
University of Groningen

Computing Science

Master of Science Thesis

A Survey of Mobile Platforms for

Pervasive Computing

by

Hielko van der Hoorn

Supervisor: Marco Aiello

Second Supervisor: Alexandru C. Telea

Groningen, 2010

Contents

Contents i

1 Introduction 3

2 Related Work 5

3 Qualitative Analysis 9

3.1 The Quality Attributes . 10
3.2 The Operating Systems . 12

3.2.1 Android . 12
3.2.2 BlackBerry OS . 16
3.2.3 iPhone OS . 19
3.2.4 Symbian . 24
3.2.5 Windows Mobile . 28

3.3 Summary . 31

4 Quantitative Analysis 33

4.1 Experimental Setup . 34
4.2 Emulator Results . 36

4.2.1 Encryption . 36
4.2.2 Decryption . 37
4.2.3 XML Parsing . 38

4.3 Host System Dependency . 39
4.4 Results on Mobile Devices . 40

4.4.1 Android . 40
4.4.2 iPhone OS . 41
4.4.3 Symbian . 42
4.4.4 Side by Side . 43

4.5 Summary . 44

i

ii CONTENTS

5 Conclusion and Future Work 47

5.1 Future Work . 49

Bibliography 51

A Emulator Benchmark Results 57

B Smartphone Benchmark Results 59

List of Symbols and Abbreviations 61

List of Figures 62

List of Tables 63

Acknowledgments

I would like to thank the following people for making this master thesis possible: my

supervisor Marco Aiello for his ideas, his valuable feedback and the fast response

to emails, no matter the time of day. My second supervisor Alexandru C. Telea

for providing detailed and insightful criticism. Gerard Drenth en Timo Schinkel for

lending out their smartphones for my experiments. My friends and family for providing

welcome distractions while working on my thesis, and at the same time pushing me

to finish it.

1

Chapter 1

Introduction

Mark Weiser proposed the term ”ubiquitous computing” around 1988. In one of

the first papers on the subject he stated ”The most profound technologies are those

that disappear. They weave themselves into the fabric of everyday life until they are

indistinguishable from it [51].” This idea is the basis behind pervasive computing, also

known as ubiquitous computing, ambient intelligence and everyware. The vision of

pervasive computing is to have multiple networked devices doing all kinds of everyday

tasks, usually in the background without the user being aware of the work that is

being done.

Figure 1.1: ’Smart’ fridge

An example is a house that adjusts the lighting and heat-

ing based on the body temperature of the occupants and

the level of light outside. Another possible application

is to monitor someone’s health using various sensors and

alert health care when something goes wrong. The most

common example is probably the intelligent fridge. This

fridge should be aware of the contents inside, so that it

can warn users when food is out-of-date, suggest possible

menu’s that can be created with the available food, and

order new food when certain supplies are running low.

Although the idea of pervasive computing is not new, the

technology is not yet widespread. The intelligent fridge as

envisioned above is not yet available, and most pervasive

computing applications have not left the research state.

Smartphones are however becoming increasingly popular

and since almost everyone carries their phone with them

3

4 CHAPTER 1. INTRODUCTION

all the time, they are becoming one of the first viable platforms for pervasive com-

puting [40].

In this thesis we address the question ”What are the most important features of

a mobile OS for ubiquitous computing applications and how do current mobile OS

perform with respect to these features?”

A mobile OS can run on a variety devices such as mobile phones, smartphones, PDAs

and handheld computers. Since smartphones are touted to be the first viable platform

for pervasive computing we will focus on the most popular - based on marketshare -

mobile operating systems in use on todays smartphones.

Before addressing the research question an overview of the state of art of pervasive

computing is provided in Chapter 2 and how this relates to the work done in this

paper. After this introduction the most important smartphone operating systems and

the characteristics that play the biggest role in ubiquitous computing applications are

identified in Chapter 3. In the remainder of the chapter the various operating systems

are analyzed based on these criteria. After the qualitative analysis in Chapter 3 the

different operating systems are also quantitatively analyzed in Chapter 4 using a

self-developed benchmark. Finally some conclusions are drawn in Chapter 5.

Chapter 2

Related Work

The idea and vision behind ubiquitous computing was born in 1988 when Mark Weiser

published his paper called ”The Computer for the 21st Century” [51]. Since that

date the interest and research into the subject of ubiquitous computing has grown

immensely. Worldwide there are a several dozen research centers that are focused on

ubiquitous computing, and some of them have a special focus on the mobile aspect

of ubiquitous computing.

A key requirement of ubiquitous computing is networking, and since the user should

not be bothered unnecessary tasks like network configuration, device and service

discovery should be automated. The second key requirement is a ’natural’ user inter-

face. A interaction paradigm appropriate for the ubiquitous case has yet to emerge.

Research is being done on topics such as context awareness, speech recognition and

computer vision. A smartphone - with a mobile OS at its core - would be the platform

that provides services such as computational power, interaction, communication and

storage on which these technologies could be employed.

MIT tries to tackle various obstacles of ubiquitous computing at once with the Oxygen

project. The vision of the project is to bring abundant computation and communi-

cation, as pervasive and free as air, naturally into people’s lives [36]. To make this

possible MIT has identified various technical challenges that must be solved. The

system needs to be embedded in our world, be flexible to deal with users moving,

devices coming online and going offline and it has to understand the intentions of

users.

Since the environment where pervasive computing applications live is highly dynamic

the underlying network technology should be designed to cope with this. Grid is a

5

6 CHAPTER 2. RELATED WORK

routing protocol that is part of the Oxygen project. It is a technology to set up

self-configuring ad-hoc wireless networks without fixed infrastructure such as base

stations or access points [31]. A second technique goes by the name Span and is a

designed to save power in multi-hop ad hoc networks by turning off idle nodes while

preserving network capacity and global topology [11]. Other network technologies

developed as part of the Oxygen project include Chord, a scalable distributed lookup

protocol for peer-to-peer networks and the Intentional Naming System (INS) for

dynamic resource discovery based on properties and attributes of the resources and

data [12, 9].

Interaction with pervasive computing applications is another focus point of research.

The vision is that humans can communicate with computers in a similar way as

with one another. Speech should be recognized, understood by the computer, and

based on what the user wants a meaningful spoken reply should be synthesized.

MIT has developed several spoken language interfaces that are accessible by phone.

Jupiter provides weather information, Mercury and Pegasus both provides airline

flight information and Voyager provides tourist and travel information in the Boston

area. All these systems are build using the same technologies; Summit[23] for speech

recognition, Tina[46] for natural language understanding, Genesis[47] for language

generation and Envoice[52] for speech synthesis. Computer vision is the second part

of the interaction equation. With the help of cameras it is possible to track the

location of a person in the room and combined with face detection applications can

perceive where people are looking [14].

Figure 2.1: H21 device

MIT is also doing research into the hardware that is needed

to make pervasive computing a reality. The result of this

research is the H21, a mobile device equipped with a micro-

phone, speakers, display, camera and wireless network access

[48]. The prototype is based on a Compaq iPaq PDA that is

extended with a camera, an accelerometer, a FPGA chip and

additional I/O capabilities. The overlap in features between

this prototype and a modern smartphone is remarkable. A

FPGA chips is probably the only hardware that is not avail-

able on a smartphone, but the CPU of a smartphone is a

lot faster. The prototype H21 has a 200Mhz StrongArm

processor while for example the latest iPhone - the 3GS -

has a 600MHz ARM11 processor.

Carnegie Mellon University also has an ambitious ubiquitous computing project named

Aura. In this project the focus is on creating an environment that minimizes distrac-

tion on a user’s attention. The hypothesis is that not processor, memory, disk or

network is the most valuable resource in a computer system, but human attention

[20]. To reduce user distraction the system needs to be proactive and self-tuning :

7

anticipating requests from higher layers and observing demands and adjusting perfor-

mance accordingly. A scenario that is envisioned is a user that is trying to send some

email’s at the airport before taking a flight, but the wireless connection is too slow

to send them in time. Aura will notice this, suggest to the user where more wireless

bandwidth is available, so the task the user wants to perform can be completed.

The list of technologies being explored as part of the Aura project is too long to list.

They overlap for a large part with the Oxygen project such as intelligent network-

ing, multimodal user interfaces, intelligent workspaces and capturing high-level user

intent. The most important capabilities of Aura are supporting user mobility and

shielding users from variations in resource availability. For this a new layer of system

abstraction has been introduced that sits between the user and individual applications

called Prism. It is in charge of executing tasks, based on the user intent. This means

for example when a user is on the move replacing a certain service with another one,

or reconfiguring them.

In Europe the Amigo project focuses on developing standardized middleware and

intelligent user services for the networked home environment [2]. At the moment

different industrial players create different kinds of electronics for consumers to use

in home each with different standards and form factors. The goal of the Amigo

project is to develop standards that will make it possible to connect electronics from

different domains such as dish washers, radios, televisions, (smart)phones and the

computer. The second part of the Amigo project is the development of attractive

services that are not possible with the current non-networked systems.

Compared to the Oxygen and Aura projects Amigo has a smaller scope and a more

clearly defined goal, but at the same time to make the networked home and the

intelligent services a reality a lot of similar problems have to be solved. Network

configuration and service discovery should be automatic and dynamic while awareness

about where the user is and what he wants is required for smart services. The Amigo

project ended in 2008 and has resulted in an open-source software layer that can

be used to create context aware networked applications for the home environment.

Several sample services also have been developed such as home care and safety

where calamities such as gas and water leakage are detected. Personal health is

also monitored and food and exercise patters are suggested. The home information

and entertainment system has been developed to show how applications can be

created that can be accessed by the user on any device, no matter where they are.

The extended home environment offers communication facilities between the home

environment and persons in other environments [16].

An European project, that has the University of Groningen as one of its participants,

with similar goals is the SM4ALL project. This project also focuses on creating a

middleware platform for smart embedded services at home. The goal is to use peer-

8 CHAPTER 2. RELATED WORK

to-peer (P2P) technology to create a scalable solution that can handle adding and

removing new devices and services on-the-fly. A special focus will be on ontologies

for describing service capabilities to make dynamic configuration and composition

of the services possible [1]. To establish interoperability between various types of

embedded devices web services are used. Using web services on smartphones is with

relative little effort possible thanks to the various toolkits are available for this task.

Selecting the right toolkit is important since the performance varies [45].

Security and privacy also have been identified as a key requirement in the SM4ALL

project because a smart home environment will contain a lot of sensitive information

about the user, especially if it has been designed to support the elderly or the sick. A

goal of the project is to develop a home that showcases how intelligent services can

help those that are disabled.

Chapter 3

Qualitative Analysis

In order to determine the characteristics of the various operating system for ubiquitous

computing applications a look at the most important quality attributes for this set of

applications is taken in this chapter. In Chapter 4 the operating systems are evaluated

based on quantitative measurements.

In the qualitative analysis the five most popular smartphone operating systems based

on several theoretical properties are compared. Six quality attributes that are im-

portant for pervasive applications running on smartphones have been selected. The

concurrency model, the networking capabilities and the security and privacy features

are especially relevant for ubiquitous computing. The cost, memory use and power

consumption are on the other hand important for the fast majority of mobile applica-

tions. The reasons for choosing these quality attributes are discussed in more detail

in Section 3.1. The evaluation of the quality attributes is based on the API and SDK

documentation provided by the manufacturers of the operating systems, but some

other sources have been used as well.

The operating systems are compared from the perspective of a third party developer,

and as such it is important to note that there is a difference between what each op-

erating system truly supports and what is legally possible. For third party developers

it is often not possible to access the full capabilities of the operating system. Not

because it is impossible, but because it would break the license agreement. Apple

arguably has the most strict set of rules in place, and states for example in Section

3.3 of the SDK agreement [8]:

9

10 CHAPTER 3. QUALITATIVE ANALYSIS

Applications may only use Published APIs in the manner prescribed

by Apple and must not use or call any unpublished or private APIs.

As this quote illustrates the iPhone OS is capable of far more things than the de-

veloper is allowed to use. The technical part of these restrictions are easy to bypass

[15], but breaking the license agreement means that a developer of the third party

software cannot legally distribute his product to customers. For serious applications

the bounds of the license agreement determine how suitable an operating is for a cer-

tain application just as much as the feature set of the operating system itself. Where

possible it is pointed out where limitations are mainly the result of legal aspects

instead of the characteristics of the operating system.

3.1 The Quality Attributes

The various operating systems are compared on a qualitative basis using six different

criteria, in alphabetical order.

Concurrency Model

The concurrency model of the various operating systems is important because perva-

sive computing applications often have to perform tasks in the background without

interrupting the user. For desktop applications the ability to run multiple applications

and services concurrently is taken for granted, but when dealing with the limited re-

sources of a mobile phone the availability of such functionality is not standard. The

most important issue is the question if it is possible for a third party developer to run

multiple processes and threads. Another characteristic that will be discussed is if the

operating system supports running real-time processes.

Cost

The second quality attribute is probably the least important in our comparison, but

a comparison without considering the licensing costs of the different options is not

complete. A complicating issue with the cost comparison is the fact that most mobile

operating systems are bundled directly with a mobile phone, and are not available for

purchase as just the software product. Because of this the cost has to be measured

as the average licensing fee per phone. Sometimes this data is published by the

company selling the operating system otherwise estimations from third party research

firms have to be used.

3.1. THE QUALITY ATTRIBUTES 11

Memory Use

Although the computational capabilities of the average smartphone far exceed those

of the more traditional mobile phone, resources are still very limited compared to a

desktop computer. The operating system is in charge of the memory management and

it has a direct impact on how much memory third party applications can access. The

memory requirements of the operating system itself are a second factor that influence

third party applications. The focus will be on the RAM use since most modern

smartphones are equipped with multiple gigabytes of flash memory for persistent

storage. The characteristic of the flash memory that will be discussed is if it can be

used for virtual memory, or not.

Networking

Ubiquitous computing applications are often centered around multiple devices that are

connected to each other in a network, making the networking aspects of the different

mobile operating systems an important quality attribute. All the operating systems

that are discussed in this thesis can create a TCP/IP connection and are therefore

capable of connecting to most networked services. There are however differences with

respect to the support for (wireless) networking protocols, various levels of support

for different standards in the default Application Programming Interfaces and the

permissions third party applications are granted.

Power Consumption

Mobile devices have a limited battery capacity, and that means that the power con-

sumption of the operating system and third party applications is a major concern. All

handheld devices share the same Achilles’ heel: the battery [33]. The fundamental

vision behind pervasive computing is that devices - smartphones in our case - work in

the background, wirelessly connecting to other devices, exchanging data while per-

forming useful tasks for the user. While it is maybe acceptable that the mobile phone

battery is depleted after a few hours of calling, it is not acceptable that a pervasive

computing application that is working in the background has a similar effect on the

battery life of the smartphone. It is crucial that the mobile operating system has

features that increase battery performance, such as the use of low power states when

running low priority background processes.

12 CHAPTER 3. QUALITATIVE ANALYSIS

Security and Privacy

The last important quality attribute that is discussed are the security and privacy

features of the mobile operating system. Most pervasive computing applications

store private information about the user like his location, his preferences or his health.

Because of the sensitive nature of such data it is desirable that the operating systems

contains features for protecting it. This could happen at several levels, for example

by restricting other application on the phone from accessing this data or offering

encryption functionality. Also important is functionality to protect against common

attack vectors such as a man-in-the-middle attack, and protecting user data when

the physical device is lost.

3.2 The Operating Systems

Five different operating systems are examined; the most popular ones. These smart-

phone operating systems are Android, iPhone OS, BlackBerry OS, Symbian and

Windows Mobile. Iphone OS and Android are both newcomers on the smartphone

market while Symbian and Windows Mobile have been around for years. BlackBerry

OS also has been around for years, but smartphones based on this operating system

have only been targeted to business users until recently. Symbian is by far the most

popular operating system in this list and has a well fortified position with a market

share of 51 percent [21].

3.2.1 Android

Android is the newest operating system that will be discussed. The first public beta

version was released on 12 November 2007, but the first mobile phone with the oper-

ating system did not see the light until 23 September 2008. The Android operating

system is developed under the umbrella of Google and is at the core based on Linux.

There are however several layers between the Linux kernel and the Application layer,

as can be seen in Figure 3.1.

The lowest layer - the red layer - of the Android operating system is the Linux kernel.

It includes the hardware drivers for the various components of the mobile phone and it

provides the core system services such as memory management, process management

and the network stack. Android is build upon Linux version 2.6.

The green layer consists of libraries that can be used by every android application

(subject to security constraints [25]). Available libraries are for example WebKit and

3.2. THE OPERATING SYSTEMS 13

Figure 3.1: Overview of the Android architecture [25]

SQLite: providing respectively an embeddable web view and a lightweight database

engine.

Above the green layer is the blue layer: the application framework and the applica-

tions. The application framework consists for a part of packages that are part of the

Java SE 5 specification. Because of this Java developers can easily develop appli-

cations for the Android platform, but the Android SDK is not compatible with Java

SE 5. There are for example Android specific packages needed for the user interface

and for access to resources such as databases, files and the GPS location. Only core

packages such as java.math or java.util are the same, but for the other functionality

similar packages are available in most cases. A tool that automatically converts Java

ME packages to Android packages is accessible online∗. It is not possible to develop

native applications in C or C++ as a third party developer.

Concurrency Model

Android is based on Linux, and offers almost the same features with respect to the

concurrency model. Running background services is possible for third party devel-

∗Available from http://www.netmite.com/android/

14 CHAPTER 3. QUALITATIVE ANALYSIS

opers. The big difference is that services are not guaranteed to be running. When

memory is low the operating system will try to kill processes that are not critical

for the user experience. In practice this means that the application that is running

on the foreground will be kept alive together with the services that are used by this

application. Background processes that have no direct impact on the user experience

may be killed at any time [26]. This kind of behavior definitely could cause problems

for some pervasive computing applications that would rely on a background process

running on a smartphone.

Cost

Android is developed by the Open Handset Alliance with Google as the main force

behind the project. The Android operating system is build on the Linux kernel and

the source code - including the standard Android applications - is available under

the Apache license. It can be downloaded†, modified and used for free. It is not a

copyleft license, meaning that the source code may be used in proprietary software.

For developers of third party applications the licensing details are not important:

individual applications can be distributed using their own licenses.

Since the source code of Android is available for free the costs of using the operating

system are minimal, but hardware specific device drivers are required. This is also

limiting efforts from enthusiasts to get Android running on mobile devices shipped

with other operating systems.

Memory Use

Android is based on the Linux kernel that has proven itself to be able to run with

minimal hardware resources. Applications on Android are however not executed as

native applications, but are run inside the Dalvik virtual machine. The Dalvik VM is

a register based virtual machine that is optimized for low memory requirements and

to allow multiple VM instances to run at once. The Dalvik VM is created to run

Java applications, but it is not a Java virtual machine. It runs Java applications that

are converted to the Dalvik Executable file format. One of the other big differences

between Dalvik and other Java virtual machines is the lack of a just-in-time compiler.

Although Dalvik has been optimized for low memory requirements the need to run

every application inside a virtual machine is without a doubt costing memory com-

pared to a architecture that uses native applications and the lack of a just-in-time

compiler could hurt the performance.

†Available from http://source.android.com/

3.2. THE OPERATING SYSTEMS 15

Networking

Android is marketed as a mobile phone with ’always on’ Internet. Android phones are

almost always connected to the Internet using the cellular network or a nearby WiFi

network. Internet connectivity is therefore almost always available. Programmatic

control over the WiFi connection is excellent. Using the Android API applications

can scan for WiFi networks, connect to WiFi networks and keep the WiFi radio active

when the device returns to idle [26]. User preferences cannot be overridden; when

the WiFi functionality is switched off or when airplane mode is enabled creating a

wireless connection is not possible.

In the first versions of Android Bluetooth functionality was completely non-existent

due to certification issues as stated in the release notes of the Android beta 0.9 SDK:

Due to significant API changes in the upstream open-source project

and due to the timeline of getting certain Bluetooth profile implemen-

tations certified, a comprehensive Bluetooth API will not be possible or

present in Android 1.0.

Since the release of Android 2.0 in October 2009 developers finally have access to

the Bluetooth interface. It is possible to turn on the Bluetooth interface without user

interaction and perform device discovery. Before communication is possible between

devices they have to be paired first, requiring user interaction [26]. This would make

Bluetooth an inconvenient choice for ubiquitous computing applications since user

interaction is not desirable when it can be avoided.

Networking functionality can be used using standard Java packages such as java.net

or org.apache.http and secure communications can be setup using packages such

as javax.security or javax.net.ssl. With this the basic building blocks to connect to

almost anything are available.

Power Consumption

Power considerations are build directly into the Android platform [39]. Applications

can monitor the battery status and control energy saving features. It is possible

to force the device to go to sleep or maintain a specific power level. Using the

PowerManager class an application can control the power state of the device, but

it is advised to use the API with care. Without outside influences the operating

system will try to run in the lowest power mode possible, something an application

can prevent from happening with the use of this class.

16 CHAPTER 3. QUALITATIVE ANALYSIS

Security and Privacy

The Dalvik virtual machine is a key component of the Android operating system and

it plays a major role in the security of the operating system. A central design point of

the Android security architecture is that no application, by default, has permission to

perform any operations that would adversely impact other applications, the operating

system, or the user [24].

This policy is enforced using the Dalvik virtual machine and the underlying Linux

platform using Unix User Identifiers and file permissions. Unlike most Linux desktop

operating systems, where applications from the same user run with the same UID,

every application runs in its own virtual machine in a separate process with its own

UID. This means that Android applications cannot access the code or data from other

programs, and that all data sharing has to be done explicitly.

Besides running every application in a sandbox the security of the operating system

is further enforced by limiting the permissions of every installed application. By

default Android applications have no permissions to do anything that could impact

the user experience or the data on the mobile phone. If an application wants to

access the protected features such as the phone book or access the GPS functionality

the developer needs to declare the required permissions. When the application is

installed the user has to grant the application access to those features before the

application can use them.

Because of the rigged security model the harm that can be caused by a ’bad’ appli-

cation is limited. The first serious security flaw that was found in Android in October

2008 and made it possible to run any code with the privileges of the standard web

browser application [17]. This is a big problem, but the impact of the issue was

limited by the security model. A hacker could for example not access private data

from other applications or dial the phone directly.

Even in a worse case scenario where the user grants a malicious application rights

to do almost anything, private data from other applications is still not accessible

because of the Unix file systems with different UIDs for every application. This could

be a major advantage for ubiquitous computing because of the often privacy sensitive

nature of these applications.

3.2.2 BlackBerry OS

BlackBerry OS is a proprietary operating system that has been developed by Research

In Motion to be used exclusively in combination with the BlackBerry smartphone

family. The first BlackBerry smartphones were created with business professionals

3.2. THE OPERATING SYSTEMS 17

in mind, and offered functionality such as wireless synchronization with Microsoft

Exchange. BlackBerry smartphones are still mainly used in the enterprise market,

but in the past years various models that targeted the consumer market have also

been released. In the first quarter of 2009 the RIM Curve overtook Apples iPhone as

the best selling consumer smartphone in the USA [27].

Figure 3.2: The Blackberry MDS Runtime enviroment [43]

BlackBerry OS is proprietary and not many details about the inner workings of the

operating system have been disclosed by RIM. There is of course documentation

about the SDK that is available for developing applications for the OS, but it does

not give technical information about the underlying OS. Creating applications for a

BlackBerry device can be done in two ways. First of all is possible to create Java

applications that run on the device using a proprietary JVM. BlackBerry supports

the Java ME MIDP standard as defined in the JSR 118 specification‡. Also available

are various Java API extensions for tasks such as persistent storage, networking

and application integration. The second option is to create a Mobile Data Service

(MDS). This class of applications is optimized to receive push data from some kind

of application service, and display this data to the user. A schematic overview of

the MDS runtime is provided in Figure 3.2. As is visible there are different options

to use MDS applications: They can run in the web browser, the JVM or the MDS

runtime. Important to note is that the presence of the BlackBerry Enterprise Server

is required for these applications. It is not possible to develop native applications in

for example C or C++ as a third party developer.

Concurrency Model

BlackBerry OS is multithreaded and many applications and processes can run at the

same time. Applications can create background threads to handle computationally

‡Available from http://jcp.org/en/jsr/detail?id=118

18 CHAPTER 3. QUALITATIVE ANALYSIS

intensive tasks or network communication without locking the main thread. When an

application is closed background threads are allowed to continue to be active. The

fact that this functionality is available is not a surprise, the OS has been designed with

running background network processes in mind. Standard applications for instance

use this for synchronizing emails and calendar events, but third party applications

can also use these APIs [44].

Cost

BlackBerry OS is a proprietary operating system that is exclusively used in combi-

nation with the BlackBerry smartphone family. There is no data available about

the costs of the operating system, because it cannot be licensed by other parties or

bought without a BlackBerry in the store.

Memory Use

The Java Virtual Machine handles the memory management on the BlackBerry for

most third party applications, unless the specialized MDS runtime is used. The

JVM handles allocating memory, swapping data between SRAM and flash memory

and garbage collection. To deal with the limited memory capacity of smartphones

a special low memory manager is running. When the number of available object

handles or the amount of free flash memory drops below a certain threshold the low

memory manager tries to free existing memory. Standard applications as well as third

party applications should work with this interface, and try to delete low and medium

priority data when the low memory listener receives an event [42].

Networking

BlackBerry OS is created with background network processes in mind. Creating a

standard HTTP(S) or TCP socket to establish a connection over a wireless network

is no problem. The design behind the BlackBerry OS is however focused on offering

a connection to the company intranet or the Internet at all times, not on connecting

with devices in the local vicinity of the user as is the case in a lot of pervasive

computing applications. The API does not include functionality to automatically

discover and connect to WiFi networks: A WiFi connection can only be used if it

has been setup by the user in the past. Functionality to discover and connect to

Bluetooth devices is available though.

3.2. THE OPERATING SYSTEMS 19

Power Consumption

Details about the internals of the BlackBerry OS are scarce, and no details have been

published about the power management features of the operating system. Developers

get no special tools to control the power management of the device. It is possible to

retrieve information about the status of the battery, but that is all that is possible.

Security and Privacy

Security has been historically a focus point of the BlackBerry OS, but the available

security features are tailored towards the use in an enterprise environment. When the

BlackBerry Enterprise Server is used all communication between the smartphone and

the outside world is for example encrypted, and network administrators can install and

remove applications remotely as well as change policies that control what applications

and what the user can do. A possible policy is to encrypt all user data on the device.

For BlackBerry users in a non corporate environment there are still various security

measures in place. BlackBerry applications can only access memory that is used by

the JVM, access to the virtual memory or the persistent data from other applications

is not possible unless access has been specifically granted. Application with these

capabilities could potentially be harmful and have to be digitally signed by RIM. The

same is true for various other APIs that have been labeled as sensitive so that an

audit trail is available when abuse of these APIs is detected [44].

3.2.3 iPhone OS

Apple introduced the first generation iPhone June 2007 in the USA. The phone uses

the so called iPhone OS that is similar to Mac OS X. The basic structure of the

operating system is displayed in Figure 3.3.

Figure 3.3: Overview of the iPhone OS architecture [3]

20 CHAPTER 3. QUALITATIVE ANALYSIS

The lowest level of the operating system is formed by the Core OS layer. Additional

abstraction layers are provided by the Core Services layer, the Media layer and the

Cocoa Touch layer [3]. The Core OS layer contains the Mach kernel, hardware drivers

and is in charge of managing the memory system, the scheduler, the file system, the

network and the interprocess communication. It also contains the Security framework

to protect and secure program data.

An abstraction step up is the Core Services layer. It includes the basic framework

for Objective-C programming, access to the network availability and state of the

device, access to the location information and the address book. the Media layer

contains multiple frameworks to work with audio, video, 2D graphics and 3D graphics.

The Cocoa Touch Layer is the highest level of abstraction available and offers the

basic building blocks to create graphical event-driven applications for the iPhone OS.

Objective-C is required to access the higher level API’s, but since Objective-C is a

strict superset of C it is possible to freely include C code in any Objective-C class.

As already quickly mentioned in the introduction of Chapter 3 a lot of the functionality

that is available on the iPhone operating system is restricted by Apple using the SDK

agreement and by making not all API’s publicly available [8]. In particular Section

3.3.1 and 3.3.2 limit possibilities for developers by limiting the use of the iPhone

API’s to only those published by Apple and restricting the types of executable code

that may be run on the device. A plug-in architecture is for example not allowed

and so are specific types of applications such as those offering Voice over Internet

Protocol (VoIP) functionality using the cellular network.

Concurrency Model

In order to maximize the amount of memory available to the ’foreground application’

Apple has restricted the multitasking capabilities of the iPhone. Apple allows only one

third party application to run at the same time [7]: when the user goes back to the

home screen the application is terminated, state information is saved and when the

user goes back the application is relaunched. This is a serious obstacle for pervasive

computing applications since those often have to do work in the background without

user intervention.

The limitations imposed by Apple are artificial; around ten applications/services are

often running concurrently on the iPhone, but only Apples own applications and

services are allowed to do this. Only one third party application can run at the

same time, and it has to be in the foreground. Services and applications that do

run concurrently are for example core services such as calling, email checking, music

playback, Bluetooth and MobileMe synchronization. Apples own applications such

as Safari are also allowed to continue running when enough free memory is available.

3.2. THE OPERATING SYSTEMS 21

Cost

The iPhone OS is developed in house by Apple and cannot be licensed by third parties.

Speculating about the costs is therefore a futile exercise, although it’s worth noting

that large parts of the operating system are build from pre-existing software. Big

parts of the OS - including the kernel - are borrowed from the Mac OS X operating

system. Other functionality is provided by open source products such as SQLite and

WebKit, both also part of the Android operating system.

Memory Use

The first generation iPhone and the iPhone 3G both offer 128MB of memory while

the iPhone 3GS offers 256MB. Approximately 11MB of the 128MB is used as VRAM

and a decent chuck is used by the operating system itself, leaving approximately

76MB as user memory [32]. Unlike it’s desktop counterpart the iPhone OS does

not have a swap file for virtual memory, so when the RAM is full there is really

no memory available anymore (and the application will be forced to close by the

operating system). Because of this the iPhone 3GS has quite a speed advantage

when running the standard Apple applications that support multitasking. On the

older iPhone models the mobile Safari browser is almost always closed when another

application is launched, but on the 3GS it can continue running in the background

so switching back to this application can be almost instantaneous.

Networking

Figure 3.4: CFNetwork and other software layers on Mac OS X [6]

The core of the networking functionality inside the iPhone OS is based on BSD

sockets. Several higher layers of abstraction are also available as can be seen in

Figure 3.4. The CFNetwork layer allows developers to create sockets and streams,

and by allowing these low level network building blocks applications can connect

to anything inside the network. Although applications can be created to connect to

almost any service that is running in a network, applications have (almost) no control

over what network to connect to. Applications are not allowed to connect to a WiFi

22 CHAPTER 3. QUALITATIVE ANALYSIS

network without user interaction. This means that applications are usually limited to

’just’ an Internet connection using the cellular network.

Apple announced on March 17, 2009 the major features of the latest generation

iPhone OS, version 3.0, that has been publicly released in the summer of 2009. This

version of the operating system makes it possible for applications to create peer to

peer networks using Bluetooth. The SDK includes functionality to automatically

discover other devices running iPhone OS and will be able to connect seamlessly

to them without pairing [5]. The technology behind this is Apples Bonjour service

discovery protocol that allows setting up networks without any configuration (also

known as Zeroconfig). It is not possible to connect to non iPhone OS devices that

do not support this standard.

Power Consumption

Apple has created the iPhone OS with power consumption in mind, and because of

this several big restrictions are in place in what kind of applications can be developed

as already mentioned in Section 3.2.3. Only Apples own ’core services’ can run in the

background, while third party applications are terminated as soon the user returns

to the home screen. The main reason for not allowing background processes is to

protect the battery performance of the iPhone.

According to Apple running ’a popular instant messaging client’ in the background of

an Android phone, a Windows Mobile phone or BlackBerry reduces standby battery

life with 80 percent or more [5]. The alternative that Apple is going to offer for

background processes in iPhone OS 3.0 are push notifications. These can be sent

over the Internet to the mobile phone to notify the user of some new information.

This makes it for example possible to create instant messaging applications that

can receive messages when the instant messaging client is not running, but it seems

an unpractical model for most pervasive computing applications. By nature these

applications are often context aware and require two way communication between

the phone and devices in the local environment: something that is not possible with

push notifications.

Security and Privacy

For developers the iPhone OS offers several API’s to implement security features. Just

like it desktop counterpart, iPhone OS uses BSD (Berkeley Software Distribution)

and CDSA (Common Data Security Architecture) to implement security services.

Low level features, for example file access permissions, are implemented by the BSD

kernel, a form of the UNIX operating system. CDSA provides higher level functionality

3.2. THE OPERATING SYSTEMS 23

such as encryption, authentication and secure data storage. CDSA is an open source

standard with its own API, but this is not directly accessible because it does not

follow standard Macintosh programming conventions. Developers have to use several

Apple API’s that call the CDSA API. See for an overview of the security architecture

Figure 3.5.

Figure 3.5: Mac OS X security architecture overview [4]

The iPhone OS runs applications such as the dialer and browser with root access.

This means that when a security vulnerability is exploited in one application the whole

operating system could be compromised. This is unlike Android and BlackBerry OS

where applications are shielded from the operating system, and other applications, by

running it inside a virtual machine. Since the introduction of the iPhone OS several

security holes have been found - and fixed by Apple with firmware updates - that

could allow a hacker to gain full control over the mobile phone. In the beginning of

2008 security expert Rik Farrow showed for example how a Safari exploit could be

used to gain root access to the iPhone and install a sound recording application that

could be used to spy on the user [13].

Although running applications with root rights as a default is a big risk, privacy

sensitive data collected by an ubiquitous computing application can be protected to

some extend using the APIs that are build on top of CDSA. These APIs make it

possible to store, send and receive data encrypted.

24 CHAPTER 3. QUALITATIVE ANALYSIS

3.2.4 Symbian

Symbian is the most popular smartphone operating system with a market share of 51

percent in the second quarter of 2009 [21]. Although Symbian is by far the biggest

player on the smartphone OS market, its market share declined rapidly the last two

years - with more than 20 percent - because of developments such as the introduction

of the iPhone and Android. There are several variants of the Symbian OS, since the

operating system itself does not include a user interface. Symbian is available as

S60§, UIQ¶ and MOAP(S)‖. Nokia, founded the Symbian foundation in June 2008

with the intent to unite Symbian OS, S60, UIQ and MOAP(S) to create one open

mobile software platform [37, 18], but for now the platform remains divided.

Figure 3.6: Overview of the Symbian architecture [38]

Symbian OS has it roots in Psion’s EPOC that was originally developed for PDA’s.

Symbian has been specifically engineered for smartphones, unlike most other operat-

ing systems discussed in this article that have been derived from larger systems. The

operating system can be decomposed into several layers as can be seen in Figure 3.6.

The top layer is the user interface framework that is used by the GUI implementation

of the operating system itself (S60, UIQ, MOAP(S)) and also by applications. The

second layer is the application services layer. This layer provides services that are

required by all applications and generic services such as data synchronization and

HTTP transport. Below this layer is the OS services layer that extends the base ser-

vices layer below. The OS Services layer contains features such as the task scheduler,

§Series 60 User Interface
¶User Interface Quartz
‖Mobile Oriented Applications Platform (Symbian)

3.2. THE OPERATING SYSTEMS 25

telephony services, the TCP/IP stack and multimedia services. The base services

layer contains the lowest level of user mode services. The file server resides at this

level as well as the user library that applications need to use to interface with the

kernel. The lowest level is formed by the kernel and hardware drivers.

Concurrency Model

Just like the other smartphone operating systems Symbian is multithreaded. This

functionality is also exposed to third party application developers, making it possible

to run processes in the background. Not all types of applications have access to

these APIs, but for C++ developers running background processes is not a problem.

The Symbian OS kernel supports hard real-time tasks, but no real-time scheduling

guarantees are given for user processes.

Cost

With the creation of the Symbian foundation in 2008 Symbian is on its way to become

open source under the Eclipse Public License (EPL). The foundation is committed to

moving the Symbian platform to open source in the next two years meaning that the

platform is going to be free for anyone [18]. This is however not yet the case and at

the moment phone manufacturers have to pay a license fee for using the operating

system, although costs have been dropping the pasts years. In the second quarter

of 2008 the average royalty cost per phone was 3,4 dollar, a drop of 21 percent in

comparison with the previous year [50].

Memory use

Symbian was designed for devices with limited resources. Because out-of-memory

errors can occur anytime when memory is allocated developers need to cope with

these errors and make the program go back to an acceptable and stable state when

these occur. To make this possible Symbian is equipped with leaves and a cleanup

stack. Symbian does not support exceptions like standard C++, but supplies its own

idioms. When a leave (read: exception) occurs objects that are allocated on the heap

would not be cleanup automatically. To deal with these possible sources of memory

leaks pointers to all objects that are created should be stored on the cleanup stack.

This allows the system to automatically clean up unused objects.

26 CHAPTER 3. QUALITATIVE ANALYSIS

Networking

Symbian provides a limited set of functionality for connecting to wireless networks.

It can scan for wifi networks and retrieve information about the cellular network

that it is connected to. It is however not possible to programmatically control the

interfaces [39]. Bluetooth functionality is also limited: Bluetooth I/O is only possible

with devices that are securely paired, meaning that user input is required before

communication can take place. This is however not a Symbian specific problem.

When a connection is set up the developer has full control over the data that can be

transmitted. It is possible to specify the interface that should be used, and Symbian

OS sockets are similar to BSD sockets.

Until recently the sockets API was not exposed to third party developers, only higher

communication layers such as HTTP were available. All new devices based on the

Symbian platform now support Open C and Open C++, and a part of this standard

is a low level socket API. Older devices using Symbian S60 3rd Edition or later can

be equipped with these libraries by installing a separate plug-in.

Power Consumption

Symbian OS arguably offers the developers to most control and insight on the power

consumption of the telephone. Nokia offers the Nokia Energy Profiler∗∗ that can be

used to monitor the power consumption of a Nokia Symbian phone. Symbian also

contains a framework that can be used by third party applications to adjust the power

mode, receive notifications when the power mode changes and wakeup/shutdown the

kernel.

Security and Privacy

Just like the other smartphone operating systems Symbian has several security fea-

tures in place that should protect integrity and privacy. The main threat that is

addressed by the Symbian security architecture is the distribution of malicious appli-

cations. This is done by requiring programs to be signed before they can be installed,

and once installed access to resources is restricted. Because applications are reviewed

before they are signed the risk of installing malware is minimized, but it is not fully

effective since there are ways for users to get unsigned applications running. In this

aspect Symbian OS is remarkable similar to iPhone OS where applications that are

distributed using the App Store are first reviewed by Apple and after a jailbreak this

restriction can be circumvented.

∗∗Available from http://www.forum.nokia.com/Resources and Information/Tools/

3.2. THE OPERATING SYSTEMS 27

The second part of the Symbian security architecture is restricting the API’s applica-

tions can use. Rights to access certain capabilities are granted when the application

is installed. Some capabilities can be approved by the user, while applications that

require access to the most sensitive capabilities require approval by the phone man-

ufacturers. An overview of the different capability levels and the API’s within these

levels can be found in Figure 3.7.

Figure 3.7: Overview of the Symbian capabilities [49]

System components and third party applications only get access to the capabilities

that they require. Because of this a vulnerability or a misuse of privileges in a single

component has a limited impact. Access to API’s is restricted for most applications

and so is access to the file system. Every application has a private directory as well

as a public directory that is read-only for other applications. The other parts of the

file system, except the /sys directory are fully accessible.

Besides the previous discussed operating system features Symbian provides develop-

ers with various API’s to implement security features. Cryptographic, hashing and

random number generating algorithms are all available as a default. Setting up secure

network connections using SSL is also not a problem.

28 CHAPTER 3. QUALITATIVE ANALYSIS

3.2.5 Windows Mobile

Windows Mobile has been developed by Microsoft to run on a variety of mobile

devices. The operating system is based on the Win32 API, and has been designed to

offer a similar look and similar functionality as its desktop counterparts. An schematic

overview of the kernel is provided in Figure 3.8. The kernel used by the operating

system is based upon Windows CE, an operating system designed for handhelds and

embedded systems. Windows CE is a modular operating system where the developer

can choose what functionality he wants. With just the kernel the operating system

is a few hundred kilobyte in size, but components like a web server or support for

the .NET Compact Framework can be added. The big difference between Windows

CE and Windows Mobile is that the set of components that are used are fixed by

Microsoft so that APIs are consistent between all Windows Mobile devices. APIs are

however not identical. All phones have to support a minimal set of functionalities,

but phone manufactures are free to include additional APIs in the OS image.

Figure 3.8: General structure of the Windows Mobile kernel [34]

Concurrency Model

Windows CE has been developed for embedded devices and this gives Windows Mobile

an interesting characteristic that other smartphone operating systems are missing:

3.2. THE OPERATING SYSTEMS 29

the kernel offers real-time performance. This means that there is a guaranteed upper

bound on the execution time of high priority threads. To use this functionality the

Win32 API has to be used since the .NET Compact Framework includes a garbage

collector that freezes all threads during garbage collection. Since the win32 API is

based on technologies from more than 25 years ago working with it should be avoided

if possible. Microsoft itself describes it as an arcane, cranky API prone to memory

leaks [35].

The multi-threading functionality offered by Windows Mobile in the .NET Compact

Framework is fully featured, and offers all functionality you could wish for as a de-

veloper. Running multiple threads and multiple processes in the background are not

a problem.

Cost

Microsoft licenses Windows Mobile to a wide variety of phone manufacturers. Com-

panies such as Acer, HTC, LG Electronics, Samsung, Sony Ericsson and Toshiba all

develop Windows Mobile phones. How high the licensing fees are for the various

Windows Mobile versions is not made public by Microsoft. Market research firm

Strategy Analytics estimates that the fee ranges from 8 dollar to 14 dollar [30].

Memory Use

Windows Mobile 6 is based on Windows CE 5.0, and is a 32-bit OS with a maximum

of 32MB of virtual memory available for a single application. These days it is not

uncommon to see smartphones with 128MB or more internal memory, but this cannot

be used by a single application. A lot of memory is by default used by the operating

system to keep applications running after the user closed them, a feature dubbed

smart minimize by Microsoft. These applications can be closed by the OS though

when memory is running low.

Noteworthy is that Windows Mobile offers programmers extremely low level access

to the operating system. With Windows Mobile developers can access the Win32

API directly. This increases development options, but also risks the creating of

applications with memory leaks. Most operating system objects that are created

with this API have to be cleaned up manually by the developer. The managed

wrappers available inside the .NET Compact framework are built to make sure that

the underlying Win32 objects are cleaned up correctly. Symbian and iPhone OS

also support C/C++, but the API’s for accessing the operating systems features

are cleaner defined and more shielded from third party developers. Symbian has the

cleanup stack to prevent memory leaks while Objective-C objects can be put in an

30 CHAPTER 3. QUALITATIVE ANALYSIS

autorelease pool that is cleaned up after an event loop is completed. Smartphone

operating systems that limit developers to high level programming languages running

inside a virtual machine have almost no memory leak problems since the garbage

collector takes care of this.

Networking

Windows Mobile offers various APIs for creating network connections. Since Win-

dows Mobile allows developers to access very low level APIs basically everything

imaginable is possible. Creating standard sockets is not a problem, and full control

over the Bluetooth and WiFi connection is available. In the managed .NET Compact

Framework this functionality is not supported by default, but it can be added easily

by using freely available wrappers††.

Power Consumption

Windows Mobile includes a Power Manager API that give developers influence on the

power state of the device. An application can request a certain power state, but there

is no guarantee that the status will be changed. The driver is ultimately responsible

for the power state, and has to take other running programs in account too. Besides

setting a general power state for the device separate hardware components can also

be controlled. Changing the brightness of the LCD or switching off the Bluetooth

radio are possibilities. An API for monitoring the battery status is also included in

Windows Mobile.

Security and Privacy

As made clear in the previous sections Windows Mobile resembles its desktop counter-

part in many ways. Developers have access to many low level APIs giving application

developers almost full freedom. The flipside of the coin is that the build in security

measures of the operating system are limited. Applications are not sandboxed and

protected from each other. Applications cannot directly access memory in the process

space of another process, but with techniques such as DLL injection it is possible to

run code within the address space of another process. The process space security is

designed to protect applications from programming bugs in other applications, but

it is not sufficient to shield applications from malicious applications. Once a trusted

process is launched there are essentially no limits on what it is allowed to do. It is

††Bluetooth .NET library available from http://www.codeplex.com/32feet/

3.3. SUMMARY 31

however possible that applications that access trusted APIs need to be signed before

access is granted, but this depends on the implemented security policy.

3.3 Summary

The various operating systems all have strong and weak points: it is certainly not

possible to say that one of them is the obvious best for running pervasive computing

applications. It is however possible to pinpoint the least suitable operating system

in the list. In Table 3.1 a simplistic overview of the strong and weak points of

the different operating systems is provided. With the exception of iPhone OS all

operating systems score two or three stars in the various categories.

The artificial restrictions imposed by Apple with regards to running background pro-

cesses make the current version of iPhone OS not suitable for most pervasive com-

puting applications. The other four operating systems have no problems running

multiple applications at the same time or running background processes so they all

score three stars. It is very possible that Apple will relax these restrictions in a future

version of the OS, making it more suitable for a wider range of applications [22].

Concurrency Cost Memory Network Power Security

Android ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ?
BlackBerry ? ? ? ?? ?? ?? ?? ? ? ?
iPhone OS ? ?? ? ? ? ?? ? ? ? ??
Symbian ? ? ? ?? ? ? ? ?? ? ? ? ??
Windows ? ? ? ?? ? ? ? ? ? ? ? ? ? ??

Table 3.1: Summary of quality attributes

Android is at the moment the only free open source operating system in this list,

so it gets three stars while the competition only gets two. All operating systems

have various technologies in place to deal with the limited memory capacity of smart-

phones, but both Android and BlackBerry OS get two stars instead of three because

development of native applications is not possible and all third party applications are

executed in a virtual machine.

Networking is very important for most pervasive computing applications, but almost

all operating systems have limitations with regards to automatically connecting to

WiFi or Bluetooth networks. Windows Mobile does not have these kind of limitations

and gets a three star rating. Android also has a very strong feature set in place since

Android 2.0 and gets a three star rating as well, even though the usefulness of the

Bluetooth feature is limited. This is however true for most Bluetooth devices since

they need to be paired before a communication channel can be setup.

32 CHAPTER 3. QUALITATIVE ANALYSIS

Most operating systems have APIs in place to give developers insight in the battery

status of the device and the power mode. BlackBerry OS is the exception to the

rule with an API that only gives information about the battery status, and no control

over the power mode.

Security is an aspect that gets an reasonable amount of attention in mobile operat-

ing systems. Android and BlackBerry OS both only run applications in a sandboxed

virtual machine environment and therefore get the maximum score. This does not

mean that the other operating systems are particularly weak. Symbian has an elabo-

rate system in place for signing applications and Windows Mobile also supports this,

although the system is less sophisticated.

Chapter 4

Quantitative Analysis

Besides the qualitative analysis in Chapter 3 the performance of the various operating

systems also has been examined using a benchmark that performs various tasks that

are common in pervasive computing applications. The variety of possible tasks that

a pervasive computing application can perform is practically endless, but in almost

all instances communication between various devices is an integral part of the appli-

cation. The benchmark consists of three tasks that are all crucial with regards to

communication, namely:

• Encryption

• Decryption

• XML parsing

These tasks are not only relevant for communication between various services and

devices, but are also often used locally. When dealing with sensitive information it is

desirable to store the user data encrypted and XML files are frequently used to store

data like configuration settings and user interface details.

A challenge in developing a benchmark for various operating systems is that creating

a cross platform application with a shared code base is not an option. All operating

systems support different programming languages, and even when the language is the

same the surrounding libraries are completely different. Blackberry OS and Android

for example both run Java applications, but out of the 135 Android Java packages

and 77 Blackberry OS Java packages just 7 packages have the same namespace.

33

34 CHAPTER 4. QUANTITATIVE ANALYSIS

Every operating system does provide libraries to facilitate the three tasks that have

been selected for the benchmark. This makes it possible to create with relative ease a

benchmark that is both relevant and fair. It is relevant because it is using the libraries

that are part of the operating system and almost every other developer would use

when including this kind of functionality. Especially on the platforms that do not

support native applications from third party developers it is probably a futile exercise

to try to create a higher performing alternative.

At the same time there is no real risk that the benchmark is unfairly optimized for a

certain platform. Implementing a high performance algorithm would require expert

knowledge on subjects such as memory management, the language used and the

runtime environment. By relying on the included libraries for the heavy lifting in the

benchmark a possible skill difference of the benchmark developer on various platforms

is negated.

The benchmark does not directly test the performance of the kernel of the underlying

operating system, but it is in charge of tasks such as memory management, thread

scheduling and file access during execution.

4.1 Experimental Setup

The benchmark has been implemented for each of the five smartphone operating

systems that are discussed in this thesis. An overview of the target platforms and

the programming languages used is provided in Table 4.1.

Development platform Programming language

Android Android SDK 2.0.1, Release 1 Java
BlackBerry BlackBerry SDK v5.0 Beta 5 Java
iPhone OS iPhone SDK 3.1.2 Objective-C
Symbian S60 5th Edition SDK C++
Windows Windows Mobile 6.5 SDK C#

Table 4.1: Overview of the various programming languages used

The first three platforms offer the developer no real choice with regards to the pro-

gramming language that can be used to develop applications. Symbian offers more

options, but running Java applications in the background is not easily possible and it

would require that the Java virtual machine is always loaded in the memory. Windows

Mobile also offers various options. Using a language supported by the .NET Compact

Framework is a logical choice since it is available on every Windows Mobile phone

and offers developers a high-level programming environment and access to a large

4.1. EXPERIMENTAL SETUP 35

number of useful API’s. Other programming languages are available for Symbian and

Windows Mobile, but in most cases it is required that the user installs an additional

runtime environment before these applications can be executed.

The implementation of the benchmark is straightforward. The structure of the bench-

mark is displayed in Figure 4.1. Every part of the benchmark is run ten times to re-

duce variance in the results and acquire more accurate results. Most processor time

is spend in the subroutines of the system libraries that handle encryption, decryption

and XML parsing. The benchmark code handles tasks such as setting timers to mea-

sure results, open data streams and call system libraries. Both the encryption and

the XML parsing subroutines work on a XML file with a size of 144KB.

Figure 4.1: The structure of the benchmark

No significant differences in implementation exist between the various platforms. The

Symbian emulator offers no timers with a resolution above five milliseconds, and as

will become clear in the next section; that is not enough to generate meaningful

results. Because of this each Symbian benchmark is run one thousand times before

calculating the average execution time. The second noteworthy difference is present

in the iPhone version of the benchmark. The iPhone SDK does not provide an

Objective-C library that enables parsing an XML file to a DOM tree. It is possible

to use a C library, but to use this effectively within an Objective-C application a

small wrapper should be written. The performance impact of this is presumably

insignificant since Objective-C is a superset of C.

For four out of the five smartphone operating systems an emulator that runs under

Windows is available, the exception is the iPhone emulator that is only available for

Mac OS X. Because of this the iPhone emulator benchmarks have been run on a

different system and are not directly comparable with the other benchmark results.

36 CHAPTER 4. QUANTITATIVE ANALYSIS

The main specifications of the benchmark systems can be found in Table 4.2. After

examining the performance on the emulators the benchmark will also be executed

on various mobile devices, and the question if the emulators are a suitable tool for

performance evaluations will be answered.

Windows 7 Mac OS X Snow Leopard

CPU Intel Core 2 Extreme X9770 3,2GHz Intel Core 2 Duo 2,13GHz
RAM 4GB DDR2-800 2GB DDR3-1066
HD Intel X25-M Postville 160GB SSD 128GB SSD
Video ATI Radeon HD 4870 X2 NVIDIA GeForce 9400M

Table 4.2: The specifications of the benchmark systems

4.2 Emulator Results

As already stated the iPhone OS results are not directly comparable with the other

results because those benchmarks have been run on a different host system. But

although the host system is significantly slower, the iPhone emulator is very fast

compared to most other emulators as is visible in this section. The raw benchmark

results are available in Appendix A.

4.2.1 Encryption

In the encryption benchmark a 144KB file is encrypted using 256-bit AES encryption.

AES is a widely used encryption standard that is used in secure communication

standards such as IPSec and SSL and a wide variety of applications that require

secure data storage.

Figure 4.2 shows that the time that is required to encrypt the file varies widely

between the operating systems. Android is by far the slowest with a time of more

than 3 seconds, while Windows Mobile is roughly 5 times faster and BlackBerry OS 10

times faster. The difference between the Android results and the Symbian and iPhone

OS results are even more staggering. They set a time of respectively 5.8 and 5.4

milliseconds, more than 500 times faster. Converted to KB/s the slowest performer

achieves a speed of 47KB/s, while the fastest performer manages to encrypt the file

with a speed of 26820KB/s (26MB/s).

4.2. EMULATOR RESULTS 37

Figure 4.2: Encryption benchmark results

4.2.2 Decryption

The decryption benchmark is the mirror image of the encryption benchmark, and

uses the output from this benchmark as input to recreate the 144KB plain text file.

Figure 4.3: Decryption benchmark results

As expected the results of this benchmark are similar to those obtained by the encryp-

tion benchmark. The Android emulator is still very slow compared to the BlackBerry

OS and Windows Mobile and the Symbian and iPhone emulators blow the com-

38 CHAPTER 4. QUANTITATIVE ANALYSIS

petition out the water. The biggest difference between the two benchmarks is that

BlackBerry OS needs 27 percent more time for the decryption than for the encryption

while the differences for the other operating systems are less than 3 percent.

4.2.3 XML Parsing

As the name implies the XML parsing benchmark measures the time needed to parse

a single XML file to a DOM tree. The biggest component that is measured is the

parsing time to create the memory structure. The same 144KB big XML file from

the previous benchmarks is used.

Figure 4.4: XML parsing benchmark results

The XML benchmark paints a picture resembling the previous benchmarks, but as

can be seen in Figure 4.4 there are large differences at the same time. BlackBerry

OS is this time the slowest operating system, closely followed by Android. Windows

Mobile takes the third place while Symbian and iPhone OS are again significantly

faster than the competition. While iPhone OS remains several hundred times faster

than the slowest operating system, the gap between Symbian and the other operating

systems is smaller. Symbian is less than 20 times faster than the slowest performer

while iPhone OS is still almost 300 times faster.

4.3. HOST SYSTEM DEPENDENCY 39

4.3 Host System Dependency

The wild differences between the benchmarks results on the emulators are unexpected.

The fact that benchmarks that run using an interpreted language (Java and C#)

are slower than those directly executed by the CPU (C++ and Objective-C) is as

expected. It should however be noted that it is not impossible for Java application

to perform better than C++ applications because dynamic compilation allows for

optimizations that a static compiler cannot perform [41].

Performance differences of several orders of magnitude hint that the emulators them-

selves are not a reliable tool to assess the performance of real world devices. In the

accompanying documentation of the various emulators remarkable little is said about

the performance, which is a vague sign in itself.

To test if the different emulators try to emulate phone performance the benchmarks

have been executed again, but this time with the clock speed of the processor in-

creased from 3.2GHz to 3.6GHz. If the benchmark results increase linearly with this

clock speed increase that would either mean that the emulator has no upper limit on

the performance, or that a modern desktop PC has insufficient performance to emu-

late the smartphone. In both cases the emulator is not a suitable tool for estimating

the performance of the smartphone.

Benchmark 3.2GHz Results 3.6GHz Results Difference

Android Encryption 3057.4 2672.4 14%
Decryption 2987.3 2688.0 11%
XML Parsing 2197.6 1795.8 22%

BlackBerry Encryption 362.7 320.0 13%
Decryption 462.8 411.7 12%
XML Parsing 2237.7 1962.0 14%

Symbian Encryption 5.798 5.528 5%
Decryption 5.912 5.700 4%
XML Parsing 113.7 107.4 6%

Windows Encryption 650.5 564.7 15%
Decryption 664.9 583.3 14%
XML Parsing 712.0 640.3 11%

Table 4.3: Benchmark results in milliseconds with various processor speeds

In Table 4.3 the benchmark results when the processor of the host system runs on

3.2GHz and 3.6GHz are visible. No iPhone emulator results are included since the

iPhone emulator does not run on under Windows, and the Macbook used for the

iPhone benchmarks is not suitable for tinkering with the processor speed.

As is visible all tested emulators react significantly when the processor speed of the

40 CHAPTER 4. QUANTITATIVE ANALYSIS

host system is increased. The difference between 3.2GHz and 3.6GHz is 12.5 percent,

and most results scale perfectly with the increased processor speed. The Android

XML benchmark gets an unexplained additional speed bump, while the Symbian

benchmarks lag behind a little. A possible explanation for the latter is that not only

the processor speed, but also the memory speed could be a limiting factor. But it is

clear is that none of the emulators are a suitable tool to assess real world performance,

and Chapter 4.4 shows that the iPhone emulator is not an exception to the rule.

4.4 Results on Mobile Devices

Chapter 4.3 makes it clear that the emulators are a poor tool to investigate the

performance of the various smartphone operating systems. The only option is running

the benchmark on real phones, and that is exactly what is done. We did however not

have access to Windows Mobile and BlackBerry hardware, so just three out of the five

smartphone operating systems are tested in this section. The various phones used

and their main specifications are listed in Table 4.4 and the raw benchmark results

are available in Appendix B. Note that the y-axis scales of the different graphs are

not identical, and thus not directly comparable.

HTC Hero iPhone 3G Nokia N95

OS Android 1.5 iPhone OS 3.1.2 S60 3rd Edition
CPU Qualcomm MSM7200A Samsung ARM TI OMAP 2420
CPU Speed 528MHz 412MHz 332MHz
Memory 288MB RAM 128MB RAM 64MB RAM
Storage 512MB ROM / Micro SD 16GB flash 160MB flash

Table 4.4: The specifications of the tested smartphones

There are significant differences in the hardware specifications of the tested smart-

phones so results are not directly comparable. Normalizing the results based on the

CPU clock speed would give an approximation on how the operating systems would

perform on identical hardware, but differences in memory speeds, bus speeds and

processor architecture mean that if the results are close no conclusion can be drawn.

4.4.1 Android

While the benchmark was developed with the latest Android SDK 2.0.1 and the

HTC Hero was running Android 1.5 no modifications to the benchmark code were

necessary. Figure 4.8 shows that the results obtained by the emulator are roughly

comparable with those obtained by the real hardware, but the performance differences

4.4. RESULTS ON MOBILE DEVICES 41

Figure 4.5: HTC Hero Figure 4.6: iPhone 3G Figure 4.7: Nokia N95

are not consistent. Encryption and decryption are respectively 9 and 14 percent faster

while XML parsing is 48 percent slower.

Figure 4.8: Benchmark results on HTC Hero

4.4.2 iPhone OS

The tested iPhone was running iPhone OS 3.1.2, the same version as the SDK used

to develop the benchmark, so no changes were required to deploy the application.

As the fastest operating system on the emulator it is no surprise that the real world

results are significantly slower.

42 CHAPTER 4. QUANTITATIVE ANALYSIS

Figure 4.9: Benchmark results on iPhone 3G

Encryption and decryption both are almost 15 times slower, and just as on the HTC

Hero, XML parsing is relatively slower on real hardware than on the emulator. The

iPhone 3G is approximately 34 times slower when parsing XML, more than twice the

difference when encrypting or decrypting as is illustrated in Figure 4.9.

4.4.3 Symbian

The Symbian benchmark was developed for Symbian S60 5th Edition while the Nokia

N95 is running S60 3rd Edition FP1. Because of this the XML parsing benchmark had

to be removed since it used a library that was not included in the earlier version of the

operating system, and no similar library was available as well. The second difference

is that the real device offers timers with a high resolution, removing the need to run

every benchmark one thousand times before calculating the average execution time.

Just as the iPhone emulator, the Symbian emulator is extremely fast as illustrated

in Figure 4.10. But as expected, on real hardware the performance does not come

close to those results. The time needed to encrypted and decrypt a file rose with a

factor of respectively 26 and 22. Although this is obviously a very big difference, the

speed on real hardware is still very respectable.

4.4. RESULTS ON MOBILE DEVICES 43

Figure 4.10: Benchmark results on Nokia N95

4.4.4 Side by Side

A look at the results on the previous pages show that while the benchmark is a lot

slower on real hardware when using Symbian or iPhone OS, Android remains slow.

The results of the three operating systems can be seen side by side in Figure 4.11.

Figure 4.11: The results of the three smartphones side by side

On the emulator both Symbian and iPhone OS managed to perform several hundred

times faster than the Android operating system. On real hardware the difference is

smaller, but still remarkable large. Compared to the iPhone 3G, which is equipped

with a slower processor, the HTC Hero is respectively 35 and 33 times slower when

44 CHAPTER 4. QUANTITATIVE ANALYSIS

encrypting and decrypting. The difference when parsing an XML file is smaller, but

the iPhone is still a factor 12 faster.

The differences between the iPhone 3G and Nokia N95 are small when we consider

that the Nokia N95 is an older smartphone with a slower processor. Since there are

many unknown variables that influence the results such as memory speeds and the

architecture of the processor we have to settle with the conclusion that the iPhone

OS offers performance that is in the same ballpark as Symbian.

4.5 Summary

The results obtained in Chapter 4 are all over the place, but nevertheless some

conclusions can be drawn.

The first conclusion is that all the tested emulators are not a suitable tool for per-

formance measurements. The performance of the emulators vary based on the clock

speed of the processor of the host system, implying that they do not strive to emulate

a certain, fixed, performance level. The extremely high speeds of the Symbian and

iPhone emulator hint that the emulator layer in those cases is very thin, and that the

benchmark is almost executed directly on the host system. The Android emulator

performs closer to real hardware, but the differences vary seemingly random with

different tests.

Although the emulator results are not reliable, there is one characteristic that appears

to be translated to real world results. The operating systems that have fast emulators

are also fast on real hardware, and slow emulators indicate slow phones. An expla-

nation for this could be that the additional layers that make the emulator slow, are

also present on the real phone. The two fast performers both use a static compiled

language that is executed directly on the phone while the other three smartphone

operating systems have been benchmarked with dynamic compiled languages. But as

already mentioned, there is no fundamental reason why dynamic compiled languages

should be slower than static compiled languages [41].

From the three slow emulators we have tested only Android on real hardware, so it is

unclear if BlackBerry OS and Windows Mobile would behave the same. There is in

fact a good reason to believe that Android performs worse than the competition in

this regard. As discussed in Section 3.2.1 Android applications are all run inside the

Dalvik virtual machine that run Java applications that are converted to the Dalvik

Executable format. The Dalvik virtual machine is designed to work with limited

resources, making it a good fit for smartphones, but at the moment no just-in-time

compiler is available.

4.5. SUMMARY 45

The omission of a JIT compiler means that no runtime optimizations are done by the

virtual machine, resulting in poor performance. Recently an experimental version of

a JIT for the Dalvik VM has been released by the Dalvik team [10]. The experimental

JIT for Android is trace-based meaning that only hot code traces are compiled and not

complete methods as is often done in server-class JITs. How much difference a trace-

based JIT can make is illustrated by the TraceMonkey engine that executes JavaScript

for the Firefox browser. Depending on the benchmark used a speed increase between

a factor 1.83 and 22.5 is observed [19]. The Dalvik VM JIT is not finished, but

preliminary results show that this experimental version is capable of doubling the

performance of some processor intensive operations [28].

Related work with regards to benchmarking mobile operating systems has been done

by Sander Kikkert. In his bachelor thesis he investigates the performance of web

services on Android, Symbian and Windows Mobile [29]. The web services benchmark

is not as processor intensive, the biggest bottleneck seems to be setting up and

destroying network connections. The results do show a similar picture, although

some of the differences are less extreme. The Android emulator is again by far the

slowest and is capable of processing 1 request per second. The Windows Mobile

emulator is 10 times faster while the Symbian emulator has the highest throughput

with 33 requests per second.

The benchmark has also been carried out on a PDA with Windows Mobile 5.0. The

device performed - depending on the network connection used - between a factor 3

and 4.5 better than the emulator. If the benchmark developed for this thesis would

show a similar result the performance of Windows Mobile would be in the same order

as Symbian and iPhone OS.

Chapter 5

Conclusion and Future Work

Pervasive computing is a broad field that is largely undiscovered and identifying what

characteristics make a mobile operating system suitable for pervasive computing ap-

plications is not a trivial task. A wide variety of applications are possible, and arguably

the most attractive applications have yet to be developed. Nevertheless seven criteria

for comparing the five smartphone operating systems have been identified. Six out of

the seven criteria have been evaluated qualitatively while the performance has been

evaluated with quantitative measurements.

• Concurrency model

• Cost

• Memory use

• Networking

• Performance

• Power consumption

• Security and privacy

Three quality attributes are derived from the specific features that a lot of pervasive

computing applications share while the other quality attributes are more general in

nature and apply to most mobile applications.

The concurrency model, the networking API’s and the security and privacy features

are all very important for ubiquitous computing since these applications often work in

the background, invisible to the user, and communicate wireless with local devices in

the neighborhood. Security and privacy is also a major concern as these applications

47

48 CHAPTER 5. CONCLUSION AND FUTURE WORK

deal with where the user is, what he is doing and what he wants. Cost, memory use,

performance and power consumption are relevant for almost every mobile application.

Concurrency Network Security

Android ? ? ? ? ? ? ? ? ?
BlackBerry ? ? ? ?? ? ? ?
iPhone OS ? ?? ??
Symbian ? ? ? ?? ??
Windows ? ? ? ? ? ? ??

Table 5.1: Summary of pervasive computing specific quality attributes

An overview of the strong and weak points of the different operating systems with

respect to the pervasive specific quality attributes is provided in Table 5.1. Android

is the only OS that scores high in all categories, and is together with Windows Mobile

the only operating system that gives developers good control over both Bluetooth and

WiFi wireless network connections. BlackBerry OS and Android stand out because

of the solid security model that shields applications from each other. Symbian does

not stand out, but unlike iPhone OS it does not lack support for running background

processes for third party developers.

Cost Memory Performance Power

Android ? ? ? ?? ? ? ? ?
BlackBerry ?? ?? ?? ??
iPhone OS ?? ? ? ? ? ? ? ? ? ?
Symbian ?? ? ? ? ? ? ? ? ? ?
Windows ?? ? ? ? ?? ? ? ?

Table 5.2: Summary of general quality attributes

The quality attributes in Table 5.2 are broader in nature and show for most quality

attributes no big differences between the operating systems. Android scores high

in the cost category since it is at the moment the only true open source operating

system in this comparison. With respect to memory use Android scores a bit lower,

together with BlackBerry OS, because both operating systems require applications

to be run inside a virtual machine. BlackBerry OS also gets a two star score in the

power consumption category since it gives the developer no control over the power

mode of the device.

The truly interesting results are found when examining the performance. As discussed

in detail in Chapter 4 Android performs a lot slower than both Symbian and iPhone

OS. On first sight this is unexpected as the core tasks of the operating system like

thread and memory management are not that resource intensive. But in case of

5.1. FUTURE WORK 49

mobile operating systems, when you choose an OS, you not only choose a kernel, but

also what libraries you can use, what languages are available, the compiler and/or

the available virtual machine. The benchmark measures a combination of all these

aspects, and depends on the standard libraries for the performance measurements.

This makes it is possible that Android with the Dalvik virtual machine is significantly

slower than both iPhone OS and Symbian when doing computationally intensive work.

The rating of Windows Mobile and BlackBerry OS have to be taken with a grain

of salt since neither have been benchmarked with real hardware. Emulator results

indicate that they could have performance issues, but unlike Android they at least

have a virtual machine that does just-in-time compilation. Windows Mobile, unlike

Android and BlackBerry OS, also offers developers the possibility to run unmanaged

applications and to use third party libraries.

Not a single operating system is perfect, and it depends on what characteristics are

important for a specific application to make the best match. Windows Mobile scores

good in most categories, and is especially attractive since it gives developers full

access to the Bluetooth and WiFi interface. Android also offers good networking

features, but the subpar performance could be a serious problem for some applica-

tions. Symbian and BlackBerry OS both are reasonable suitable for most pervasive

computing applications. Iphone OS is the only operating system that is not attractive

since it does not support background processes.

The mobile operating landscape is quickly evolving, and in just a few months time

this picture could change. The Android developers have already announced that they

are working on a JIT compiler for the Dalvik virtual machine and it is rumored that

the next generation iPhone OS will support multi-tasking and background threads

[10, 22]. When this happens all major smartphone operating systems would be

offering the features that are required for the majority of pervasive computing appli-

cations, making smartphones really the first viable platform for pervasive computing.

Flexibility in connecting to local wireless networks would be the biggest remaining

obstacle.

5.1 Future Work

The conclusion leaves some questions unanswered. First of all it would be interesting

to know how Windows Mobile and BlackBerry OS would perform on real hardware,

and the comparison could be improved by selecting smartphones with matching hard-

ware specifications. The benchmark itself could also be improved by adding more

tests that span a wider range of tasks. Comparing for example the speed of algo-

rithms related to speech recognition, speech synthesization or image processing could

50 CHAPTER 5. CONCLUSION AND FUTURE WORK

add value since the current tests only represent a small part of the possible tasks that

a pervasive computing application could face. Tests that focus on core tasks of the

operating system such as process swapping, file I/O, memory allocation and low-level

socket access would benefit the benchmark as well. The current benchmark relies

heavy on the libraries supplied with the operating system, and it is possible that

better alternatives exist for the standard libraries.

A good addition would be to not only measure computational performance, but also

energy efficiency. A lot of pervasive computing applications will be idle most of the

time, only periodically connecting to networks and checking if there are tasks that

should be done. Developing a benchmark that imitates this usage pattern, while

using various network technologies, would be a helpful tool to assess how suitable a

smartphone OS would be for pervasive computing.

Another area were the research could be expanded are the operating systems itself.

It would be interesting to take a look at the newcomers on the smartphone market

such as WebOS or Maemo. Similar research could also be carried out for operating

systems that are not designed for smartphones, but for various types of embedded

devices, like Windows CE or TinyOS.

Bibliography

[1] Sm4all project. Online, Sep 2009. http://www.sm4all-project.eu/. [cited at p. 8]

[2] Amigo. Ambient intelligence for the networked home environment. Online, Sep 2009.

http://www.hitech-projects.com/euprojects/amigo/. [cited at p. 7]

[3] Apple. Iphone OS Technology Overview, Oct 2008. [cited at p. 19, 20, 62]

[4] Apple. Security Overview, Oct 2008. [cited at p. 23, 62]

[5] Apple. Apple march 17 event. Online, 2009.

http://events.apple.com.edgesuite.net/0903lajkszg/event/index.html. [cited at p. 22]

[6] Apple. CFNetwork Concepts, Mar 2009. [cited at p. 21, 62]

[7] Apple. iPhone Human Interface Guidelines, Mar 2009. [cited at p. 20]

[8] Apple. iphone sdk agreement. Iphone SDK, Mar 2009. [cited at p. 9, 20]

[9] Magdalena Balazinska, Hari Balakrishnan, and David Karger. Ins/twine: A scalable

peer-to-peer architecture for intentional resource discovery. In In Proceedings of the

First International Conference on Pervasive Computing, pages 195–210. Springer-Verlag,

2002. [cited at p. 6]

[10] Bill Buzbee. Dalvik jit compiler. Online, Nov 2009. http://tiny.cc/6ILCi. [cited at p. 45,

49]

[11] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span: An energy-

efficient coordination algorithm for topology maintenance in ad hoc wireless networks.

ACM Wireless Networks, 8(5), September 2002. [cited at p. 6]

[12] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris, Ion

Stoica, and Hari Balakrishnan. Building peer-to-peer systems with chord, a distributed

lookup service. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems

(HotOS-VIII), Schloss Elmau, Germany, May 2001. IEEE Computer Society. [cited at p. 6]

[13] Chris Dannen. Technology: Hacking the iphone for espionage. On-

line, 2009. http://www.fastcompany.com/blog/chris-dannen/lab/technology-hacking-

iphone-espionage. [cited at p. 23]

51

52 BIBLIOGRAPHY

[14] Shakhnarovich Lee Darrell, G. Shakhnarovich, L. Lee, and T. Darrell. Integrated face and

gait recognition from multiple views. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 439–446, 2001. [cited at p. 6]

[15] Dev-Team. Pwnagetool release info. Online, 2009. http://blog.iphone-

dev.org/post/74278878/close-the-stable-door. [cited at p. 10]

[16] Maddy D.Janse. Ist-2004-004182 amigo - amigo final report, Sep 2008. [cited at p. 7]

[17] Independent Security Evaluators. Exploiting android. Online, 2008.

http://securityevaluators.com/content/case-studies/android/index.jsp. [cited at p. 16]

[18] Symbian Foundation. Online, 2009. http://www.symbian.org/. [cited at p. 24, 25]

[19] Andreas Gal. Tracing the web. Online, Aug 2008.

http://andreasgal.wordpress.com/2008/08/22/tracing-the-web/. [cited at p. 45]

[20] David Garlan, Daniel P. Siewiorek, and Peter Steenkiste. Project aura: Toward

distraction-free pervasive computing. IEEE Pervasive Computing, 1:22–31, 2002.

[cited at p. 6]

[21] Gartner. Gartner says worldwide mobile phone sales declined 6 per cent and

smartphones grew 27 per cent in second quarter of 2009. Online, Aug 2009.

http://www.gartner.com/it/page.jsp?id=1126812. [cited at p. 12, 24]

[22] Boy Genius. Apple iphone os 4.0 features detailed. Online, Jan 2010.

http://tiny.cc/M7gJi. [cited at p. 31, 49]

[23] James R. Glass, Timothy J. Hazen, and I. Lee Hetherington. Real-time telephone-based

speech recognition in the jupiter domain. pages 61–64, 1999. [cited at p. 6]

[24] Google. Security and permissions in android. Online, 2008.

http://code.google.com/intl/nl/android/devel/security.html. [cited at p. 16]

[25] Google. What is android? Online, 2008. http://code.google.com/android/what-is-

android.html. [cited at p. 12, 13, 62]

[26] Google. Android reference documentation, Mar 2009.

http://developer.android.com/reference/. [cited at p. 14, 15]

[27] The NPD Group. Rim unseats apple in the npd groups latest smartphone ranking.

Online, May 2009. http://www.npd.com/. [cited at p. 17]

[28] Jim Huang. Benchmark of dalvik vm on beagleboard/armv7. Online, Nov 2009.

http://tiny.cc/SWMSB. [cited at p. 45]

[29] Sander Kikkert. Performance of web services on mobile phones, 2010. [cited at p. 45]

[30] Sravan Kundojjala. Symbian’s dominance fading as mobile software platform mar-

ket becomes more crowded. Online, Jul 2009. http://www.strategyanalytics.com.

[cited at p. 29]

[31] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris.

A scalable location service for geographic ad hoc routing. In Proceedings of the 6th

ACM International Conference on Mobile Computing and Networking (MobiCom ’00),

pages 120–130, Boston, Massachusetts, August 2000. [cited at p. 6]

BIBLIOGRAPHY 53

[32] RoughlyDrafted Magazine. iphone 2.0 sdk: The no multitasking myth.

Online, 2009. http://www.roughlydrafted.com/2008/03/13/iphone-20-sdk-the-no-

multitasking-myth/. [cited at p. 21]

[33] Lawrence S Brakmo Marc A Viredaz and William R Hamburgen. Energy management

on handheld devices. Queue, vol. 1:pp. 44–52, Oct 2003. [cited at p. 11]

[34] Microsoft. Msdn: Kernel overview. Online, 2009. http://msdn.microsoft.com/en-

us/library/aa909237.aspx. [cited at p. 28, 62]

[35] Microsoft. Msdn: Selecting a windows mobile api. Online, 2009.

http://msdn.microsoft.com/en-us/library/dd630621.aspx. [cited at p. 29]

[36] MIT. Project oxygen overview. Online, Jun 2004.

http://oxygen.lcs.mit.edu/Overview.html. [cited at p. 5]

[37] Nokia. Mobile leaders to unify the symbian software platform and set the future of

mobile free. Online, Jun 2008. http://www.nokia.com/A4136001?newsid=1230416.

[cited at p. 24]

[38] Nokia. S60 5th Edition C++ Developer’s Library v1.3, 2009. [cited at p. 24, 62]

[39] Earl Oliver. A survey of platforms for mobile networks research. ACM SIGMOBILE Mo-

bile Computing and Communications Review, vol. 12:pp. 56–63, Oct 2008. [cited at p. 15,

26]

[40] Michael Rohs Rafael Ballagas, Jan Borchers and Jennifer G. Sheridan. The smart phone:

A ubiquitous input device. IEEE Pervasive Computing, vol. 5:pp. 70–77, Jan-Mar 2006.

[cited at p. 4]

[41] Kirk Reinholtz. Java will be faster than c++. SIGPLAN Not., 35(2):25–28, 2000.

[cited at p. 39, 44]

[42] RIM. Low memory manager in the blackberry java development environment. BlackBerry

Developer Newsletter, Jun 2005. [cited at p. 18]

[43] RIM. Blackberry mobile data system: Technical overview. Online, 2006.

http://na.blackberry.com/eng/services/mobile.jsp. [cited at p. 17, 62]

[44] RIM. Blackberry java application: Fundamentals guide. Online, 2009.

http://na.blackberry.com/eng/developers/. [cited at p. 18, 19]

[45] Daniel Schall and Marco Aiello. Web services on embedded devices. International

Journal of Web Information Systems, 2:1–6, 2006. [cited at p. 8]

[46] Stephanie Seneff. Tina: a natural language system for spoken language applications.

Comput. Linguist., 18(1):61–86, 1992. [cited at p. 6]

[47] Stephanie Seneff and Joseph Polifroni. Formal and natural language generation in the

mercury conversational system, 2000. [cited at p. 6]

[48] Ken Steele, Jason Waterman, and Eugene Weinstein. The oxygen h21 handheld.

SIGARCH Comput. Archit. News, 30(3):3–4, 2002. [cited at p. 6]

54 BIBLIOGRAPHY

[49] Symbian. Platform security - a technical overview. Online, Sep 2006.

http://developer.symbian.com/wiki/display/pub/Technical+papers. [cited at p. 27, 62]

[50] Symbian. Symbian reports first half and second quarter results for 2008. Online, Sep

2008. http://www.symbian.com/news/pr/2008/pr200810096.asp. [cited at p. 25]

[51] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE Mobile Computing

and Communications Review, 1999. [cited at p. 3, 5]

[52] Jon R.W. Yi, Jon Rong wei Yi, and James R. Glass. Natural-sounding speech synthesis

using variable-length units. In Proc. ICSLP, pages 1167–1170, 1998. [cited at p. 6]

Appendices

55

Appendix A

Emulator Benchmark Results

This appendix contains the execution times of the individual benchmark runs on the

various emulators. Every test has been executed ten times on every emulator and the

averages of these results are used for graphs in Chapter 4.2. Times are in milliseconds,

and lower times are better.

Encryption Decryption XML Parsing

Android 2961 2931 2075

3118 3001 2174

2961 3035 2177

3028 2965 2129

3008 3031 2092

2955 2938 2113

3438 3009 2159

2995 3006 2114

3064 2937 2071

3046 3020 2872

BlackBerry OS 365 464 2234

362 464 2235

362 461 2237

364 464 2239

361 462 2233

362 463 2302

364 462 2251

361 462 2216

362 463 2215

364 463 2215

Table A.1: Emulator benchmark results in milliseconds

57

58 APPENDIX A. EMULATOR BENCHMARK RESULTS

Encryption Decryption XML Parsing

Symbian 5.950 5.940 114.15

5.725 5.910 117.35

5.725 5.900 114.20

5.720 5.855 112.80

5.675 5.865 112.75

5.860 5.920 112.95

6.100 5.880 113.10

5.765 5.940 112.85

5.755 5.975 113.45

5.705 5.935 113.30

Windows Mobile 867.7 776.7 1266.3

592.3 650.6 652.9

595.2 642.4 624.8

729.8 637.8 655.7

585.7 658.0 668.1

586.1 646.4 638.2

586.9 686.9 653.9

631.6 646.3 661.4

582.9 642.7 649.6

746.3 661.4 649.3

iPhone OS 5.545 4.333 9.298

6.596 4.008 7.753

3.525 6.618 7.735

6.158 3.362 7.761

6.811 4.056 7.693

3.773 10.983 7.682

4.338 3.513 7.804

9.378 5.336 7.690

3.668 7.519 7.677

3.905 3.255 7.668

Table A.1: Emulator benchmark results in milliseconds

Appendix B

Smartphone Benchmark Results

This appendix contains the execution times of the individual benchmark runs on the

three tested smartphones. Every test has been executed ten times on every ddevice

and the averages of these results are used for graphs in Chapter 4.4. Times are in

milliseconds, and lower times are better.

Encryption Decryption XML Parsing

HTC Hero 2670 2591 3358

2728 4071 3203

2611 2616 3940

2678 2583 3250

2642 2600 3191

2526 2594 3355

3108 2725 3370

3033 2971 3158

2527 2545 3391

2951 2536 3162

iPhone 3G 60.9 55.9 206.7

50.4 45.7 275.8

197.8 129.8 307.9

306.2 402.2 517.5

125.5 122.5 236.9

486.4 112.9 339.1

93.7 113.2 328.1

88.9 89.5 329.5

56.2 87.0 275.7

98.7 100.1 334.9

Table B.1: Smartphone benchmark results in milliseconds
59

60 APPENDIX B. SMARTPHONE BENCHMARK RESULTS

Encryption Decryption XML Parsing

Nokia N95 150.6 117.1 n/a

147.2 118.3 n/a

148.4 118.1 n/a

153.1 116.4 n/a

150.5 117.5 n/a

146.4 117.6 n/a

150.0 116.9 n/a

151.1 117.7 n/a

146.1 120.1 n/a

148.8 146.7 n/a

149.7 131.9 n/a

Table B.1: Smartphone benchmark results in milliseconds

List of Symbols

and Abbreviations

Abbreviation Description Definition

API Application Programming Interface page 11
BSD Berkeley Software Distribution page 22
CDSA Common Data Security Architecture page 22
JIT Just-in-time page 44
JVM Java Virtual Machine page 14
MDS Mobile Data Service page 17
MIDP Mobile Information Device Profile page 17
MOAP Mobile Oriented Applications Platform page 24
P2P Peer-to-peer page 8
S60 Series 60 User Interface page 24
UID User identifier page 16
UIQ User Interface Quartz page 24
VoIP Voice over Internet Protocol page 20
VRAM Video RAM page 21
Zeroconfig Zero Configuration Networking page 22

61

List of Figures

1.1 ’Smart’ fridge . 3

2.1 H21 device . 6

3.1 Overview of the Android architecture [25] 13
3.2 The Blackberry MDS Runtime enviroment [43] 17
3.3 Overview of the iPhone OS architecture [3] 19
3.4 CFNetwork and other software layers on Mac OS X [6] 21
3.5 Mac OS X security architecture overview [4] 23
3.6 Overview of the Symbian architecture [38] 24
3.7 Overview of the Symbian capabilities [49] 27
3.8 General structure of the Windows Mobile kernel [34] 28

4.1 The structure of the benchmark . 35
4.2 Encryption benchmark results . 37
4.3 Decryption benchmark results . 37
4.4 XML parsing benchmark results . 38
4.5 HTC Hero . 41
4.6 iPhone 3G . 41
4.7 Nokia N95 . 41
4.8 Benchmark results on HTC Hero . 41
4.9 Benchmark results on iPhone 3G . 42
4.10 Benchmark results on Nokia N95 . 43
4.11 The results of the three smartphones side by side 43

62

List of Tables

3.1 Summary of quality attributes . 31

4.1 Overview of the various programming languages used 34
4.2 The specifications of the benchmark systems 36
4.3 Benchmark results in milliseconds with various processor speeds . . . 39
4.4 The specifications of the tested smartphones 40

5.1 Summary of pervasive computing specific quality attributes 48
5.2 Summary of general quality attributes 48

A.1 Emulator benchmark results in milliseconds 57
A.1 Emulator benchmark results in milliseconds 58

B.1 Smartphone benchmark results in milliseconds 59
B.1 Smartphone benchmark results in milliseconds 60

63

	Contents
	1 Introduction
	2 Related Work
	3 Qualitative Analysis
	3.1 The Quality Attributes
	3.2 The Operating Systems
	3.2.1 Android
	3.2.2 BlackBerry OS
	3.2.3 iPhone OS
	3.2.4 Symbian
	3.2.5 Windows Mobile

	3.3 Summary

	4 Quantitative Analysis
	4.1 Experimental Setup
	4.2 Emulator Results
	4.2.1 Encryption
	4.2.2 Decryption
	4.2.3 XML Parsing

	4.3 Host System Dependency
	4.4 Results on Mobile Devices
	4.4.1 Android
	4.4.2 iPhone OS
	4.4.3 Symbian
	4.4.4 Side by Side

	4.5 Summary

	5 Conclusion and Future Work
	5.1 Future Work

	Bibliography
	A Emulator Benchmark Results
	B Smartphone Benchmark Results
	List of Symbols and Abbreviations
	List of Figures
	List of Tables

