
Software metrics for
policy-driven

software development life cycle automation

Leonid Borodaev
Faculty of mathematics and natural sciences, University of

Groningen
Groningen, The Netherlands
Leo.borodaev@gmail.com

Rein Smedinga, Alex Telea
Faculty of mathematics and natural sciences, University of

Groningen
Rix Groenboom,

Parasoft,
Groningen, The Netherlands

Abstract—Automation of SDLC requires continuous
verification of compliance of the software product under
construction to a set of expectations about its quality. We define a
policy as an expectation about some aspects of software quality
that is expressed as a collection of non-functional requirements
(NFRs), compliance to which can be potentially measured. The
results of such measurements can be used to verify whether the
product meets the expectation set about it. In this paper, we
discuss existing NFR taxonomies and propose mapping of
software metrics to twelve NFRs. We then propose a model for
reliability prediction using publicly available quality metrics for
several open source projects.

Keywords—NFR, software quality, continuous delivery,
policy

I. INTRODUCTION
The key idea behind policy-driven development is that high-
level expectations about software quality can be represented by
a set of non-functional requirements (NFRs) in the early phases
of the development process, and then be continuously verified
during the product development [1]. Verifying in an automated
fashion that the product adheres to the policy typically implies
performing a measurement procedure and setting a threshold
on the resulting measured values (see Figure 1). Several
problems arise in this context, as follows: all stakeholders must
agree on the way (language) to express the high-level
expectations; NFRs that represent the policy need to be
measurable; and suitable thresholds need to be set for the
results of such measurements, so that an automated decision
about the software can be made.

To facilitate the maturing of policy driven development, we
propose a framework for mapping NFRs to software metrics
and demonstrate how this mapping can be used to ensure that
the software meets expectations about it. For this, we use well-
accepted quality metrics from software engineering, whose
implementation is publicly available [10]. We proceed as
follows. We begin by overviewing related work on software
quality attributes (Sec. II) and related software quality metrics

(Sec. III). In section IV, we propose mappings for the
following quality attributes: security, reliability, maturity,
maintainability, modularity, reusability, analysability,
modifiability, testability, portability, resilience, documentation.
In section V, we demonstrate one way to derive measurable
thresholds to quantify one high-level NFR (reliability) by using
a machine learning approach. Finally, Sec. VI concludes the
paper.

Figure 1: relation of quality, policies, NFRs, and software metrics.

II. SOFTWARE QUALITY ATTRIBUTES
In general, NFRs are defined as being requirements that
describe (a) quality aspects of the source code or (b) pertain to
the run-time characteristics of the program. In the following,
we consider only NFRs related to software quality attributes
(b), often referred to as quality NFRs. Extensive listings of
NFRs and software quality attributes can be found in
[2][3][4]. NFRs can be organized via taxonomies, which are
typically either flat or hierarchical. Hierarchical taxonomies
imply that higher-level NFRs can be expressed via lower-level
NFRs. While useful in understanding what NFRs mean and
how they are related to each other, such taxonomies do not
provide clarification on whether their NFRs are measurable or
not and, for measurable NFRs, how these can be estimated in
practice.

Most software quality concepts are, by nature, rooted in the
characteristics of source code only, see e.g. modularity,
complexity, documentation, and all other metrics described in
e.g. [11]. Other quality concepts combine aspects of the source
code with those of the development (software evolution)
process and run-time program behaviour [13][14]. Such quality
concepts are quantified in practice by software metrics,
described next.

III. SOFTWARE METRICS
In practice, hundreds of different software metrics are used to
quantify the software quality aspects introduced in Sec. II. We
next outline several widely used software metrics, from which
we will select the ones we will use next in our work for
quantifying NFRs.

A. Direct metrics
• Weighted methods per class (WMC)[12]: The sum of

complexities of a class’ methods.

• Depth of inheritance tree (DIT)[12]: The length of the
longest path-to-root in the inheritance tree of a system.

• Number of children (NOC)[12]: The number of immediate
children (subclasses) of a class in a class hierarchy.

• Coupling between objects (CBO)[12]: The number of
couplings (dependencies) between two classes.

• Response for class (RFC)[12]: The number of methods that
can potentially be executed in response to a message
received by an object of a given class.

• Lack of cohesion in methods (LCOM)[12]: Two methods
of a class are related if they use at least one common field.
Let Q and P be the number of pairs of methods in class C
that are, respectively are not, related. Then, LCOM is
defined as max(P - Q, 0).

• Static analysis violations (S): The number of violations of
chosen rules by a chosen static analysis engine. Rules are
typically defined as patterns searched over the annotated
syntax tree (AST) of a program [15][16].

• Reported defects (D): The number of defects reported
through a bug tracking system (BTS) or mailing list.

• Number of classes (NC): The number of (abstract) classes
comprising an object-oriented system.

• Number of parameters (NP): The number of parameters that
a method takes when called.

• Cyclomatic complexity (CC): The number of linearly
independent paths through the control flow graph of a
program.

• Lines of code (LOC): The size of the program in lines of
code text. If not mentioned otherwise, LOC is usually
assumed to exclude comment lines.

• Number of packages (NOP): The number of packages
comprising a system.

• Afferent couplings (Ca): For a package P, Ca is the number
of classes in other packages that use classes in P [6].

Efferent Coupling (Ce): For a package P, Ce is the number
of classes in other packages that classes in P use [6].

• Number of developers (DEV): The number of developers
involved with the process of creating and maintaining the
software [13][17].

• Test coverage (C): The number of lines covered by a test
suite when executed.

• Failed test ratio (F): The number of failed tests, in an unit or
similar test, to the total number of executed tests.

• Languages (L): The number of different programming
languages present in the analysed source code.

B. Indirect or derived metrics
• Comment density (CD):. The ratio, or percentage, of

comment lines to the total number of lines in source code.

• Defect density (DD): The ratio of reported defects through
a BTS (D) to the number of non-comment lines (LOC).

• Defect arrival rate (DAR): The number of defects reported
through a BTS (D) per unit time.

• Abstractness (A): The ratio of the number of abstract
classes (and interfaces) in a package to the total number of
classes in the package [6].

• Instability (I): The ratio of efferent couplings to total
couplings, i.e., I = Ce/(Ce+Ca) [6].

• (S/DEV): The ratio of static analysis violations to the
number of developers. Indicative of developer experience.

• (D/DEV): The ratio of reported defects to the number of
developers.

• (NOM/DEV): The ratio of number of methods to the
number of developers. High values can indicate low
maintainability of the source code.

• (LOC/DEV) indicates the amount of code a developer is
responsible for, in LOC.

• (NC/DEV): The amount of classes a developer is
responsible for.

• (CC/LOC): The density of decision making in source code.
For a detailed discussion of this and the following three
metrics, see [11]

• (LOC/NOM): Average method size, in LOC [11].

• (NOM/NC): Average size of class, in methods [11].

• (NC/NOP): Average package size, in classes [11].

• (S/KLOC): Density of static analysis violation occurrences.

C. Metric extraction tools
The above-mentioned metrics can be computed by many
metric extraction tools that offer various trade-offs between

number of covered metrics, scalability, genericity, and ease of
use [15][16][18][19]. In our work, we use for this task the
SonarSource toolsuite [10] to demonstrate the feasibility of
quantifying the proposed mappings. When not provided, we
compute indirect metrics from their direct counterparts
following Sec. IIIB.

IV. PROPOSED MAPPING
In this section, we propose a mapping of twelve high-level
software quality attributes to software metrics. Figure 2 shows
the proposed mapping of quality attributes (rows) to metrics
(columns), which we discuss in detail next.

Figure 2: Mapping of quality attributes (rows) to metrics (columns).

A. Security
Security can be defined as the level of data protection [3]. It is
apparent that there is no way to measure security directly. We
identify the following factors that can be used in predicting
security: the complexity of method call hierarchy and the
length of data flow paths through the program. The longer the
data path, the more chance there is that either unwanted data
can be injected by an attacker, or that protected data will leak.
We map these to the following metrics.

A large DIT negatively affects the security of a class, because
the longer the inheritance path, the more convoluted become
connections between overridden and inherited methods, and the
easier it is to make a mistake.

LCOM negatively affects the security of an application, due to
the greater exposure of fields to methods.

CBO negatively affects security due to the greater number of
classes involved in information exchange.

Higher RFC undermines security by increasing the length of
the data path. The same holds for Ca and Ce, but with respect
to the number of dependencies.

Higher values of NOM and NP increase the attack scope by
increasing the number of parameter passes and, thus, the
amount of possibly tainted data.

Finally, S is indicative of the experience of developer who has
written the analyzed unit. In turn, low-experience developers
are more prone to generate low-security code.

B. Reliability
We define reliability as the degree of confidence that the
software will work in an expected manner. We argue that
reliability depends on the number of reported defects, their
density, and their arrival rate. The number of found static
analysis errors (S) is an important predictor for reliability, since
a high number of discovered static errors increases the
probability of software failure.

Cyclomatic complexity (CC) is a second predictor for
reliability, since it is easier to introduce an error into complex
code. The same reasoning applies to the number of methods
(NOM).

C. Maturity
We define maturity as the degree to which a software product
has grown to meet its expected behaviour. As software
matures, defects present in its early versions are removed,
while new defects can be injected. Thus, maturity is related to
the defect density (DD) and defect arrival rate (DAR).

D. Maintainability
Maintainability can be defined as the ease with which the
program can be extended, updated, modified, and its errors
removed [3][2]. Hence, LCOM, CBO, RFC are important
metrics for quantifying maintainability since they correlate
with the complexity of a system, and it is well known that more
complex systems are more difficult to maintain. The same
reasoning applies to Ca, Ce and I metrics, but at the package
level. Conversely, NC negatively correlates with
maintainability. Finally, CD determines understandability and,
thus, maintainability of the system.

E. Modularity
We understand by modularity a measure of the level of
independence of the constituents (components) of a system. A
component in a highly modular system has little to no impact
on, and from, other components of the system. Modularity is
decreasing with higher CBO and RFC, due to a larger number
of objects involved in message exchange. Ca and Ce negatively
affect modularity on the package level, for the same reason.
Packages with higher instability I are less modular because
they depend on more classes in other packages.

F. Reusability
We define reusability as the degree to which a program (or
parts thereof) can be reused in other applications [2].
Reusability of a class depends on its CBO and RFC, since they
represent the number of dependencies on other classes.
Reusability of a package is reflected in Ce. Separately,
reusability of a system is lower if it contains a lot of defects.
Therefore, DD is important for quantifying reusability. Finally,
more complex code (higher CC values) is less reusable due to
lower understandability. Methods with high NP are harder to
reuse, for the same understandability reason.

G. Analysability
The notion of analysability lies close to understandability.
Classes with higher CBO and RFC are harder to analyse due to
greater number of couplings with other methods and objects.
Abstract packages (higher A) and classes with high DIT are
harder to analyse because of a larger number of (abstract)
classes that need to be kept in mind while reading the source
code. Systems with higher NC and NOM are less analysable
for the same reason. Packages with higher Ce are less
analysable due to a greater number of dependencies. Higher
CD improves analysability.

H. Documentation
The high-level quality concept of documentation can be
directly mapped to the source code metrics of documentation.

I. Modifiability
Following [3], we define modifiability as the degree to which a
program can be changed without introducing errors. Intuitively,
modifiability depends on modularity and coupling. Thus,
LCOM, CBO, RFC are important predictors for modifiability.
Classes that serve as a superclass for a larger number of other
classes (higher NOC) are more difficult to modify without
breaking their children classes. Packages with lower instability
I and higher Ca are less modifiable, due to a greater number of
dependencies.

J. Testability
According to [2], testability is the effort required to test a
program. A method with fewer parameters NP is easier to test
than a method with a greater number of parameters. Packages
with a lot of abstract classes (higher A) are harder to test
thoroughly. Methods with higher CC are less testable because
of the large number of execution paths through them. Classes
with high NOM are harder to test due to a large number of
required unit tests. Finally, classes with high CBO need more
testing effort to eliminate dependencies and write test stubs.

K. Portability
Portability is the degree to with which a program can be
transferred from one environment to another [3][2]. Larger
projects are more likely to contain dependencies that might
prevent portability, so LOC and NC can be used to predict
portability. Some languages provide a unified run-time for all
platforms (e.g. Java), while others target specific platforms
(e.g. .NET). Separately, some languages have run-times
available on many platforms while others do not. Therefore, L
is an important predictor for portability.

L. Resilience
We define resilience to be the degree to which the software can
be expected to operate in unexpected environments. Modular
software that is written in a language that handles exceptions
and is based on resilient run-time environment can be expected
to be more resilient. Modularity indicators such as CBO, RFC,
Ca, and Ce can be used to indicate resilient software. Software
with a high defect density (DD) and/or defects arriving at a
high rate (DAR) is assumed to be less resilient. Greater NOM
and NP values may indicate non-resilient software due to a
larger data boundary surface. A high number of static analysis
violations (S) shows that the software is not resilient to

improper input. Finally, some languages allow better error
handling than others. Thus, L can be a predictor for resilience.

V. IMPLEMENTATION FOR RELIABILITY
In the following, we demonstrate the mapping of quality
attributes to metrics proposed in Sec. IV. Given space
limitations, we do this for a single quality attribute: reliability.
Mappings of other quality attributes (to their corresponding
metrics) can be designed and implemented analogously. We
demonstrate how a high-level expectation about the product
under construction’s reliability can be transformed into a set of
requirements for the source code, compliance to which, in
principle, can be checked in an automated fashion.

A. Estimation and relevant metrics
Reliability is likely one of the most often mentioned software
quality attributes [20]. Several efforts to quantify software
reliability have been made early on within NASA and AT&T
[8][9]. The field of software reliability borrows some models
from the field of system reliability and hardware reliability [9].
When some characteristics cannot be directly measured, but an
estimation (value) thereof is required, an operational or ‘proxy’
measure is often used. Known operational measures for
reliability are the number of reported defects, the mean time
between failure, and the defect density. Measuring reliability of
a working system is traditionally called reliability estimation.
Establishing future reliability of a running software system by
using sources other than the running program itself is referred
to as reliability prediction.

We use defect density as an operational measure of reliability,
and use LVQ1 learning algorithm to create prototype vectors
for reliable and unreliable software, in the metrics space
(metrics extracted from the source code, the information about
the development process, the information extracted from the
repository.) This model can further be used to classify the
system under construction as reliable or unreliable, We identify
the following high-level factors, and their related metrics, that
affect reliability:

1. Developer experience, represented indirectly by CC/LOC,
LOC/NOM, NOM/NC, NC/NOP;

2. Program complexity, measured indirectly by S/DEV,
D/DEV, NOM/DEV, LOC/DEV, NC/DEV;

3. Testing effort, measured indirectly by test coverage C and
the proportion of the failed tests F;

4. The density of errors S/LOC found in the source code by a
static analysis tool. Any tool or number of tools can be used,
provided that the set of tools is not changed during the model
creation. At the simplest level, compiler warnings can be used
to estimate S. More complex static analysis tools, such as
discussed in Sec. IIIC, provide more comprehensive
measurements for S.

To assess our proposal, we use the toolset in [10] to compute
the above-mentioned quality factors from their respective
metrics for the following open-source software projects: nginx,
Checkstyle, rocksdb, MySQL Server, AngularJS, jQuery,
cMake, Notepad++, jUnit. Defect density information is

extracted separately using bug tracking services for the above-
mentioned software projects.

Due to limitations related to data availability (more
specifically, limitations of the used static analysis tooling for
providing the required data), we exclude from our reliability
model the metrics that are related to classes and packages. We
also leave out metrics related to testing, since there is no test
coverage data available for some of the projects in our
considered set.

Figure 3: Reliability as a function of the defect density (DD)

B. Learning a reliability model
With the metrics extracted as indicated in Sec. VA, we next
aim to construct, or learn, a predictive model – that is, a model
that, given such measured values on a software system, can
infer whether the system’s reliability meets the expressed
expectations. For this we use a machine learning approach, as
follows.

Learning vector quantization 1 (LVQ1) is a supervised learning
algorithm that is aimed at creating a set of prototype vectors for
each class present in its input data [7]. Putting it simply, LVQ1
maps multi-dimensional input data (vectors) to a nominal, or
categorical, scale (class labels). As input vectors, we use the
measured quantitative (real-valued) metrics outlined in Sec.
VA. Based on these vectors, and a labelling of the training set,
LVQ1 computes a set of so-called prototypes, i.e., points in the
multi-dimensional metric space that best approximate
surrounding clusters of labelled observations (software
systems) having the same class label. Using these prototypes,
LVQ1 finally assigns a label to untrained samples (software
systems for which we do not know the reliability) using a k-
nearest-neighbours (kNN) approach. Compared to other
classification approaches, LVQ1 has advantages when
manually finding correlations between specific subsets of
features (metrics) and feature values in the input data, and class
labels (from the training data), is hard to do due to high
dimensionality of the input data.

We simplify the modelling of reliability by considering a two-
class problem – that is, we aim to classify our software systems
into either reliable or unreliable. While this is, clearly, an

oversimplification of the real world where reliability is better
modelled as a quantitative (or ordinal) variable, this
simplification allows us to easily create labelled data as well as
train and test the LVQ1 classifier based on a small number of
sample points (software systems). If thousands of sample
points, including their metric values and label values, are
available, precisely the same training-and-testing approach
described here can be used to learn more complex reliability
models.

C. Dataset
Table I shows the input dataset for our classifier construction,
containing nine sample points and their respective six
measured software metrics. In the context of policy driven
development, the team can use reliability data from the
previous releases of the product under development, or from
similar products either within the company or open-source. The
class label (rightmost column) has the binary values reliable
(R) or unreliable (U). We label the systems with DD < 5
(D/KLOC) as reliable, and those with DD > 5 as unreliable.
When implemented in practice, this labelling must be
performed by the members of the team in collaboration with
the stakeholders and reflect their common understanding of the
reliability of the product(s) that is(are) used as a benchmark.
During this process, we also use scatterplots to examine how
class labels correlate with the measured metrics. Figure 3
shows such an example. Here, the vertical axis maps defect
density (DD) and the horizontal axis maps the assigned class
label (R or U). In this example, we clearly see how the
examined systems are grouped into two clusters based on the
DD values.

TABLE I. SOFTWARE METRICS FOR TRAINING AND TESTING

Name KLOC NOM CC Devs D S Class

AngularJS 119.0 4917 17126 1504 696 2022 U

Checkstyle 31.5 2571 6770 107 10 6 R

cMake 182 4529 26341 520 1700 440 U

jQuery 6 578 2201 291 51 14 U

jUnit 9.5 1321 2433 155 136 46 U
MySQL
server 2787 27874 204670 1368 3534 4700 R

Nginx 122 1304 17575 46 9 70 R

Notepad++ 78 1722 15468 81 1070 162 U

rocksdb 197 7141 19638 284 228 78 R

To train the model, we exclude two random rows from Table I
and perform LVQ1 training for the remaining rows, using 2000
training iterations. We use two prototypes, one modelling the R
label and one for the U label, respectively. Table II shows the
coordinates (i.e., the metric values) of these two trained
prototypes. Finally, we use the excluded two prototypes to
validate the trained model.

TABLE II. PROTOTYPE VECTORS FOR THE TWO LEARNED CLASSES
C

la
ss

C
C

/L
O

C

N
O

M
/D

EV

K
LO

C
/D

EV

S/
K

LO

D
/D

EV

LO
C

/N
O

M

S/
D

EV

R
el

ia
bl

e

0.08 20 2.07 1.88 2.65 121 4.19

U
nr

el
ia

bl
e

0.14 2.85 0.07 17.17 0.69 24.5 1.38

VI. DISCUSSION AND CONCLUSIONS
We next discuss our most important findings, as follows.

One interesting finding is that the amount of code per
developer (KLOC/DEV, NOM/DEV) is positively correlated
with defect density in all indirect metrics, in both small and
large projects. Both large and small projects are less defect-
prone if there are only a few developers that work each on a
large chunk of code. Our belief is that this might only hold
true for open source software (OSS) and stem from the way in
which OSS is maintained and how the OSS community
functions. Separately, we see that the number of raised static
analysis warnings is strongly correlated with defect density.
This can be looked at from two possible standpoints: First, it
may indicate a sloppy developer attitude that manifests itself
by ignoring the compiler and static analysis tools’ warnings.
Separately, this can indicate that higher error density in a
codebase leads to a higher defect density in the resulting
software – a correlation which seems very likely. Another
interesting finding is that the average size of a method
(LOC/NOM) is negatively correlated with defect density in
our model. This is in line with many earlier studies where
understandability and thus maintainability was inversely
correlated with the average method size.

Apart from these interesting findings, we however have to
mention a number of threats to validity for our study. First and
foremost, we used a quite small sample set (9 software
projects). While most papers in software quality literature that
we are aware of use datasets of similar size, this is more
problematic in our case, where we use a machine learning
approach to learn a model for reliability. Such approaches
typically need hundreds of labelled samples to arrive at a good
balance between generalization and overfitting. Secondly, we

considered only a subset of all existing software quality
metrics that analysis tools can deliver. Adding new metrics
may offer different insights. Doing this is, conceptually, easy,
but it requires the availability of easy-to-use and generic
metric tools that cover a rich palette of metrics, programming
languages, and platforms – a desiderate not yet met by the
state-of-the-art in software metric tooling. Finally, while
generalizing our approach to the other NFRs listed in Sec. IV
is, conceptually, straightforward, doing this in practice and
assessing the quality of obtained predictions is necessary to
further strengthen the practical added-value of our proposal.

REFERENCES
[1] Ariola, W. and Dunlop, C. [2015] Continuous testing for IT leaders.

CreateSpace Independent Publishing
[2] McCall, J.A., Richards, P.K. and Walters, G.F. [1977] Factors in

software quality, RADC TR-77-369, vols I-III, US Rome Air
Development Center Reports

[3] ISO/IEC [2010] ISO/IEC 25010 system and software quality models.
Technical report.

[4] Glinz, M. [2007] On non-functional requirements, Proc. 15th IEEE
International Requirements Engineering Conference, 21–26

[5] IEEE [2011]. Systems and software engineering – life cycle processes –
requirements engineering, ISO/IEC/IEEE 29148:2011(E)

[6] Robin, M.C. and Micah, M.[2006]. Agile Principles, Patterns, and
Practices. Prentice Hall.

[7] Kohonen, T. [1995]. Self-Organizing Maps. Springer.
[8] Musa, J., Iannino, A. and Okumoto, K. [1990] Software Reliability.

McGraw-Hill.
[9] Pham, H. et al[2003] Handbook of Reliability Engineering, Springer.
[10] SonarSource SA, https://sonarcloud.io/, SonarSource SA. Available:

https://sonarcloud.io/organizations/default/projects?sort=-size.
[Accessed 12 06 2016]

[11] Lanza, M. and Marinescu, R. [2006] Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-Oriented Systems. Springer.

[12] Chidamber, S. and Kemerer, C. [1994] A metrics suite for object
oriented design, IEEE Trans Soft Eng 20(6), 476-493

[13] Voinea, L. and Telea, A. [2007] Visual data mining and analysis of
software repositories. Computers & Graphics 31(3), 410-428

[14] Mens T. and Demeyer, S. [2001] Future trends in software evolution
metrics. Proc. IEEE IWPSE, 83-86

[15] Telea, A. and Voinea. L [2007] An interactive reverse engineering
environment for large-scale C++ code. Proc. ACM SOFTVIS, 67-76

[16] Ferenc, R., Siket, I., and Gyimothy, T. [2004] Extracting facts from
open source software. In Proc. IEEE ICSM, 342-350

[17] Mens, T. and Demeyer, S. [2008] Software Evolution. Springer
[18] SciTools, Inc. [2018] Understand reverse-engineerin tool.

http://www.scitools.com
[19] Bullseye, Inc. [2018] Code coverage analyzer. http://www.bullseye.com
[20] I. Gorton [2011] Essential Software Architecture (Ch. 3: Software

Quality Attributes). Springer

