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Summary. A large range of software environments addresses numerical simula-
tion, interactive visualisation and computational steering. Most such environments
are designed to cover a limited application domain, such as Finite Elements, Finite
Differences, or image processing. Their software structure rarely provides a simple
and extendible mathematical model for the underlying mathematics. Assembling
numerical simulations from computational and visualisation blocks, as well as build-
ing such blocks is a difficult task.

The NumLab environment, a numerical laboratory for computational and visu-
alisation applications, offers a basic, yet generic and efficient framework for a large
class of computational applications, such as partial and ordinary differential equa-
tions, non-linear systems, matrix computations and image and signal processing.
Building applications which combine interactive visualisation and computations is
provided in an interactive visual manner.

This paper focuses on the efficient implementation of one of the most complex
NumLab components, the Finite Element assembler for systems of equations, such
as Stokes or Navier-Stokes fluid-flow equations. It shows how the software frame-
work as a whole has been targeted towards fast assemblers, and how a general
purpose fast Finite Element assembler is embedded.

1 Introduction

As pointed out in [1], the NumLab (Numerical Laboratory) environment
has been constructed after a thorough search through a wide range of soft-
ware environments for numerical computation and data visualisation. The
NumLab design goals included a seamless integration of computation and
visualisation, as well as convenient computer aided application construction.
Furthermore, all components should be customisable and nevertheless fast.

Paper [1] explains the design concepts in detail: The mathematics to be
modeled (section 2), a software framework which is one to one with the math-
ematical model (section 3), and discusses the implementation of a Navier-
Stokes Finite Element solver within the NumLab software framework (sec-
tion 4).
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Over time, the large scope of NumLab’s mathematical model – which
covers numerical methods for ODEs, PDEs, non-linear systems, and all pos-
sible combinations – has induced a number of questions. Most questions have
either been on mathematical framework (addressed in [1]), the technical re-
alisation (the construction of libraries is addressed in [2]), and on overall
efficient and customisable implementations, addressed in this paper.

This paper shows how NumLab’s most complex component (the Finite El-
ement assembler for non-linear systems) can be implemented such that it is
both fast and customisable. On the small-detail level, introducing general
purpose techniques, we demonstrate how NumLab’s Finite Element assem-
bler can be efficient (fast). The introduced techniques can also be used for
Finite Difference and Volume assemblers. Next, we show the construction of
an efficient and customisable Finite Element assembler for systems of equa-
tions.

The NumLab environment consists of two parts. The first part is its con-
tent, i.e., its c++ libraries. Standard c++ programs can be written using
NumLab’s libraries (data and operations) and can be compiled as well as
interpreted (interpretation using the CINT c++ interpreter [5]). The sec-
ond part of NumLab is its interactive program creation and simulation tool
called vission (see [11, 12]). With this tool, standard c++ programs can
be composed using NumLab’s libraries (data and operations) in a data-flow
graphical environment. This environment is well-suited for numerical and
visual simulations.

There are two categories of NumLab libraries: base and derived libraries.
The base NumLab libraries are unaltered public domain and commercial

(fortran, pascal, c, c++) libraries (binaries) adorned with:

1. a small c++ interface for the communication of standard data types
between the different libraries;

2. a smaller c++ interface for computer aided program creation and simu-
lation (see [2]);

3. an added so-called reflection layer (see [5]) for the c++ interpreter, and;
4. a smallest data-flow simulation interface.

There are libraries for computation – LAPACK [4], NAGLIB [20], or IMSL
[16], SEPRAN [17] – as well as for professional visualisation – OpenGL [8],
Open Inventor [14], or VTK [9]. The (parts of) libraries which are available is
research-determined, for instance OpenDX [15] is not available in NumLab.
The NumLab base libraries communicate with the use of standard data types,
which have been quite stable for a period of years: Open Inventor and VTK
types are used for visualisation, c++-wrapped BLAS types (Basic Linear
Algebra Subprograms, part of LAPACK) are used for computation with full
matrices, and in-house data types are used for sparse matrix operations.
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Also Boost data types (http://www.boost.org/) are used. At this moment,
O(1000) data types and operators are available. The data types have readers
and writers for VTK, LAPACK, Matlab, and sometimes LaTeX, OpenMath,
and MathML formats.

The derived NumLab libraries implement fundamental mathematical no-
tions such as operator and derived solver, operator pde and operator ode,
as well as the data to operate at: linear vector spaces of functions space with
elements Function. Similar mathematical concepts are factored out into sim-
ilar orthogonal software components, so few components can be combined to
powerful solution algorithms. An example is shown in section 5. The derived
NumLab libraries communicate with the data types Function and Operator.

In one aspect, the NumLab graphical editor vission resembles other graph-
ical editors such as Matlab’s Simulink [18], AVS [13], IRIS Explorer [3] or
Oorange [7]. In each case, data and operations from libraries are represented
as rectangles to be put on a canvas, and input and output arguments can be
connected.

However, in contrast with the other graphical editors, vission steers a
c++ interpreter. Thus all kinds of c++ expressions could be – and in a
few cases are – added in adornment-level (4), in order to implement powerful
features at minimal cost. Furthermore, the use of a single language for content
(libraries) and management (graphical editor) simplifies the implementation
of the NumLab workbench.

For a more detailed information and a comparison of NumLab with Mat-
lab [18], Mathematica [19], Diffpack and SciLab [6, 21], see [1].

Uniting visualisation and numerical frameworks turns out to be powerful:
element and derivatives of operators are visualised without effort because
(1) elements support sampling and (2) derivatives of operators are represented
using matrices (see section 3). All Open Inventor and VTK functions (contour
surfaces, probing, Fast Fourier transforms, etc.) are available for elements
(which are vector-valued functions), and even mpeg generation modules are
available in NumLab. Table 1 shows a few examples:

1. A matrix (an image): values determine the color;
2. Interactive computation of streamlines using Open Inventor probes;
3. Axes with names and labels in 2 and 3 dimensions;
4. Computer aided design;
5. Feature detection in complex 2 and 3 dimensional vector (flow) fields;
6. Computer aided design (extrusion) post-processes numerical output;
7. A matrix (linear operator): values determine height and color;
8. A matrix: sparsity pattern;
9. Automatic generation of editors to edit network default values;

10. A VTK-generated tetrahedral grid;
11. Contour surfaces;
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12. Streamlines.

Table 1. NumLab Visualisation of various computational results

1 2 3

4 5 6

7 8 9

10 11 12
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The remainder of this paper is organised as follows. Section 2 mentions the
mathematics which can be modeled with the NumLab software framework.
Next, section 3 formulates the NumLab software framework. Each compo-
nent and its mathematical concept is described. Further, section 4 comments
on the efficient implementation of a Finite Element Solver for systems of
equations such as the Navier-Stokes equations. Then section 5 shows how to
construct simulation applications from the modules introduced in section 3,
using the graphical editor. Section 6 provides conclusions and discusses future
developments.

2 The Mathematical Framework

The NumLab software framework models the mathematical notions element

of a linear vector space, and operator on an element of such a space. In
particular, elements are linear combinations (of functions), and are vector
valued. The supported operations are vector space operations and function
evaluations:

1. The addition of elements;
2. The scaling of elements;
3. The evaluation at elements u = F (v) resulting in an element, and;
4. The evaluation of the derivative G = ∂F (v), resulting in an operator.

The fundamental ideas behind the NumLab framework are:

1. all important numerical problems can be formulated as: Find the solution
v of F (v) = 0;

2. most numerical methods induce a sequence of states

v(0) 7→ v(1) 7→ v(2) 7→ v(3) 7→ . . . (1)

Related to each transition v(k) 7→ v(k+1) is an operator which can be ex-
pressed using the four operations mentioned above. Even for complex ap-
plications (see the Finite Element solver for the Navier-Stokes equations in
section 5), it is possible to formulate all transitions from v(0) down to the
final solution approximation v(m) with the use of just one transition oper-
ator F . Thus, in NumLab, implementations for complex problems can be
composed in a simple manner.

In [1], it is shown how all of the following mathematical entities can be
formulated as operators:

1. Transient boundary value problems (IBVPs);
2. Boundary value problems (BVPs)/Initial value problems (IVPs);
3. Systems of (non-)linear equations;
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4. Iterative solution methods;
5. Preconditioners, etc.

The simple but powerful concept of operator makes NumLab a versatile
workbench which is simple to use. But, it also has generated a lot of questions
such as (1) how to map for instance a Finite Element assembler onto this
framework and (2) how to do this in a run-time efficient and customisable
manner. Paper [1] answers questions with respect to (1) for concrete examples
of the above operators, and this paper addresses (2) for the most complex
NumLab operator: A Finite Element BVP solver for systems of non-linear
equations. An efficient implementation turns out to demand a lot of attention
to small detail as well as to larger scale software design. Both aspects are
addressed in section 4, using the modules described in section 3.

3 The Software Framework

This section describes the software framework which models two major no-
tions: Element Function x of a set, and operator Operator F on such sets.
These notions are sufficient for the solution of equations F(x) = 0. The names
of the methods and variable passing techniques are data flow framework stan-
dards (see [1] [2]). Below, the modules introduced in [1] are presented in a
form which is more suitable for the explanation of an efficient Finite Element
implementation in section 4. To this end, module Space is split into Space

and Basis.

3.1 The Function module

An instance v of Function is vector of functions from Ω ⊂ R
n to R:

vi(x) =

Ni
∑

j=1

vijφ
(i)
j , (2)

where all φ
(i)
j : Ω 7→ R. Set N :=

∑

i Ni. Thus, Function contains (a ref-
erence to) a vector of coefficient vectors vi = [vi1, . . . , viNi

], as well as (a
reference to) a set of functions, called Space. The Function module provides
a few services: evaluation (sampling) of v, as well as of its first and second
derivatives at (collections of) points of R

n. In fact, Function contains a se-
quence of elements related coefficient vectors {v(k)}k, either because the user
or an operator (for instance a time-integrator) issues a request to this end. In
retrospect, from the authors point of view, Function had better been called
LinearCombinationOfFunctions, Element or just Data. Nevertheless, we use
NumLab’s name Function through the remainder of this paper.
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3.2 The Space module

The evaluation of a Function instance v at point x is delegated to the Space

module because the latter “contains” all functions φ
(i)
j : Ω 7→ R. For an ef-

ficient implementation, v and x are passed to Space. The module Space

contains a sequence of Basis. A Basis can implement pre-run-time deter-

mined functions such as φ
(i)
j (x) = |x|

2
, but can also contain run-time de-

termined functions, which is the case for Finite Element implementations.
Because Finite Element bases require computational grids, a Space module

contains (a reference to) a Grid module. Different bases (constant, linear,
etc., conforming/non-conforming), can be chosen and altered during run-
time. Space delegates the evaluation services of Function to its Basis (plu-
ral), which is given Grid. In this manner, Basis can call on Grid to determine
the location of the point x and determine the related value v(x).

The most important service of Space is access to the assembler, with Fi-
nite Element computations in mind. Passed an Equation from an Operator-

ImplementationFiniteElement (as in figure 1, box 3), Space delegates the
assembler request – in a loop over all solution components – to each Basis,
passing the other involved Basis, the Grid, the Equation, as well as the
Function v where F or its derivative must be evaluated. For more detailed
information, see 4.

The boundary conditions BoundaryConditions are members of module
Space, though in retrospect a more logical place would have been module
Contour, which describes the boundary ∂Ω, used by module Grid for the
grid generation. In retrospect, a more mathematical name for Space would
have been CollectionOfFunctions.

The services of Basis can be provided through Space (see [1], where Basis
is not mentioned). However, in order to demonstrate that an efficient but
flexible implementation is possible, Basis is regarded as a separate module.

3.3 The Basis module

Specialisations of this module implement a Finite Element basis {φ
(i)
j }Ni

j=1.
The NumLab workbench offers the most common bases: Conforming piece-
wise constant, linear, quadratic, cubic, bilinear, biquadratic (etc.), and non-
conforming piece-wise linear. In order to ensure that Basis can offer its ser-
vices, Space invokes a method Basis::init(Grid), where Basis generates
all information it needs (amount of basis functions, support points, etc.).

There are two services: (1) Returning function values when passed a coef-
ficient vector v = [v1, . . . , vNi

] and collection of points x ∈ Ω; (2) Returning
F (v) or ∂F (v) when passed an Equation (see module Operator below). In
fact, Basis delegates the Finite Element assembler service in a non-trivial
manner, as described in detail in section 4.
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3.4 The Grid module

In order to generate (representations of) functions φ
(i)
j : Ω 7→ R for Finite

Element and other numerical computations, one needs a so-called compu-
tational grid. The domain of interest Ω is partitioned into a collection of
non-overlapping elements el (spectral Finite Element methods require just
one element). In the NumLab framework, a Grid module can contain a com-
putational grid for Ω ⊂ R

n, where n can be adapted run-time. Available are
regular grid generators – n-cube, n-simplex, or n-prism – and Delaunay grid
generators – triangle, tetrahedron (see figure 1 j). The few services of grid are:
Location of the elements in which a collection of points is situated (not pub-
lic, but important intern for interpolation issues), and ensuring the element
topology and data is available to module Basis. As a matter of fact, Grid
takes a Contour as input, which describes the boundary ∂Ω of the region Ω.

3.5 The Operator module

In NumLab, all problems such as IVPs and BVPs are expressed using
Operator modules. Also (iterative) solvers and preconditioners are expressed
using an Operator module. Each Operator F module provides two services:
(1) Evaluation at element Function v; (2) Evaluation of the derivative of F at
v. The first operation returns a Function, the latter an Operator. Operators
can delegate (use) to Operators in order to solve complex problems.

As an example, consider the NumLab Finite Element operator F : Operator-
ImplementationFiniteElementGalerkin It has (a reference to) a module
Equation, which specifies the components of the involved partial differen-
tial equations, and (a reference to) a module Function, an optional prede-
termined solution of the BVP. Upon evaluation at element Function v, F
passes its Equation member to v’s Space member, which passes it to its
Basis members. For further explanation, see section 4. The determination of
the operator F ′(v) is done in a similar manner.

3.6 The Solver module

Iterative solvers, for instance for the solution of a system of equations Ax = b,
are described with the use of operators which are of the form

(v(0), b, A) 7→ v(k), (3)

where v(k) is the first iterand such that
∣

∣Av(k) − b
∣

∣ < ε. Here both v(0)

and b are Functions and A is an Operator. The operator in (3) need not
be differentiable. Therefore, a Solver module, which represents an iterative
solver, could be derived from Operator, and return a zero derivative. In fact,
Solver is derived from OperatorIterator which specialises Operator in
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that is has a member of IterationControl, which stores: maximum amount
of iterations, convergence tolerance, etc. When requested for a derivative, it
returns the zero Operator. As shown in figure 1, solvers can delegate (use)
to solvers in order to solve complex problems.

In retrospect, the best modular approach would have been module Op-

erator with evaluation service, and a derived module OperatorDifferentiable

with added evaluation of derivative service.

4 An Efficient NumLab Finite Element Implementation

An efficient Finite Element assembler requires vector, matrix and sometimes
tensor operations. To this end, in NumLab, three groups of such storage
classes are required:

1. “small” storage classes (vector, matrix, tensor) for:
a) points in a region Ω ⊂ R

D;
b) values of T reference basis functions onQ quadrature points in R

T×Q,
etc.;

2. “large” storage classes (vector, matrix) for:
a) coefficient vectors v of a component of a Function;
b) Jacobian matrices components of the derivative of an Operator eval-

uated at a Function, etc.;
3. “block” storage classes for composed items:

a) block vectors of large vectors for the sequence of coefficient vectors
of a Function;

b) block Jacobian matrices of the derivative of an Operator evaluated
at a Function, etc.;

In NumLab, the assembler’s numerical integration routines use the small
storage class, the computed entries are stored in large storage class, through
a block storage class interface. The different storage classes have different
services. The small storage class has just a few services which include addi-
tion, scaling, increment and specialised versions of matrix inversion for 2 x 2
and 3 x 3 matrices. The large matrix class has additional services such as for
instance ILU(0) (incomplete LU factorisation).

First, we consider a scalar equation, related to a convection diffusion
problem. After a step for step procedure, we arrive at a first Finite Element
implementation, and discuss the reasons for its slow performance. The prob-
lem of interest is:

L(u) = f in Ω, and B(u) = g at ∂Ω, (4)

where
L(u) = −∇·a∇u+ b∇u+ cu, B(u) = u, (5)
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and with the domain of interest Ω ⊂ R
D. The diffusion coefficient a, convec-

tion vector b ∈ R
D and source coefficient c are all functions of x ∈ Ω. For

the sake of demonstration, we assume that the domain Ω is covered with a
computational grid of elements e. Assume that, on the reference element, we
use Q quadrature points xk and related weights wk. Abbreviate ak := a(xk),
bk := b(xk) and ck = c(xk).

There are two major types of Finite Element assemblers:

1. Galerkin-type Finite Element assemblers, which must integrate:

∫

e

a∇φs∇φr + φrb∇φs + cφsφr. (6)

These integrals are approximated with the use of numerical integration:

∑

k

wk [ak∇φs(xk)∇φr(xk) + φr(xk)bk∇φs(xk) + ckφs(xk)φr(xk)] ,

(7)
for all r, s = 1, . . . , T , the amount of basis functions φr on the reference
element specified through Basis;

2. Petrov-Galerkin-type Finite Element assemblers, which must integrate:

∫

e

a∇ψs∇φr + φrb∇ψs + cψsφr. (8)

These integrals are approximated with the use of numerical integration:

∑

k

wk [ak∇ψs(xk)∇φr(xk) + φr(xk)bk∇ψs(xk) + ckψs(xk)φr(xk)] ,

(9)
for all r = 1, . . . , T1, and s = 1, . . . , T2 the amounts of basis functions φr

and ψs on the reference element specified through Basis 1 and Basis 2.

Systems of non-linear equations such as the Navier-Stokes equations can be
solved using both:

1. The Galerkin-assembler, if all different solution component bases are
merged into one Basis, and;

2. The Petrov-assembler for each block-component of F (v) and DF ′(v).

The NumLab framework uses the latter approach because it deals better with
the zero entries in the derivative (as is the case for Stokes and Navier-Stokes).

Now, consider a straightforward implementation of (7). Assume we pre-
compute and store all values φr(xk) ∈ R

T×Q in matrix v e, ∇φr(xk) ∈
R

D×T×Q in tensor grad v e, a(xk) ∈ R
Q in vector a, etc. Then, the com-

mon implementation of (7) is:
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for (int k = 0; k < Q; k++)

for (int r = 0; r < T; r++)

for (int s = 0; s < T; s++)

a_rs(r, s) += w_k(k) * (

a(k) * (grad_v_e(s, k) * grad_v_e(r, k)) +

v_e(r, k) * (b * grad_v_e(s, k)) +

c * v_e(s, k) * v_e(r, k)

);

a_rs *= abs(detAe);

The problem: The implementation is observed to be slow, if vector, matrix
and tensor classes use run-time allocated storage (which is the case if a con-
structor such as smallvector::smallvector(n) exists). In this case, calls to
new are slow on at least some machines, and bounds must be checked for safe
selections a(k). The case of multiple selections (selection of grad v e(s, k)

in block (p, q) of a Jacobian at element face number f) causes the program
to almost stand still. The added problem is that the implementer is to choose
a small data storage class because c and c++ have no built-in types for such
containers. Worse, because the built-in support lacks, c and c++ compilers
can not optimise for it – Fortran compilers can.

The first step towards an efficient implementation: Ensure that the assembler
for one component (or block component is fast). Implement the “small” stor-
age class with type-int templates. This is the only manner to avoid run-time
allocated storage, but bound checks would still be needed when selections are
to be performed in a safe manner. However, such checks are not required if it-
erators are provided for the “small” storage class, and used (actual NumLab

code):

const double *wk = w_k.begin();

const double *ak = a.begin();

const smallVector<T> *v = v_e.begin();

const smallMatrix<D, T> *gradv = grad_v_e.begin();

// loop over quadrature points

for ( ; wk < w_k.end(); wk++, ak++, v++, gradv++)

{

double *ars = a_rs.value();

const double *vs = v->begin();

const smallVector<D> *gradvs = gradv->begin();

// loop over trial function s

for ( ; gradvs < gradv->end(); vs++, gradvs++)

{

const double *vr = v->begin();

const smallVector<D> *gradvr = gradv->begin();
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// loop over test function r

for ( ; gradvr < gradv->end(); vr++, gradvr++)

*ars++ += (*wk) * (

(*ak) * ((*gradvr) * (*gradvs)) +

(*vr) * (b * (*gradvs)) +

c * (*vs) * (*vr)

);

}

}

a_rs *= abs(detAe);

To keep the above code simple, we have assumed a constant vector field b,
and a constant source term c. The above assembler is fast, in all aspects.

The educated reader will note that, different from usual, the iterators
(supporting member begin() and end() are not new classes. For instance,
invoking begin() on tensor grad v e in R

D×T×Q returns a matrix in R
D×T

and not an instance of a new iterator-class containing a reference to the
matrix.

Because vectors and matrices which store the computed entries must be
resisable, in NumLab, at least small and large storage classes must exist. And,
because NumLab uses Petrov-assemblers, also a block storage class exists.

The Second step towards an efficient implementation: For systems, ensure
that component p of F , or block component (p, q) of its derivative can be
assembled using the above fast assemblers. To this end, first note that fast
assemble code above is templatised, and no longer a routine: Small vectors,
matrices and tensors must be declared

const smallMatrix<D, T> *gradv = grad_v_e.begin();

using parameters of the specialisation of Basis. In the above example, the
amount of reference basis functions T is used – as well as the dimension of
the region of interest D.

The assembler code is put into two functions, a general one related to (9,
and a specialised one related to 7. For the sake of demonstration we consider
the assembler for the derivative, and for now focus on the case of a system
of linear differential equations:

template<class Psi, class Phi>

int assembleDF(const Psi &basis_psi, const Phi &basis_phi,

const Grid &grid,

largeMatrix &DF, ... );

template<class Phi>

int assembleDF(const Phi &basis_phi,

const Grid &grid,

largeMatrix &DF, ... );



Computation and Visualisation in the NumLab Numerical Laboratory 13

In each specialisation assembleDF<Basis 1, Basis 2, Grid>(...), all calls
to methods of Basis (such as Basis::get element dofs()) are non-virtual

(see below), and all calls to methods of Grid (e.g., get element vertices())
are non-virtual. The latter methods are non-virtual because different Grid
specialisations share data members of the base. assembleDF() just accesses
these base data members. This technique is called virtual through data mem-

ber information. For the Grid, assembleDF() must make use of such – or
standard virtual methods – because Grid can be re-attached to Space during
run-time.

It remains to be explained how all calls to Basis members can be
non-virtual, and how Space delegates the assembling to Basis. First,
observe that the user can run-time alter the collection of Basis (plural)
(see figure 1, where SpaceReferenceTriangleLinear and SpaceReference-

TriangleQuadratic are input to Space for the pressure and velocities). Next,
observe that assembleDF() is parametrised with two Basis. Based on these
two observations, NumLab uses a technique called double dispatch. Each mod-
ule derived from Basis, such as SpaceReferenceTriangleLinear, imple-
ments a list of virtual methods (we omit the SpaceReference- part):

class TriangleLinear: public Basis

{

...

int assembleDF(const Basis &basis, const Grid &g, ...)

{ return basis->assembleDF_execute(*this, g, ...) }

int assembleDF_execute(const TriangleLinear &basis,

const Grid &g, ...)

{ return assembleDF<TriangleLinear>(*this, g, ...); }

int assembleDF_execute(const TriangleQuadratic &basis,

const Grid &g, ...)

{ return assembleDF<TriangleQuadratic,

TriangleLinear>(basis, *this, g, ...); }

...

};

This shows how the finite element assemblers in NumLab can be fast and
customisable: The Basis (plural) can be exchanged to different bases at run-
time because the actual assembler is not present in Space nor in Basis:

class Space

{

...
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int assembleDF(blockMatrix &DF, ... )

{

for (int p = 0; p < nb_basis; p++)

{

for (int q = 0; q < nb_basis; q++)

{

DF(p, q) = basis[p]->assembleDF(basis[q], *grid,

DF, ...);

}

}

}

...

};

The NumLab implementation is also fast because the assembler defacto runs
with the routines assemble<., .>(...) which are specialised for the combi-
nation of Basis chosen at run-time. It should be noted that one assemble<b1,
b2>(...) instance is needed for each basis b1 6= b2, a small price to be paid
for the ensured fast execution.

Next, the above approach is refined for system of non-linear differen-

tial equations, where as an added problem, in each block component (p,

q), all or a few solution components of v are required – as a rule. Because
(Navier-Stokes) v consists of three components, it would seem that a two-
Basis parametrisation of assemble() is not sufficient. However, a two-Basis
parametrisation of assemble() still works fine, when the value of the solution
components v is passed as a vector of values at the quadrature points, just as
for instance the diffusion a, or convection b could be passed to assemble().
This turns out to the solution: At all quadrature points xk, Space ensures
the pre-computation (sampling) of all values which are not related to a basis

function φ
(i)
j . For solution components – which do depend on basis functions –

this task is delegated to Basis. This information is passed to assembleDF().

For the sake of a lucid exhibition of the software framework implementation
on module level, a range of details has been not discussed. The reader will
note that for the non-linear case, Space must negotiate a cross-basis set
of quadrature points, and, that in fact assemble() must be parametrised
with this amount of points. An alternative is that different bases use the
same set of quadrature points, suited for the highest degree of polynomial
basis. The best software framework solution to such problems is continuously
under investigation. Other not-commented on issues are the use of Equation
inside the assemble(), specialised Navier-Stokes assemblers, the sampling of
elements v required for multiple grid computations (in NumLab, also delegated
by Space to Basis), etc., etc.
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Readers of [1], [2], [11], [12] and other NumLab related papers have pointed out
that the implementation of this powerful NumLab software framework would
be far from trivial. This paper shows that this has been true indeed. Each
small detail of the NumLab framework has been designed based on years of
experience in: (1) iterative solution methods for complex non-linear systems
of transient BVPs – with Finite Element, Difference, Volume discretisations,
grid generation, etc; (2) visualisation of the resulting complex data-sets; (3)
modern computer-language software design techniques.

The above modular software framework makes NumLab Finite Element com-
putations highly customisable: The NumLab workbench contains a module
called SpaceReferenceTriangle, which is a specialisation of Basis. This
specialisation has a switch, which allows run-time switching between the dif-
ferent available basis specialisations. The implementation is standard: Module
SpaceReferenceTriangle has a pointer to a specialisation of a member of
Basis, which can be reassigned to at run-time.

Thus, summarising the facts which ensure that NumLab modules are both fast
and customisable:

1. customisation: a software framework with sophisticated delegation-model;
2. discretisation mixes: dispatch techniques in combinations with templates;
3. fast execution: different storage classes for different circumstances.

Because there are just two Finite Element assembler templates (Galerkin
and Petrov type) in NumLab, NumLab modules are not just both fast and

customisable, but also simple to maintain.

5 Application design and use

This section demonstrates how the NumLab modules introduced in section 3
are combined to form a numerical simulation.

Figure 1 a shows a NumLab c++ Navier-Stokes simulation program com-
posed with, and represented using, the NumLab graphical editor vission.
The involved modules occur in quite standard groups:

1. A computational Grid specialisation;
2. A Space specialisation, involving specification of Finite Element bases

Basis, and BoundaryConditions;
3. The BVP operator:

a) A Finite Element Galerkin Operator specialisation, using;
b) A Navier-Stokes Equation, and an optional;
c) Predetermined solution, a specialisation of type Function.
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Fig. 1. A Navier-Stokes simulation built with NumLab components
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4. The composed solver:
a) A Non-linear Solver specialisation, using;
b) A Linear Solver specialisation, using;
c) A Preconditioner Solver specialisation.

5. The initial guess v(0) (velocities and pressure);
6. The function v(k) containing all subsequent iterands – velocities and pres-

sure – (see the explanation below (1));
7. A visualisation group FunctionVTKViewerField for v(k).

Module group (2) defines the linear vector space, which contains the targeted
solution (6). The operator composed in group (4) acts on this solution, i.e.,
it performs all transitions v(k) 7→ v(k+1), until all criteria are met.

The application can be extended or altered, taking modules from the libraries
right at the top of figure 1, or taking modules from libraries which can be
loaded during run-time. Eigenvalues of Jacobians can be visualised, etc. In
this example, several NumLab libraries have been loaded, but visible are just
three:

– Visualization ToolKit 1;
– Visualization ToolKit 2;
– NumLab Operator.

In fact, the visualisation module in figure 1 is not a single module, it is a group
which contains other connected modules. Thus, when simulations get more
complex, it is possible to group (hide) less important parts into one mod-
ule. Non-connected input and output ports of the hidden modules become
input and output ports of the new group-module. The contents of module
FunctionVTKViewerField in figure 1 is shown if figure 2, together with the
resulting output. The content of the FunctionVTKViewerField group is ac-
cessible after a simple double-click on the FunctionVTKViewerField icon.
This group can be replaced with a range of available visualisation groups
(stream lines, contour surfaces, contour lines, etc.).

Because NumLab adorns the original unaltered VTK and Open Inventor li-
braries with an interface (see section 1), its VTK and Open Inventor modules
inter-mix. NumLab combines the strength of Open Inventor (superb render-
ing engine) with the strength of VTK (lots of high level modules, such as
Image Transformations).

6 Conclusions and Future Work

As was concluded in [1], NumLab addresses two categories of limitations of
current computational environments. First, NumLab builds on a few fun-
damental numerical notions. All entities such as iterative solver, precondi-
tioners, time integration, Finite Element assemblers, etc., are formulated as
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Fig. 2. The modules hidden inside group module FunctionVTKViewerField. The
viewer at the end of the pipe-line visualises the result

operators which cause state transitions v(k) 7→ v(k+1). Each new operation
is simple to integrate because it is of the same nature, i.e., a transition op-
eration. Visualisation and numerical operations follow the same concepts,
whence in NumLab, computations and visualisation mixes without prob-
lems.

Next, in detail demonstrated in this paper, NumLab combines a high
level of customisable features with nevertheless fast implementations. We
have shown that this is possible with a minimal amount of code, making
targeted use of templates in c++. Though the amount of code is minimal –
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and thus the maintenance costs are low – the larger scale required module-
coworking turns out to be non-trivial pattern.

The next steps on the road towards an even more complete workbench are:
merging available parallel Finite Element assemblers, integrating problem-
specialised iterative solvers and preconditioners, and, started a few month
ago, separating the address space of the graphical editor from the address
space where all modules execute. Then failing contributed research-modules
will no longer crash entire NumLab applications. The visualisation viewer
module and computational modules should be run on different threads so
data can be visualised while computations continue.
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