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Abstract

We present a method for computing a surface classi er that can be useetéat convex ridges on voxel sur-
faces extracted from 3D scans. In contrast to classical approachssdban (discrete) curvature computations,
which can be sensitive to various types of noise, we propose here a ethedrthat detects convex ridges on
such surfaces, based on the computation of the surface's 3D skeletomsé\A suitable robust, noise-resistant
skeletonization algorithm to extract the full 3D skeleton of the given surfacksabsequently compute a surface
classi er that separates convex ridges from quasi- at regions, usirggfeature points of the simpli ed skeleton.
We demonstrate our method on voxel surfaces extracted from actu@mnaical scans, with a focus on cortical
surfaces, and compare our results with curvature-based classifess second application of the 3D skeleton, we
show how a partitioning of the brain skeleton can be used in a preprogestp for the brain surface analysis.

1. Introduction of 3D skeletons, the dif culty of computing them in 3D, and

Detecting features such as ridges and valleys in datasets suchthe lack of an appropriate scale notion.

as 2D grayscale images and 3D CT and MRI volumetric | this paper, we show that 3D skeletons can be used
scans, is an important and active area of research. Featuregoy ropust voxel surface classi cation. We extend a stable
such as edges and corners must be classied in a robust3p skeletonization method that comes with a built-in multi-
way in order to enable further analyses on such datasets, scale criterion so that we compute a surface classi er which
like edge-preserving denoising or robust partitioning of ar- separates convex ridges from smooth regions. Our method
eas bounded by such edges. The so-called local classi ca- employs only integral quantities, such as Euclidean and
tion of surfaces, in particular the separation of highly curved geodesic distances, and hence is inherently robust as com-
ridges from low curvature areas, is also an important prereg- pared to several curvature estimators, even on noisy, low-
uisite in numerous surface processing applications such asegolution datasets. We implement the proposed method to
surface matching and feature-preserving simpli cation. work directly on, and uniquely with, voxel representations of
Traditionally, most surface classi ers used in practice em- the surface, skeleton, and classi er. We illustrate our method
ploy one or another variation of ridge detection based on ©On the classi cation of anatomical surfaces, with a focus on
higher-order surface derivatives, such as gradients, curva- cortical surfaces, and compare it with a curvature-based clas-
ture, or moments. Although a wealth of such methods ex- si er. Finally, we show the feasibility of a robust partitioning
ist, curvature estimations on noisy voxel surfaces is an in- Of @ 3D brain skeleton, to emphasize the high potential of 3D
herently delicate process. Many such methods trade off the Skeletons in further surface analysis applications.
precision of ridge detection for stability, by using different

types of ltering over (small) neighborhoods. This paper is structured as follows. Sect@woverviews

related work in the area of surface classi cation, with a
Curvature is intimately connected to another well-known focus on brain cortex analysis. Secti@ioverviews 3D
surface descriptions: skeletons or medial axes. However, this skeletonization, with an emphasis on the robust multiscale

relation has not often been used for surface classi cation or method we shall extend here. Sectidrpresents our new
ridge detection, partly due to the infamously unstable nature skeleton-based surface classi cation used for ridge detec-
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tion. Section5 shows the results of our method applied to 3. 3D Skeletonization
a voxel-based brain surface, and compares it with a typi-
cal curvature-based classi er. Sectiénillustrates another

potential application of 3D skeletons, by showing the ro-
bust partitioning of a 3D brain skeleton. Sectibdiscusses

our method and compares it with curvature-based classi ers.
Section8 concludes the paper. 3.1. Preliminaries

This section gives a brief overview of the 3D skeletonization
method and associated importance measure that underlie our
surface classi er which we discuss in Sectin

Let Wbe a 3D shape with closed bound&wy LetD : W!
R+ be the distance transform, assigning to each point in-
2. Related work side the shape the minimum distance to the boundary. Let
) . ) . F:W!P (YW, whereP is the power set, be the so-called
The canonical quantity for edge detection on surfaces is fo4tre transform, assigning to each point inside the shape

the. curvatur_e tensor. Different methods exist for its eval- the set of boundary points at minimum distance, called the
uation on discrete surfaces, such as shown by Moreton oo+ re points

and Séquin MS97, Clarenz et al. [CDROQ, and Des-

brun et al. [DMSBOQ. Besides curvature, surface classi- F(p2W= g2 W kp gk= D(p) 1)

ers can be based on related integral quantities, such as mo-

ments CRT04. Globally speaking, all such methods use a TheskeletorS of Wcan be de ned as the locus of centers
local surface classi cation, and thereby trade edge detection of maximally inscribed balls. At each poipton the skele-
accuracy for stability via some built-in smoothing. ton, a maximally inscribed ball can be placed that touches

) ) ] ~ the boundary in at least two points, the feature pd(ts):
Extracting cortical surface features, such as sulci and gyri,

from MR brain volumes is focus of extensive work. Such S(W= p2W jF(p)j 2 )
features are used in studies of inter-subject gyral and sulcal 15 de nition can be used both in 2D and 3D. In 39is
variability [GPC 99] or to identify structural and functional g, etimes called the medial surface, or surface skeleton, to
patterns in Alzheimer patientSHS 04]. distinguish it from the curve skeleton, or centerline. In this

Many methods for sulci extraction use the surface’s PapPer.we shall compute and use the medial surface

(mean) curvature. Sulcal fundi are de ned as crest lines of  The skeleton of a 3D shape consists of manifolds, called
extremal curvature. Similar approaches can be used for gyral sheetswhich intersect in curves, calledcurveg Dam04.
structures. Such methods are semi-automatic, requiring the whereas sheet points have two feature points, Y-curve points
user to de ne two or more points on a sulcus, which are then haye three or more feature points which are the union of the
connected by optimizing a curvature-based cost. Several feature-point pairs of the intersecting sheets. In addition, a
such approaches exist, using weighted geodeB®61], dy- surface skeleton can also contain isolated curves in some de-
namic programming{MG98], fast marchingMST04 and generate cases, such as a cylinder. However, brain surfaces

3D curve-tracking RDROQ. Evaluating curvature extrema  do not contain such structures, as they do not have a tubular
involves higher-order derivatives, so these methods can be strycturej.e. their never have circular cross-sections.

quite unstable on highly convoluted cortical surfaces coming

as limited resolution voxel scans (see also S¢cCachiaet

al. [CMR 03] alleviate such problems using a scale-space 3-2. Simpli ed Robust Skeletons

of the underlying curvature signal, thereby trading precision qiowing from Eq.2, skeletons are inherently sensitive to
for stability. small boundary perturbations. This situation is considerably
worsened in practice by sampling noise emerging from the
cal fundi by locally maximizing the distance from the cor- limited resolution ofSQ acquisition devices, Iikfe MRI or CT
tical surface to a bounding hull around it. The methods S¢@ns. 3D skeletons directly computed following il

of [GPC 99,Loh9g nd fundi as the deepest boundaries of exhibit a myriad of spurious sheets corresponding to small-

surfaces obtained by subtracting the white and gray matter SC@l€ boundary noiseg. tiny bumps). This is one of the
from the bounding hull. Combining curvature and distance- Main problems which has precluded their use in practical

To overcome stability problems, other methods nd sul-

based criteria leads to more stable, but signi cantly more 2Pplications.
complex to implement, methodsiHS 07,KHS 06,TPDO02 To produce robust skeletons, some skeletonization meth-
THR 01]. ods de ne arimportancemeasure : S! R+ indicating the

importance of each skeletal point in representing the shape.
Combined with a suitable pruning strategy, this delivers a
simpli ed skeleton EB9§.

Although uncommon, using skeletons to detect features is
not new. Hisadat al. [HBKO1] use the skeleton in combi-
nation with denoising and lIter techniques to detect salient
shape features of polygonal shapes. One successful importance measurés de ned as the
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< =70

Figure 1: Simpli ed skeletonsS; = 10; St=20; St=70 Of @ noisy box. The intensity encodes the importance measW#hereas
St=10 contains some spurious sheeBs: 2o is robust. InS;= 70, only the center sheet is retained, which can be seen as a
coarse-scale representation of the box.

length of the shortest path on the surf4d& between the method to genus 0 shapes as mentione®VAT08] does not

two feature point$=(p) for each pointp 2 S [PHOZ. This apply here as we do not need to compute the curve-skeleton.
measure smoothly evolves over skeletal sheets, may contain
jumps at Y-curves (cf. Figl), is low on the periphery of

the skeleton, and has a local maximum ridge in the middle
of the skeletonDS0§. Besides yielding robust skeletons, it The key idea of our approach is simple: By increasing the
can be used to obtain progressively simpli ed, or multiscale, sjmpli cation level t, we prune the boundary of the skele-
skeletons by simply increasing the threshold diRvVT08]. ton rst. Because the skeleton reaches intoikdgesof the
surface, we remove the skeleton parts whose feature points
lie on and near these ridges. In this fashion, we can detect
ridges by the absence of feature points.

4, Skeleton-based Surface Classi er

To implement such a measure for voxelized objects, we
proceed as follows. The feature transform is computed us-
ing [Mul92]. é.et F be theextendedeature transform, de-
nedasF = v g1g F(Px+ X py+ ¥, pz+ 2). Then, the This idea re ects an intimate connection of skeletons with
importance measure : W! R+ is de ned on the object  curvature extrema on the surface. Speci cally, the boundary
voxels as the maximum shortest-path length between the points of the skeletori,e. branch tips in 2D and medial sheet
points in the feature sét(p): edges in 3D, correspond one-to-one with curvature maxima

(convex ridges) on the surface, via the feature transform.
r(p)= a.g?%z(p) kga bk ; ®) Hence, by using the skeleton and associated feature points,
' suitably pruned to remove noise effects, we can robustly de-

where g is the shortest path betweemb and k k the tect such ridges, withoanydiscrete curvature computation.
shortest-path length, computed using an accurate length es-
timator [KS93 which assigns different weights to the three
different voxel-neighbor types. Using the de nition of the
discrete simpli ed-skeleto®t becomes (cf. EQR):

LetV be the set of feature points corresponding to a sim-
pli ed skeleton. We call this set thieature collectiorof St :

[ _
V(St) = F(p); 5
SW= p2W r(p t; @) RN ©
Empirical studies indicate thdt should set to at least 5

voxel-length units to prune the skelet@ of any noise

due to discretization artifact®H02 RVTO08]. The threshold rhgaps will appgar in the featcLiJre coIIect;]b’non anddnear h
t functions as a continuous scale-parameter controlling the shape convex ridges. We can detect such gaps and use them

simpli cation level. Smallt values eliminate less important to detect the rlldges. I;jlowever, one c_ompllﬁa;[lon is that t:e
skeleton parts that are due to small-scale surface features Orparametet Is also used to prune spurious skeleton parts that

acquisition noise. Larger values can be used to retain the are due to boundary noise or discretization artifacts. Here,
most salient parté of the skeleton. For illustration, Figlire we assume that the scale of the noise is uniform for the whole

shows the effect of increasirigfor a noisy 3D box. shape. Setting.to the noise _Ieveﬂn opensV on the ridges,
but also on noisy parts, which we do not want to detect as
It is important that the simpli ed skeletons remain con- ridges. Therefore, we have to incredstirther totn + te:
nected, as skeletons should be homotopic to the origi- the feature collectiol is opened further on ridges, but not
nal shapel[ie03]. Fortunately, the simpli ed skeletons are  on boundary noise. This is illustrated in F&jn the 2D case,
connected for the smaller values of because the mea-  for the sake of clarity. In Fig2a, the non-simpli ed skeleton
surer is monotonic onSt except on the local maximum Sy of a box with a small-scale noise bump is shown. The
ridge [DS04. Note that the restriction of the skeletonization feature collection (thick lines) covers the whole boundary.

By increasing the thresholdon the importance measure
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Figure 2: Non-simpli ed skeleton (a). Simpli ed skeleton at scaigb). Simpli ed skeleton at scale, + te (c). Large gap due
to round part (d). Thick lines are feature collections V.

Whent is set to the noise levéh (Fig. 2b), the openings in scribed in Sec4. The corresponding skeletons, and their
V on the bump and near the non-noisy convex corners have simpli cation levelst, are shown separately in Fig. The

the same size, so that we cannot differentiate between the simpli cation levelst are chosen so that they match the sizes
two situations. By further increasirigo tn+ te (Fig. 2¢),V of the Gaussian lters that describe the curvature smooth-
is further opened on the corners, but not on the bump. ing in Fig. 3. We notice several things. First, the simpli-
cation level t for the skeleton-based classi er has a very
similar effect to the Gaussian ltering, or smoothing time

for the curvature classi er: Small values yield sharper (but
%tn from a feature point iV are considered ridge points. pc_;tential_ly noisier) ridges, larger values yield smoother, but

thicker, ridges. However, we also see that the skeleton-based

The termt e controls the minimum detected ridge width and detect tes th | rid i
should be chosen as small as possible, but at the same time etector separates the convex gyral ridges (curvature max-

large enough to account for the small inaccuracies in the ima) from the quasi- at and concave regions quite sharply,

feature points caused by the discretization. We veri ed that te)ven dat llow_5|mpI| ((:jatlon Ievellst, wh;]e reasththe curva:.ure-'
a conservative settinge 4 gives good results on a wide ased classi er proguces resuis where the separation 1S

range of objects, including 3D brain surfaces but also sev- less clear. The skeleton-based classi er is also able to pro-

eral other 3D synthetic and organic shapes. duce noise-free results dlre(?tly in voxel space (Iegop),. '
whereas the curvature classi er used here (and other similar

The ridge-width parametete controls the minimum  ones) need to construct a local polygonal, or local tangent-
width of the detected ridges, but not the maximum. In case of plane, approximation of the voxel data.
round (blunt) parts of the shapeg.as shown in Fig2d, the
openings inV and thus the ridges might become thicker than Figure 4 illustrates our 3D skeleton and surface classi-
te. The importance measurevaries quickly for the skele- er on a hip dataset, to demonstrate the applicability of our
ton representing the round part, so that in the discrete case,method for different datasets besides cortical surfaces, in-
V may opened at the round part by a slight increase.of  cluding shapes with tunnels. Just as for the brain dataset,
This is as expected, since it is not possible to specify an ex- we see the clear separation of convex ridges (edges) from
act location of an edge over blunt parts having no curvature smooth regions.
variation.

Thus, our surface classier is de ned for each bound-
ary pointg 2 W as the geodesic distance (St +t.),
again computed usindS93. Points at a distance of at least

5. Results

In this section, we illustrate our surface classi cation method
on a brain cortex surface, computed from a MRI scan of256
voxels resolution. Figur8 shows the curvature-based clas-
si er proposed by TaubinTau9g on a triangle mesh of the
brain surface. To reduce small-scale noise artifacts we apply
the diffusion (heat) equation geodesically to the cortical sur- | £
face. To take into account the fact that the underlying grid
is irregular, we use the approach DNISB99, equivalent

to anisotropic diffusion on regular grids. The three different

images in Fig3 correspond to increasingly longer diffusion a) skeleton b) classifier
timest, which are equivalent to increasingly larger Gaussian
lters [ CRTO4. Figure 4: Surface classi cation of the hip dataset

Figure6 shows our skeleton-based surface classi er, com-
puted on three progressively simplied skeletons, as de-
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Figure 3: Brain surface classi cation using a smoothed curvature estimator (blus=dorvature, red=high curvature)

6. Brain Skeleton Partitioning three distinct feature points on the surface. Using the robust

. . . Y-curves we partition the simpli ed skeleton into distinct
Besides computing a robust surface classi er, the 3D skele- medial sheets.

ton can be used as a preprocessing step in other applications,

such as robust brain surface partitioning. The key principle  Figure5 shows the results of the 3D skeleton partition-
enabling this is as follows. Consider the set of medial sheets ing for the same brain dataset as used before. The top row
that form a 3D skeleton. The intersections of two (or more) shows the different medial sheets, each colored with a dif-
such medial sheets is called a medial intersection curve or ferent color from its neighbor sheets, to distinguish them.
Y-curve The set of all Y-curves for a given 3D skeleton cre- The resulting sheets are cleanly (and clearly) separated from
ates a graph-like structure, called ti@etworl{DamO0§. Y- each other. The bottom row shows the Y-network for the
curves from this network map to important geometric events same skeleton partitioning, where each Y-curve has a dif-
on the original surface. Speci cally, curves which have one ferent color from its neighbors. Similar to the sheets, the Y-
endpoint not connected to another Y-curve are the intersec- curves are clearly separated from each other.

tion of two (or more) medial sheets which correspond to
bumps (convex ridges) on the original surface, gyri in

the case of a brain. Curves whose both endpoints are con-
nected to other Y-curves correspond to the intersection of at
least two medial sheets of which at least one is 'interna!,
does not map to a convex ridge.

Although we do not show it in this paper, the high qual-
ity of the 3D skeleton partitioning results makes them read-
ily usable for further brain surface analyses. For example,
one could detect the borders of each 3D sheet inFtgp,
project these on the brain surface using the feature transform
which we already computed (Se®.1), and thereby obtain

Hence, if we were able to partition the 3D skeleton in dis- the ridge-curves of the gyral structures. Secondly, the end-
tinct sheets, and also extract the Y-network, we could use points of the Y-curves in Figh top which belong to a single
this information to further partition the brain geometrical curve (the 'loose' ends of those curves) correspond, via the
structure, as outlined above. To perform this partitioning, feature transform, to brain surface points where three gyral
several methods could be used. Topology-based criteria us- structures meet, as explained above.
ing local (3-by-3 or 5-by-5) templates can be employed to
detect the medial intersection curves based on the discrete7 Discussion
connectivity patterns of the skeleton voxels, as describgd ’
in [MBA93,GK04], among others. However, template-based As already mentioned in Sed, there is a strong connec-
methods can have robustness problents in the case of tion between skeletons and convex shape features. Hence,
multiple-sheet intersections. our skeleton-based surface classi er shares several proper-
ties with curvature-based classi ers: sharp ridges (edges) are
detected more precisely than soft, blunt ridges; there is an
analogy between Gaussian Itering of the curvature signal
and geodesic-distance-based simpli cation of the skeleton,
whereby the Gaussian lter size and the skeleton importance
threshold both act as scale parameters.

To robustly partition the brain skeleton, we use a differ-
ent distance-based approach, describedriFOB. In brief,
this method works as follows. First, we compute a sim-
pli ed feature-transform which groups, for each skeleton
voxel, feature voxels located on the surface at a geodesic
distance closer than the skeleton simpli cation thresttold
Second, we detect Y-curve voxels as those skeleton voxels However, there are also important differences. Our
whose simpli ed feature-transform has at least three groups skeleton-based classi er uses only integral computations,
of disconnected feature voxels. This is actually nothing else and is hence inherently more robust than derivative-based
than a robust voxel-based implementation of the continuous curvature methods. Also, the skeleton classier can be
criterion saying that an Y-curve point corresponds to at least seen as guasi-globaloperator, since our importance-based
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Figure 5: Brain skeleton partitioning. Top: partitioned medial sheets (color-codBdjtom: medial intersection curves (color-
coded)

metric “gathers' surface information that may come from is available, the computation of the surface classi er is fast
the same, but also very different, zones of the surface (10-15 seconds).
(see RVTOSg]). In contrast, curvature estimators are strongly
local, as they only analyze a small neighborhood at each sur-
face point. Together, these facts explain the difference in ro-
bustness of the considered classi ers. In this paper we argued that 3D skeletons, which are often
seen as unreliable and unstable, can be used to perform a
number of basic processing operations on medical datasets.
As an example of such an operation, we showed that ro-
bust, multi-scale skeletonization of the cortical surface pro-
vides a robust and effective means for the classi cation of
voxel-based surfaces into highly convex (ridge) regions and
smooth areas. We show that skeleton-based classi ers are
less sensitive to discretization noise, due to their integral-
Concerning the computational ef ciency: A brute-force, based construction, as compared to curvature-based classi-
not optimized, implementation of the 3D skeletonization ers which use derivatives. We illustrate our method on dif-
algorithm [RVTOg] takes around 12 minutes on the 356  ferent voxel datasets obtained from medical imaging scans.
dataset, on a Windows PC at 3.0 GHz. An optimized imple- We also discuss how our classi er, and the underlying skele-
mentation should be several times faster. After the skeleton ton, can be used as a rst step in brain cortex analysis.

8. Conclusions

So far, we have shown how we can use skeletons to detect
curvaturemaxima or convex ridges. Detection of minima,
or concave ridges, such as the sulcal fundi of a cortex sur-
face, is equally simple: For this, we only have to use the
skeleton of the volume's background, all other details of the
method staying the same. Computing the background skele-
ton is equally easy and stable.
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Future work involves the actual utilization of our classi-
er for concrete medical imaging applications, such as the
extraction of sulcal fundi curves and surface segmentation,

as well as a more rigorous mathematical analysis of the con-

nection between our classi er and curvature metrics.
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Figure 6: Brain surface classi cation, different skeleton simpli cation levelésee Sec5). Top: actual voxel classi er com-
puted. Bottom: ray-traced images of the same classi er

Figure 7: Brain surface skeleton at three different simpli cation levels, coloreddgyeton importance
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