroGraph database which supports the SPARQL
query language for extracting subgraphs from the RDF data. Although the multiagents approach
is scalable, the components used require setup making the approach less portable than the Java
approach of RugCo.

Similar to the RugCo system, a greedy search approach uses an heuristic function to deter-
mine which search node is to be expanded next [12]. Unlike beam search, all known candidate
solutions are ordered in a single priority queue and only the most promising node is expanded.
With appropriate heuristics the algorithm finds a solution fast but the solution is not guaran-
teed to be optimal in terms of size and or length. Although this approach will beat the beam
search with respect to the time needed to return any solution, the RugCo system can find the
size optimized composition when the beam width is large enough and/or the solution depth is
limited.

Another participating system transforms the challenge into a reachability problem on a state-
transition system [13]. Each state consists of a set of boolean variables for each concept of
the ontology indicating whether or not the concept is available. Possible state transisitions are
determined by the services of the repository. The resulting problem can be solved an of the
shelf boolean satisfiability (SAT) solver [14] to benefit from years of research and development.
Unlike beam search this approach currently does not make use of the knowledge of the search
space. This makes search performance of the system less than informed search based systems
like RugCo.
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Conclusions

This thesis describes the RugCo approach for automatic services composition based on sementic
annotation of service parameters and some user request. Using beam search, RugCo is able to
find size optimized compositions in O(|S| × b) complexity with service repository S and beam
width b. With a highly modifyable and flexible architecture, the system can be easily altered in
order to implement future requirements or alternative search strategies.

7.1 Future work

After expanding a search node, the RugCo system does not check if the expansion is not al-
ready in the priority queue. Checking for duplicates or similar compositions may decrease the
branching factor in future implementations.

In the search algorithm, topological ordered set of services are used to represent composi-
tion candidates while this ordering is not necessarly unique for the composition dag. In future
work, the topological should be replaced by a dag representation of the dependencies between
composition services.

Nowadays more and more computer systems have multiple processor cores enabling multiple
threads running at the same time. The algorithm used can easily be modified enable multithread-
ing. Depending on the number of cores available, the ordering of the priority queues can be done
in seperate threads with one or more additional worker threads that get the next node from the
queue, expand it and insert the expansions in the next level priority queue.

The beam search algorithm used could be made complete by combining it with an algorithm
that finds an suboptimal solution fast and use it to set a dynamic beam with based on the proper-
ties of the found solution [15]. The RugCO system could use the found composition to purge all
candidates from the priority queue for which the size of the composition and the length of the
composition is equal or greater than the size and length of the suboptimal solution.
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7.2 Future of Web Service Challenge

The focus of WSC’08 was on based on semantic matching and the use of existing industry
standards like OWL for semantic annotation and BPEL as a solution format.

Future editions of might focus on quality of services (QoS) in which non functional attributes
of services are also considered. In the current challenge, composition services are only selected
based on the output they provided and the input they require. By providing QoS information on
services, composition software an also consider quality attributes like the availability or response
time of a service or the costs involved to invoke a service from a third party.

Another focus might be to make the gap between the theory of the Web Service Challenge
and practical application smaller. If services match semantically, how can a system automatically
translate the output parameter structure of one service to an input parameter of another? How
can the knowledge and experience of the Web Service Challenge be used to aid developers in
their design tasks?
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