Visual Support for Porting Large Code Bases

Bertjan Broeksema Alexandru Telea
KDAB Berlin, Germany University of Groningen, the Netherlands
Email: bertjan.broeksema@fr.iom.cém Email: a.c.telea@rug.nl

Abstract—We present a tool that helps C/C++ developers to C++ program transformation tools include ASF+SDF [26],
estimate the effort and automate software porting. Our tool Stratego [27], Transformers [2], and DMS [3]. The features

supports project leaders in planning a porting project by showing ¢ these tools vary widely, often in terms of subtle (but
where a project must be changed, how many changes are needed, b

what kinds of changes are needed, and how these interact with the crucial) details, such as C/C++ dialect or template support

code. For developers, we provide an overview of where a given le integration with a preprocessor, completeness and coesst
must be changed, the structure of that le, and close interaction of the produced ASG, range of supported transforms, and APIs

with typical code editors. To this end, we integrate code querying, for third-party tool integration. A comparison of C/C++ tita
program transformation, and software visualization techniques. analyzers is given in [4], [6]. IDEs like Visual Studio, Busie
We illustrate our solution with use-cases on real-world code bases. KDevelop [15], and QtC'reat'or [20] include Iightweigf'n aymly
ers, good for code completion and cross-references, buthwhi
|. INTRODUCTION cannot perform program rewrites. Static analysis alsovelei

A common problem of adapting large software systems &®de quality metrics useful to assess the porting effor}. [16
changing dependencies,g. libraries, is the sheer number of Getting insight into a set of planned code rewrites is as im-
code changes required. For sypbrting activities, we need to portant as doing the rewrites themselv@sogram visualization
realistically estimate the effort and automate changeedacge Offers several solutions. Code-level visualizations,npired
slow, cumbersome, and error prone manual work. by Eick et al. [9], show large code amounts with table-

We present a KDevelop extension [15] that assists portit@s techniques [21]. Colors encode attributes such as code
C/C++ code bases to newer versions of their dependenciestyfe and code faults [12], evolution metrics [28], or query
project-wide view shows the required changes with hintsuabdesults [24]. Program structure, dependencies, and ragtric
the dif culty of each change. A le-level view shows where in€ncoded as attributed compound graphs, can be visualizegl us
a le which kind of changes are needed, and how these inter&sige bundling techniques [11] or matrix plots [25], [29].dee
with the current code context where they are to be done. H¥el and structure-level visualizations serve completmgn
this, we nd the code fragments prone to being modi ed duringnderstanding goals by focusing on different abstractwels.
porting by a generic, lightweight, query mechanism exetute
on the code base's abstract syntax graph. Next, we express
automatic porting activities as source-code-rewritinggsufor Ve aim to support the entire process of code porting: def-
the queried fragments. Finally, we use several views to shéition of a set of code transformations or rewrites, assgss
the amount, type, and location of porting effort and how ipgrt their impact on a given code base, applying the rewrites, and
activities depend on their code context. assessing their effects. For this, we need insight on thadtrgf

Section Il presents related work in visual code refactosng "€Writes at several levels, such@ject level(see the rewrites’
porting tools. Section |1l describes the visualizationd gneries distribution of across an entire projeeig. hundreds of les);
proposed in our tool: the effort estimation view, the reevrit le level (see the effect of severa_l rewrites on a given le); and
impact view, and the impact distribution view. Section \oats Source levelsee the effect of typically one rewrite at the level
the application of our tool for porting a real-world large €+ Of individual code lines). . _
code base. Section V discusses our techniques. Finally, Seclhere are several tasks to support during a code porting:

tion VI concludes the paper and outlines future work di@@i Effort estimation: For a code base and set of rewrites, how are
the rewrites spread over its les? This gives a good estimate
of the porting effortbefore actually doing it. Code porting by
Related work covers visualization tools and techniques fe&yrite engines is rarely fully automatic. Developers néed
program comprehension at code level, as follows. review the performed rewrites to ensure that these are éhdee
First, static analysigools extract facts on the code to p@&1y. correct and desirablee.g. do not change the code to alter
abstract syntax trees (ASTs) or annotated syntax graph8$AS program semantics or given coding styles. Few rewrites or
Program transformations use these facts to (semi)autoaligti rewrites grouped in a few les indicate minor, localizedaciges
rewrite code via rewrite rules. Efcient and scalable C+4yhich arguably take less effort to understand, executesdew

analyzers include Columbus/CAN [10], EDG [8], Elsa [18]than many rewrites spanning the whole code base.
Clang [7], Eclipse's CDT [22], PUMA [1], and SolidFX [24]. o]
Rewrite impact: When the same code fragment is affected by

1B. Broeksema is now with IBM Center for Advanced Studies, Eean several rewrites, their order may be important. Even when th

Ill. V ISUALIZATION TOOL OVERVIEW

Il. RELATED WORK

KDevelop A. Querying and transformation

source > Parser To support automated porting, we must rst describe which
files .
code constructs are affected by porting. Examples are usfage

: a given API (set of functions or classes); inclusion of derta
Porting Extension V headers; and usage of certain language featugesonstructors,
T default arguments, or templates which is speci ¢ to a givétl A
version. We describe constructs of interest as resultpiefies

QA S)!f H?g Qa2As2S)=fhzag (1)

A query takes an ASB2 A and a query pattersg 2 & and
produces a set dfits h= fh;g 2 a, i.e. AST nodes which match

File Impact View

Transform
Engine

E;}Jject .Estimelltiorlwiew the query pattern. Hits also have location (token, lineucoi)
data provided by the KDevelop parser. Our query langi&gie
Fig. 1. Overview of our code porting framework largely similar with the one of the EFES and SolidFX C++ stati

analyzers [4], [24]. We also nd hits by matching patternghwi
actual AST fragments with a visitor design. A full speci cat

semanticeffect is order independent, different orders may lesRf our query language is given at [6]. Querying uses KDevslop
to different code layouts, some of which are less readalaie thPUchain (de nition-uses chain) system and it correctly nds
others. Depending on the rewrite engine and actual rewrit@é uses of a symbole.g. function, type or variable, across
used, some rewrites may be con ictual; getting an overvidw éanslation unit boundaries. This is essential for the rstep:

code fragments affected by such rewrites is useful. program-wide code rewrites. _
A query outputs code fragments which we may want to

To support the above tasks, we have developed a portilgange via automatic program rewriting. Two main technique
engine, or extension, for the KDevelop IDE (Fig. 1). We usexist here.Procedural rewritingchanges selected AST frag-
KDevelop's C++ static analyzer to extract ASG data from &ents (our hitshj) based on given rules [2], [17]. However
given code base. Second, we created a query engine wrgemeric, this approach has some problems. Data not codtaine
nds code fragments (and their ASGs) that match user-sgeti in an AST, such as code layout, comments, or macros, is
patterns which have to be rewritten. These patterns are nbgfd to maintain. This may generate code which is correct
transformed in the ASG based on user-speci ed rewrite ruldgut otherwise illegible, and may loose lexical-level infation.
this is the actual porting. Third, we created a set of viewgivh DMS alleviates this by intermixing C++ preprocessing and
address the effort estimation and rewrite impact undedtgn parsing at the expense of a more complex implementation [3].
tasks at project, le, and source code level. The query, itewr Source-to-source rewritgules, in contrast, work directly at
and visualization engines are integrated in KDevelop dgetin source-levelj.e. on the actual tokens. This method is far easier
views, which lets one query, rewrite, and visualize coderin 40 implement than the one in DMS, and is suf cient for the less
integrated way (see Fig. 2 for an overview). general transforms needed for portirggg. identi er renaming,
changes of function signatures and call arguments, andgelsan
of scope quali ers for symbols. We de ne a transform as:

T(S H Sn! G T(s92Sh2Hisr2S)= c2C (2)

A transformT takes a hith= Q(a;sq) from applying a query

So on an input prograna (Eqn. 1), and a set of rewrite rules
Sr, and produces a source-level changef the code inh.
Rewrite rules can refer to speci ¢ syntactic parts of thergue
result, as captured by the query pattegn In this way, we can
rewrite conditionally on thevaluesof specic elements.e.g.
only rename a symbol if it occurs in a scope with a given name.
A rewrite rule performs insertion and replacement actionghe
code it acts. Like conditions, insertions and replacemessact

on speci ¢ code parts as described by the rewrite speciarati
sr. For instance, we can erase the last argument of a function
call, or qualify a symbol with desired scope names. A full
e ——— description of the transform langua@e is given in [6].
e Source-to-source transforms using code rewrite rules have
several advantages. First, rewritetionscan ignore KDevelop's
internal C++ grammar representation. We have found this to
be highly desirable for developers who do not want to get
We describe the components of our porting extension. deeply involved with such issues. Secondly, the rewritgiren

source code editofs

porting extension panel$
)

Fig. 2. KDevelop IDE with integrated porting extension

stays relatively simple, and still can keep source codeugyothis port, following [19]. For each of the 550 les in the code
comments, and macros largely similar between original abdse, a table row shows the number of hits for each query in
transformed code. The key to this is that rewrite rules $pecithe query set. The rst column shows the sum of all hits for the
code to be changed in terms afntax but do the actual respective le. The table can be zoomed out, reducing rows to
changes (insertion on replacement) in termgamiges(start-end colored pixel bars, and sorted on any column. The bottom émag
locations) in the code. This fully preserves layout, prepssing shows les sorted by total number of query hits. We see heae th
macros, and comments outside changed code. Since KDevelaopost porting effort is located in about 5 to 10% of the entire
ASG captures semantic data, relatively complex changes sset of les. The most important queries, thus main types of
as replacing a symbol in all scopes where it is used, or chgngichanges to be done, agt cast(Qt typecast macro)QlconSet

all instances of a given C++ template, work as expected.

(construct QlconSet objectsiPtrList< T> (templated object

However, our solution also has some limitations. Our rewripointer containers), anQString::latin1 (string localization)j.e.
rules are localj.e. can only modify code within their input hit table columns 2 to 5, since these have most cells with large
range. This excludes transforms such as rewriting codendrowalues. To further support effort estimation, developersy m
a function call when the function's return type is changedle ne, for each query, a porting dif culty level, which reas

Secondly, if different queries yield overlapping hits, wannot

how well the rewrite engine handles that specic construct

apply a set of transforms in a single step, but need to perfof{®ec. IlI-A). Column headers are colored to re ect this difilty

pairs of query-and-transform steps one at a time.

with a green-red (easy-hard) colormap. In Fig. 3, we see for

Given the above, user inspection of the effects of a givémstance thatQString::latinl is frequent, but can be easily
guery-and-transform set is important. We next present afsetported; howeverQPtrList T> also affects many les, but has

visualizations which address this concern and, at a highvet,|

a high porting dif culty. Overall, the porting view assisbging

support developers in planning and executing porting tasks decisionse.g. trigger the development of new rewrite rules;

- H H I .
most important «les|ff b -
3 (

—|qt_cast |QIconSet QPtrLis QString::Iatinj e

qt_cast<T>(const QObject*) QlconSet QPtrList<T> : Qstring:latin1() const ' GuardedPtr<T: tton::
-

RN RUL TR R | RO
R LLILINT [T 4l |'|"| n'm'
|

<[

Fig. 3. Effort estimation view, sorted on total hits per le

B. Effort estimation view

allocate speci c developers to speci ¢ project parts; ahdase

to do some porting activities by hand and automate others.

C. Rewrite impact view

As explained in Sec. llI-A, code rewriting is rarely fully
automated. Apart from our rewrite engine limitations, weéda
seen that developers rst want to see what such an enginedwoul
change in their code before ring it off, especially for code
bases having many rewrite locations (hits). Typical qoesti
are: which code fragments are affected by a given rewrite, rul
or by more rules; and how do rewrites spread over a degy(
are they condensed in speci ¢ parts like the leading inclade
declaration sections, or do they affect the whole le).

The rewrite impact viewaddresses these questions (Fig. 4).
A tree browser in the left panel shows all les in the code base
and the speci ¢ queries and query hits for each le. When we
select a le in this view, the right panel shows the query hits
in that le. In this panel, thex axis maps to the le extent
(left=rst line, right=last line). Each horizontal bar shs hits
for a specic query; hits are red blocks. The bar itself is a
condensed view of the code in the queried le. To render this,
we traverse the le's AST in depth- rst order and render each
node as a bar block. The blockis position and width re ect
the node's size (in lines of code, LOC) and location in the le
The block's height re ects the nesting level: deeper nodes a
drawn as blocks inside their parents' blocks. Block coldrsve
AST node typese.g. brown for loops (for, do, while), purple
for control statements (if, switch), cyan for C-style fuoas,
green for public methods, orange for protected methodsreohd
for private methods. This colormap covers only a small subse

Our rst view addresses the task of estimating the overaif all C++ AST node typese. the constructs of interest during
effort of porting thekdelibs 3.5.10code base. Our code baseorting. Node types not in the colormap and nodes whose block
has to be ported from version 3 of the well-known user intaxfaare smaller than a few pixels in either dimension are not draw
C++ Qt library (Qt3) to version 4 (Qt4). We use a table-lenso that the view stays uncluttered. The red hit blocks araydw
approach (see Fig. 3). The query set (15 queries shown hdrawn at full height; their width shows the hit range. Hit ¢ito
out of a few tens in total) captures code patterns involved widths are limited to a few pixels so hits always stay visible

public methods

[query hit distributions] /\
v

hits class
Fig. 4. Rewrite impact view with syntax structure of a seldcles overlaid by query hits (see Secs.llI-C and IV-B)

The rewrite view can be zoomed on tkaxis like a table lens. manually rewrite the code, or use third-partly rewrite @egi
Zooming in makes the screen-size of deeper nested nodes, larguch as, in our case, thlg32qt4 engine provided by Qt itself.
so these become visible. Zooming out emphasizes largealglolhe developer is not obliged to provide transforms &
scope constructg,g.function de nitions and class declarations.queries pertaining to a given porting task.

The rewrite impact view outlines query hit distribution at)]
le level. Vertical red bars show code ranges with overlagpi B- Performing the porting
hits, thus areas of potential automatic rewrite problemtse T After the developer has assessed that the porting effora for
spread of red bars in the le indicate where rewrites wiltode base is acceptable, actual porting starts. Here, ontlwo
occur in the le, e.g.in the preamble or main code range, antlke to use the rewrite engine as much as possible. Since, as
also with respect to code constructsg. within function or already explained, this may not work correctly in all cases,
class declarations. This view is linked to KDevelop's edity good strategy is to examine the code le by le, or query by
brushing and selection, so developers can examine in de&il query, and assess when automatic rewriting is safe. Foriais
potential effects of a given rewrite before actually doihg i use the rewrite impact view (Fig. 4).

IV. APPLICATIONS Situation before applying the rewriting
We now present three use-cases for our visual porting stipp¢ }—‘\
As input, we take th&delibsC++ code base (750 KLOC, 550 2 iemt dows extemnaten et o view
les) and the Qt3 to Qt4 porting scenario along the ofcia| « | "ewvmice IRPE) rotonpa)s pots) 3
porting guidelines [19]. Porting code from Qt3 to Qt4 is ngin |~ | & hmaccs ot} ot T revamn st 3
related to rewriting code which uses Qt3 API calls or dataesyp il provenes g

to their Qt4 equivalents. This involves several syntacticd a
H H : Query Cument Fle QNIRRT cursor position (rewrite impact view) ST Sl
semantic changes related to the evolution of the Qt toolRiL. A | arjeet overiew quer;:V

Query Id
QGuardedPtr<T>

A. Estimating the effort Py

When starting a porting job, developers want a quick assebsm—— """
ment of the challenge at hande. the porting effort and type
of work involved (automatic vs manual rewriting). The effor
estimation view (Fig. 3), sorted by total aggregated quety h
per le, supports this. Fokdelibs this view shows that the main
effort is condensed in 5 to 10% of the project les; most reevri
actions can be done automatically; but there are a few such
actions, like the rewriting oQPtrLisi< T> template class uses,
which the current rewrite engine cannot handle (see Se8)lll
Hits of a given query in a given le can be examined in detal
by clicking on their cells in the table-lens view in Fig. 3, iafh
selects their code is KDevelop's editor. Situation after rewriting

We should stress that porting effoestimation based on
query hits, and actual portingxecution based on automatic
and/or manual rewriting, are separate activities. Thereffo Several points can be made here (see Fig. 5). The selected
estimation view only highlights how much and where must worke contains many public methods, as shown by the many small
be done, and if this can be automated or not. Developersese fight green blocks. Apart from these, we see a few private
in how they do the rewritinge.g. use our own rewrite engine methods halfway the le (pink blocks) and a few protected
(when fully automatic transforms exist for specic quedies methods in the left-middle area (orange blocks). The red hit

0D @mmo] 0 O
NI mmod
0[] M_,% %

g

Fig. 5. Potential rewrite inspecting (top). After the reimgy (bottom)

in the white areas near the beginning of the le (left regionfrigure 6 shows how this works. Before zooming, we see two
show code to be ported as well, located in very small funstiorgroups of two hits each, which seem to overlap (Fig. 6 top).
whose screen size is under a few pixels in this view. We also s&fter zooming in this area (Fig. 6 bottom), we see that the
some larger functions containing consecutive and nestetiado rst two hits are closely spaced, but not overlapping, iesid
structures (purple blocks) and loops (brown blocks). Bnale one control structure (purple block). The two other hitside
see a class de nition (dark green block at the beginning). a public method (green block), fall further apart. As no hits
Next, the developer wants to examine change locations drerlap, they can be ported in one step using the rewritenengi
more detail. This serves to understand why certain hits pccu
for instance, hits of a certain query in a le may show constsu C. Complexity assessment for affected code

which one did not expect to be present. This ocoeus for The decision to rewrite automatically or manually, rewrite
code bases maintained by many developers, such as in opgtering, and the overall rewrite dif culty depend on mohea
source projects. Another use-case is examining overladpts, the query hit count, hit locations, and hit overlaps. Otfaetdrs
i.e. vertical red bars; these are potential automatic rewritingclude the overallcontextof a code fragmente.g. location,
prOblemS. For deta”s, the user clicks in an area of inter%rrounding code constructs, and related comments. Tmmpp
in the rewrite impact view. This opens a KDevelop editor fomore kinds of reasoning about the impact of a rewrite on angive
the respective le and places the edit cursor at the locatiog, we added additional metrics in the rewrite impact view.
corresponding to the position clicked in the bar. Clicking on piferent color schemes serve different analyses. One pl@am
a red hit block selects the hit's code range in the editor (s@gich proved useful was to compare changes in public method
Fig. 5 top). The location selected in the rewrite impact vieVjeclarations to changes in protected or private declarstio
matching the cursor position in the editor, is shown in th&w The hypothesis is that changes in public declarations have a
as a thin blue marker. The marker is updated when the Usfdher impact on a code base than changes on protected or
clicks on the color bar and when moving the cursor in the editgyrivate declarations. Hence, a rewrite of a public dediamat
so the editor and rewrite impact view are linked in both wayshould be done with more care (if done manually) than one
In our case (Fig. 5 top), the hit is a Q@GuardedPt< T> of protected or private declarations. Similarly, changeghe
construct, to be ported to its Qt4 synta@Rointex T>). Note jmplementation of a method are more localized than changes
that this query correctly handles C++ template instamtiestj in jn the (public) interface of a class. However, in this case, t
our case the instance bei@uardedPtx KHTMLPart>. Now complexity of the code around the change is important. For
the user can decide how to do the rewrite. Here, he uses gg@mme’ rewrites in deeply nested control and loop strastu
rewrite engine, since the construct occurs in a simple s@ntegy jn C-style casts potentially make the code more unreadabl
and, from the rewrite rule details, one knowns that this @wr than rewrites in simpler code like assignment sequencese si
has no side effects. A right-button click menu on the hit (N@ge former are already more complex than the latter everréefo
shown in the image) does the rewriting. Figure 5 bottom showsyriting [23]. Hence, rewrites on complex structures stidae
the rewriting effect: TheQGuardedPtx T> hits have vanished dgne with greater care.
from the list of query hits in the rewrite impact view, which T4 support such analyses, we use a colormap which depicts
has now three queries (colored bars) as compared to fourebefgode complexity with respect to rewriting. All top-leverist-
rewriting. The code in the editor is updated automaticaiiyce tres such as class declarations and function bodies gsathe
the rewrite affects the underlying source le. Manual réd |ight gray tint to show an overview of global structure. Lsop
works conversely: the user changes the code in the editor ayie different tints of green (depending on the loop tepg

the impact view is updated. for, do-whilg). Control structures have different purple tinif (
Before zo0ming s switch etc). C-style casts are light blue.
/ Figure 7 shows this colormap for three les of tlkelelib
Q code base. The rst le (A) is a header with no implementation

(e.g. inline methods) and thus has low complexity, as shown
by the gray-tint bar. For the next two les (B,C), we show the
whole le and a zoom-in of a complex part thereof. We see
that these les contain different kinds of deeply nestedpmo
nested control structures, and several C-style castselB, hits
show QString::latin1() function calls, which returns a Latin-1
encoding of a string object. In le B, we see a recurring paitte
a do-while loop (light green) which ends with several C-casts
Afterzooming (nested cyan block), and has a hit in the last statementirey |
Fig. 6. Zooming the rewrite impact view to analize query hits i.e. in the loop control expressions containiQptring::latin1()
calls. Also, we see that all hits are clustered within a sigtge
We next show the zooming the rewrite impact view. Thiblock roughly halfway the le, where we zoomed in. Here is a
helps deciding whether certain hits which seem to overlap imethod de nition. For le C, we display hits for six differd¢n
the zoomed-out view truly refer to the same code range or nqtieries. The rst ve queries have relatively few, clustdréits
The mouse wheel zooms the view around the mouse positias. shown by the red bar locations (Fig. 7, le C, unzoomed

File A

File B

File B
(zoomed)

File C

File C
(zoomed)

Fig. 7. Rewrite impact view colored to emphasize code complexith respect to rewriting (see Sec. IV-C)

view). The last hit, again for th@String::latin1() query, has "—“F‘ "—“F‘ 'H‘F

more hits which are spread over a larger le portion. However
few hits overlap, so porting can be done by manually revgitin
these overlapping regions followed by automatic rewritofg
the remaining cases. Zooming in over a small range of le C
shows that most hits are outside complex structures, exhept
QsString::latin1() hits (red bars over green blocks).

D Anticipating porting effort Fig. 8. Deprecated API usage for anticipating porting ¢ff¢6ec. I1V-D)

For code bases which depend on third-party components,
porting is rarely a one-shot activity. When the interfacewfts class, which is a non-deprecated partkafepim This yielded
a component changes, the code base is likely to need regvritig043 hits in 373 les. This implies thakdepimlibis indeed
Such porting efforts can be anticipated by checking the co@enon-trivial dependency dédepim Further inquiries revealed
base's usage of so-called deprecated APIs. These are APIBOSsible explanation for the low usage kafe pimlibsAPIs
which are (highly) likely to be dropped off in future release Within kdepim the two components are largely maintained by
thus whose usage implies future porting costs. Kdlepimlibs the same team, which suggests that concerted efforts have be
library, part of the KDE framework [14], which contains codélone to remove usage of deprecated APIs.
for personal information management (PIM) functions, i®ad) . , .
example. This library is widely used in thelepimcomponent E- Assessing porting dependencies at system level
of KDE. The evolution ofkdepimlibsfeatured several tens of The effort estimation view (Fig. 3) only shows the relatidn o
deprecated methods. Within this library, deprecated nustlaoe porting changes (query hits) to code at the lowest levels)le
marked by special macros. We developed a query set for ndifk@r large systems, developers may want to assess how a set
such methods which resulted in 47 function queries spread owef (porting) changes affects their code at higher abstacti
15 classes okdepimlibs Next, we checked how a new releaséevels,e.g.subsystems. For this, we use an existing dependency
of kdepim(to be included with KDE 4.5) uses such methodsisualization technique in a new way. Given a qué€yyand a
by searching this release with our query set. code base with a set of |eB, we rst compute all lesfg F

Figure 8 shows the results of this analysis. Strikinglyréhewhich contain at least one Hi2 Q(f 2 F). Next, we construct a
are only 9 uses of 6 deprecated API®1(:::;m6) within compound grapiG consisting of containment and dependency
kdepim even though the size of the latter is over 500 KLOGelations. Containment relations re ect the software e
This is a good signal.e. very low effort for portingkdepim (folders and les), readily available from KDevelop's stat
with respect tokdepimlibsAPI deprecation. As a reference,analysis. Dependency relations link all le nodes belorgto
we queriedkdepim for usage of non-deprecatekblepimlib the same setq, for all queriesQ. This re ects that porting the
functionality, i.e. the use of APIs in theAkonadi::Collection code with respect to a que needs to modify all lesfg.

Node colors Node color

misc

QPtrList<T>

a) b) c)

Fig. 9. Understanding porting dependencies by visualizjogry hit relations between subsystems (Sec. IV-E)

To visualizeG, we use the hierarchical edge bundling (HEB)he views on-the-y as these become available, which gives a
technique of Holtenet al. [11], adapted to encode portingsmooth experience.
attributes. Figure 9 shows this for oukdelibsexample. The Queries and transforms are declaratively written in XML.
left image (Fig. 9 a) shows a high-level view of the code. Nodelthough this offers less freedom thang. using an imperative
are folders, colored by the number of query hits with a blwe-tquery and/or transform language, it reduces end-userteffor
red rainbow colormap. Several folders stand out as comiginiTypically, users start with an existing (XML-based) queny o
many hits,e.g. kioand khtml Next, we select thénterfaces transform set, and modify these gradually to suit their seed
folder and only show query hits relating this folder to thetre
of kdelibs i.e. the KDE packages, colored by query type. Thiferformance: The speed of KDevelop's C++ analyzer (slightly
shows that the Qt3-to-Qt4 changes in timerfacesfolder higher than compilation time) is key to the performance af ou
which affect packages involv®PtrList< T> constructs in the solution. For the entir&K DE code base (3.8 MLOC), this is
kscript sub-interface (green edges) and several other construd@sminutes on a 1.8 GHz machine with 2 GB RAM. Although
in the ktexteditorsub-interface (purple edges). We next zoorthis may sound high, note that analysis is done once, and only
in on the porting dependencies betweiater facesand kio, redone for those les which are changed. In practice, thesdg
by expandingkio to le level over the entire circumference near-real-time response time for typical developer daii
of the HEB view (Fig. 9 b). We now color nodes based i , ,
on their type (folders=green, C++ les=blue, headers=gen Gene_rallty: Our porting support solution depends on.K.DeveIop
When we seleckscript, we see now precisely which les o.nly m tgrms of |m.plementat|on. The query, rgwrmng, and
shareQPtrLis T> porting dependencies witkscript - these wsuqhzatlons techniques presen_ted are generic an_d do not
are the nodes connected by green edges with the highlighigly in any way on C/C++ specics. The only requirement
kscript node in Fig. 9 b,i.e. about 30% of all les inkio, 'S the availability of a static analyzer that produces an ASG

spread over most of thkio subsystems. Porting dependenciefé’ith source cpde locations. Hence., our solution can be Iv;egdi
of other types thaiQPtrList T> are shown in gray. We see a!ntegratede.g.ln QtCreator [20] (which also has an API for its
large bundle of these in the lower-right area, and seleanthdtérmnal C/C++ analyzer), KDevelop for other languagesntha

for further inspection (Fig. 9 c): We now see that these afdC+* Or Eclipse €.g.via the CDT C/C++ or Recoder Java

QString::latinl porting changes (orange edges) which rela@@lyzers [22], [17]). The Recoder framework is partidylar

to the kio2 subsystem we just selected; they go to siblingtited. as it offers a powerful API for code rewriting.
subsystems irkio and none tokscript Hence, a Qt3-to-Qt4
porting affectskio at implementationevel via QString::latinl

constructs and ainterface level via QPtrList< T> constructs
due to thekscript API.

Validation: We have used our framework for several real-
world code porting contexts: work done at KDAB, Inc. [13],
a company specialized in software porting solutions and in
particular Qt-based code; and code refactoring work in the
V. DISCUSSION KDevelop open-source project after the KDE 4.4 release. In
Ease of use:Our views, query engine, and rewrite engine aroth cases, qurframework has been able to handle complex _cod
tightly integrated with KDevelop. For this, we reuse the mpe?2Ses of millions of LOC and help developers save valuaile ti
APIs of KDevelop for ASG access and GUI management. THMNg porting activities. _ _
incremental code analysis in KDevelop ensures that queries//€ @lso compared our solution §i32qt4 the of cial Qt3

and transforms done on large code bases show their resultd0Qt4 Porting tool in the Qt SDK. The aim of this tool is
largely similar to ours: assist developers in porting Q&34

For HEB technical details, we refer to the paper of Holter] [11 code to the Qt4 APIqt32qt4uses a lightweight C++ analyzer

to nd and rewrite code fragments which comply with a built-i We next consider more generic, easier to specify ways to
list of porting patterns. Given thigjt32qt4has several serious select and transform code fragments. Also, we plan to augmen
limitations, including incorrectly rewriting syntactibasimilar, our visualizations to support more complex understandagg s

but semantically different code (due to scoping and lookugarios such as the assessment of ripple effects determinad b
limitations), and not rewriting certain constructs. Thesults certain code change throughout an entire code base and semi-
in broken code that does not compile, or worse, compiles hattomatic what-if scenario support for assessing the impfc
executes with different semantics. In contrast, our sotutias a given (set of) code modi cation(s) before these are abtual
less limitations: although it cannot perform any type of €odexecuted manually or automatically.

transformation, the rewrites it handles do not result in piting
but incorrect code. Moreover, our solution is more generc,

it can be used for C++ rewriting beyond porting Qt-based codéll R.Akers, |. Baxter, M. Mehlich, B. Ellis, and K. Luecke.eBngineering
C++ component models via automatic program transformatiorPrérc.

S . - P : WCRE pages 167-175, 2005.
leltqtlons. F_0r COde_analyS'S’ we are 'I'm'ted by the quality Of[2] R. Anisko, V. David, and C. Vasseur. Transformers: A C+ogram
ASG information provided by KDevelop's own C++ analyzer. In* ~ transformation framework. tech. rep. 0310, EIPTA/LRDE, E&r2003.

particular, this analyzer does not perform a so-cadlledboration [3] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program tramsiations

phase on the ASG,e. the insertion of non-explicit constructs ;ogoaractlcal scalable software evolution. froc. ICSE pages 234-243,

for implicit cast operator calls and constructor calls, dedtruc- [4] F. J. A. Boerboom and A. A. M. G. Janssen. Fact extractarerying
tor calls for stack objects. However, such constructs nedakt and visualization of large C++ code bases. MSc thesis, DEpfomp.

- - . . . Sci., Eindhoven Univ. of Technology, the Netherlands, 2006
handled during porting to maintain code semantics. Other C+5 B. Broeksema. KDevelop C++ query and rewriting extensi@f10.

analyzers such as Clang [7], Elsa [18] or SolidFX [24] do this ~ nttp:/mww.gitorious.org/kdevcpptools/kdevepptools.
and thus provide a richer ASG. Currently, we solve this pgobl [6] B. Broeksema. A visual tool-based approach to porting Cedte. MSc

. . . . thesis, Dept. of Comp. Sci., Univ. of Groningen, the Netheta June
by inserting on-the- y checks in our queries and transfoms 2010. http:/iwww.cs.rug.nlisveg/Softvis/Refactor.

account for such constructs. However, this solution is de&i, [7] Clang Team. The Clang C++ analyzer, 2011. http://clanm.lorg.
as such code should be]ong to the C++ ana|yzer proper. [8] Edison Design Group. EDG C++ front-end, 2011. www.edgic

: : ; _] S. Eick, J. Steffen, and E. Sumner. Seesoft - a tool foraliging line
Our query engine is S|mpler than general purpose AS oriented software statisticdEEE Trans. Softw. Eng18:957-968, 1992.

pattern-matching engines like [24]. Specically, we do nofio] R. Ferenc, A. Besrdes, M. Tarkiainen, and T. Gyisthy. Columbus -

REFERENCES

support querying for patterns involving all nodes presarthe reverse gggineering tool and schema for C++Ptac. ICSM pages 172—
C/C-++ grammar, but limit ourselves to the most interesting [11] D. Holten. Hierarchical edge bundles: Visualizatidradjacency relations

for (API-related) porting scenarios.e. nodes which describe in hierarchical datalEEE TVCG 12(5):741-748, 2006.
the usage of an external API in terms of types, inheritandé?] J. A. Jones, M. J. Harrold, and J. Stasko. Visualizatibtest information

: : to assist fault localization. IRProc. ICSE pages 132-140, 2002.
templates, class member access, and function calls. Ifedgsi [13] KDAB Inc. KDAB company, 2010. www.kdab.com.

all C/C++ AST nodes could be added to this model, resulting jfu] KDE PIM Team. KDE PIM personal information management ligra

a query engine very similar to [24]. Similarly, our code raing 5] i%ll- Pttpi//comr%nity-Irde-lfg%/i;D_E(’:lM- 2010 evelom
H : H H evelop team. evelop or C++, . Www.Kdeve. .
engine is geared towards changes which lacal to a given [16] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice

query context. For porting code, this is however adequatees Springer, 2005.
typical changes here do not spread over large amounts of cddl@ A. Ludwig. Recoder Java static analyzer and programritesy 2010.
It is tempting to consider third-party C++ analyzers tq . hit:recodersourceforge.net,
. o ?18] S. McPeak. The Elsa C++ parser, 2011. www.scottmcpeaik&lkhound/
remove KDevelop's analyzer limitations. There are few epen ~ sources/elsa.
source C++ analyzers which do preprocessing, have cd@@ Nokia, Inc. Qt 3 to Qt 4 porting guide, 2011. http://dgicnokia.com/4.
- - " 6/porting4.html.
location data, prow_de rewr|t|ng_, are scalable, an_d COVEHG [20] Qt Creator team. Qt Creator integrated development enwient, 2010.
fully. The only suitable candidate we know is Clang [7]. ~ gt.nokia.com/products/developer-tools.
However, integrating Clang in KDevelop is not trivial. Give [21] R. Rao and S. K. Card. The table lens: merging graphicdl symbolic

; ; ; representations in an interactive focus + context visatibn for tabular
these reasons, our solution is a good compromise between information. InProc. ACM CHI pages 234-242, 1994,

generality and development effort. [22] D. Schaefer. The Eclipse C++ development toolkit, 20tivw.eclipse.
org/cdt.
ilahility- ; ; ; 23] H. Sutter and A. Alexandrescu.C++ Coding Standards: 101 Rules,
Ava!Iab|I|ty. Our framework, |nclud|n.g examples, is openl;l Guidelines, and best practicesddison-Wesley, 2005,
available as a KDevelop 4.0.1 extension [5]. [24] A. Telea, H. Byelas, and L. Voinea. A framework for reveengineering
VI. CONCLUSIONS IZa(;gSICH code basesElectr. Notes Theor. Comp. ScRk33:143-159,

In this paper, we have presented a visual assistant fomprt[25] F. vam Ham. Using multilevel call matrices in large softer@rojects. In
CIC++ code bases. Our solution assists users in assessjpg’ °C: INfoVis pages 227-232, 2003,
. ' . o ﬁ@? M. van den Brand, J. Heering, P. Klint, and P. A. OlivierCompiling
the porting effort for a given code base, determining possi- language de nitions: the ASF+SDF compil&&CM Trans. Program. Lang.

ble conicts (and resolutions thereof) during porting, tied | Eys\tf' 24(4)13534—368,500% ; i Stratedo/XT chical .
. Visser. rogram transtormation wi ratego .C cal repor
an overview of the issues affecting code under porting, affd UU-CS-2004-011, Institute of ICS, Utrecht Univ., Netheds, 2004.

doing the porting semi-automatically. We presented two nggs] L. Voinea and A. Telea. CVSgrab: Mining the history ofda software
visualizations: the effort estimation view and the rewiitgact o BVOJZECti- '”P\rfoc- EI_U_VOWS Pf?ges 198t_—t_206' 2006. vout. Inp

. P ZecCKkzer. Visualizing software entities using a matayout. In Proc.
view, and used the eX|st!ng HE_B visualization in a new waﬁ ACM SOFTVISpages 210-217, 2010.
Examples are shown for industrial and open-source codesbase

