A no-nonsense beginner’s tool for GMLV(Q)

Version 3.1

Roland J. Veen, Floris Westermann, and Michael Biehl

Bernoulli Institute, Faculty of Science and Engineering, University of Groningen

September 2021

Disclaimer

This demonstration software, referred to as ‘GMLVQ demo code’, or ‘A no-nonsense
beginner’s tool for GMLVQ’, is provided ‘as is’ and any expressed or implied warranties
are disclaimed.

In no event shall the author or any contributors be liable for any direct, indirect, inciden-
tal, special, exemplary, or consequential damages. This demonstration software should
not be used for critical applications.

1 Getting started

1.1 Downloading the latest version

You can find the latest version of the library at https://www.cs.rug.nl/~biehl/gmlvq where
you can download a zip archive.

1.2 Set up the library

To set up the library correctly, you can extract the archive into some directory, and add that
directory to your Matlab path. Alternatively, start Matlab in that directory directly. You can test
whether the library loaded correctly by trying to type the first letters of ‘GMLVQ’ in the console
and trying the autocomplete by hitting [Tab]. It should automatically complete the name.

Secondly, you’ll need a properly formatted and labelled data set. Specifically, you’ll need two
variables fvec and 1bl. fvec should be an array of size nFv x nDim, containing the set of nFv
feature vectors in nDim dimensions. 1bl should be a corresponding vector of nFv class labels.
These labels must cover the complete set 1-nFv. As an example, a number of sample data sets are
provided in the archive, those will also be used in the demonstrations later on.

All functionality of the library is put inside of the GMLVQ-namespace. There are a number of
classes, each class with a number of functions, to assist you in using the library intuitively. This
means that each classname should be prepended with GMLVQ. in the code.

2 Examples

Most functionality of the library will be covered in the following examples, they should give you
an idea of how the library should be used and what results you can obtain with it. For more
detailed information on the API, later on there will be a complete reference.

For your convenience, the examples can be run using the command ”"rundemo n”, with n corre-
sponding with the desired demo number (executing rundemo without arguments will list the demos
included). Also included are demol.m and demo2.m which may be used as a starting point for your
own script(s).

2.1 Initialization

To be able to run the algorithm, you will first need to obtain an instance of the GMLVQ . GMLVQ-class.
This class stores your data set, as well as the parameters you have chosen for the algorithm. Using
this class, it is possible to run various tests on the data set and obtain results. This class can be
instantiated using the following constructor:

GMLVQ.GMLVQ(fvec, 1bl, parameters, totalsteps, prototypelLabels)

Here, fvec and 1bl are the variables discussed above. parameters must be an instance of
GMLVQ.Parameters, where you can set various parameters for the algorithm. totalsteps is
the number of time steps to take while running the algorithm (by default: 10), and lastly
prototypelabels is a vector specifying how many prototypes, and for which classes to use. By
default this is simply one prototype per class, but by setting this variable it is possible to use
multiple prototypes per class.

As mentioned above, the GMLVQ . Parameters-class contains all parameters to use in the algorithm.
This class can be instantiated using a name-value style call of the constructor, for example as
follows:

https://www.cs.rug.nl/~biehl/gmlvq

GMLVQ.Parameters('paramName', value, 'paramName2', value2, ...)

The following parameters can be set in this class, including their type and default (recommended)
values. More context on some of these options will be given in later examples.

mode = GMLVQ.Mode.GMLVQNS (GMLVQ.Mode enum): The mode to use for the algorithm. Put
in one of the elements from the enum GMLVQ.Mode:

GMLVQ.Mode .GMLVQ: Matrix without null-space correction

GMLVQ.Mode .GMLVQNS: Matrix with null-space correction

GMLVQ.Mode . GRLVQ: Diagonal matrix (discouraged)

GMLVQ.Mode.GLVQ: GLVQ with Euclidian distance

doztr = true (boolean): Whether or not to do a z-score transformation on the training
data.

rndinit = false (boolean): When true, will randomize the initialization of the relevance
matrix, instead of using the identity matrix. false is recommended for first experiments.

mu = O (real): A control parameter of the penalty term when lambda is singular. A value
of 0 means default GMLVQ behaviour and is recommended for first experiments. Values
larger than O prevent a singular lambda matrix, while values much larger than 0 let lambda
approach identity, i.e. Euclidian behaviour.

decfac = 1.5 (real): Step size factor (decrease) for Papari steps

incfac = 1.1 (real): Step size factor (increase) for all steps

ncop = 5 (integer): Number of waypoints stored and averaged during the algorithm calcu-
lation.

etam (real): Stepsize adaptation parameter. Default value 2 for GMLVQ or GMLVQNS
modes, 0.2 for GRLVQ and 0 for GLVQ.

etap (real): Stepsize adaptation parameter. Default value 1 for GMLVQ or GMLVQNS
modes, 0.1 for GRLVQ and 1 for GLVQ.

rngseed = 291024 (integer): The seed to use for the random number generator to allow for
reproducible results.

rocClass = 1 (integer): The label of the class to compute the ROC against.

showlegend = true (boolean): Whether or not to show legends in the graphs produced
upon plotting.

randomization = 0.02 (real): A measure for how ‘spread out’ the initial prototype locations
are for execution. Will not affect results when useKMeans is true.

useKMeans = true (boolean): Whether or not to use k-means to initialize the prototypes.

So combining this, if I want to run the algorithm without the k-means initialization, running for
50 steps, using two prototypes for the second class, I could call the following in the console:

gmlvqg = GMLVQ.GMLVQ(fvec, 1bl, GMLVQ.Parameters('useKMeans', false), 50, [1 2 2

—

3 41);

2.2 Single runs of GMLVQ

In this section we will only be using the runSingle () function of the GMLVQ-class. This function
performs a single training process for the entire data set. The result is an instance of the Result-
class, which includes a bunch of performance statistics, such as the cost function, error rates and
AUROC as functions of time(steps) and the final LVQ system.

Using the plot (...) function you can plot the training curves, the final LVQ system is visualized in
terms of prototype vectors and the relevance matrix, and the ROC of the final system is displayed.
The data set is also visualized in terms of the leading two eigenvectors of the relevance matrix.

W 0 N O U WN

—
o

2.2.1 Demo I: A seven-class data set, single run with one prototype per class

This is the UCI segmentation data set, where 1 trivial dimension was removed and 800 samples
were randomly selected. From the results, it is clear that classes 2 and 7 are easily distinguishable,
while classes 3 through 6 lie very close together. This can also be seen in the class-wise training
errors. In the resulting figure, the ROC (w.r.t. class 1) is not shown.

Console session

>> load samplesData/uci-segmentation-sampled.mat
>> gmlvq = GMLVQ.GMLVQ(fvec, 1bl, GMLVQ.Parameters(), 50);
Matrix relevances with null-space correction
Defaulted to one prototype per class
Prototype configuration:
1 2 3 4 5 6 7
Warning: Multi-class problem. ROC analysis is for class 1 (neg.) vs. all others (pos.)
Minimum standard deviation of features: 0.025258
>> result = gmlvq.runSingle();
>> result.plot();

, Training ROC, class 1 (neg.) vs. all others (pos.)

gjvg costs per example w/o penalty term total training error -
9% 03 — 0“‘
-
04 025 08
02 07
054 o
" 015 . S 06
°
05 - o st 2
5 01:* ¢ 2
b v f.mw.a.v_-M g 05
g
07 005
0 10 20 & 40 50 0 10 20 & 40 50 go4
gradient steps gradient steps Z s
class-wise training errors AUC(ROC), class 1 vs. all others
08 o 105 02
ez 1 .
° IS e o1 AUC =0.97897
o 1 LESTR A
s e @ neC
o g 09 0
o 7 0 02 04 06 08 1
N AT 085t false positive rate
o .
02 S > 08
S FRaReR GGy 075 #
0 S
010 E o 10 20 3 40 50
gradient steps
R stepsizes
* prototype
o relevances
15 .
o
.o
e
05 A
Yo,
o 3
0 10 20 @ 4w
gradient steps
ot clas 1 o2 clase2 omvaluss of reLmat. 2d-visualization of the data set
5, prot.1,class L prot2.class cigenvalues of relmat. 15 - °s o
02| ° 5 @z LXs 2
] I o8 o i
° 4
P F n o
s 2y o o o8 ©o @ s
eigonvalus index 1 O s
prot. 3, class 3 prot. 4, class & ol matrix, diag, o e 7
©

El

02 I I]
CTE T s
foature number

5 w0 B TTE wow.

prot. 6, class 6

5
ol e i)
10f 0
2. 3
T 50 15| -
5 01
prot. 7, class 7 off-diag. el.
05
—

proj. on second eigenvector of A, scaled by sqrt of eigenvalue

-05 o 05
proj. on first eigenvector of A, scaled by sqrt of eigenvalue

Final Confusion Matrix

o

>

True Class

.

4 5 7
Predicted Class

O 00 N O U1 h W N

2.2.2 Demo II: A simple two-class problem, single run with one prototype per class,
ROC against class 1

This data set has 186 features for 110 samples, but yields a very clear separation between both its
classes.

Console session

>> load samplesData/twoclass-simple.mat
>> gmlvq = GMLVQ.GMLVQ(fvec, 1bl, GMLVQ.Parameters('rocClass', 1), 30);
Matrix relevances with null-space correction
Defaulted to one prototype per class
Prototype configuration:
1 2
Minimum standard deviation of features: 0.0090926
>> result = gmlvq.runSingle();
>> plot(result); /7 Both calling styles work

| Training ROC, class 1 (neg. vs. all others (pos.)

gjud costs per example wio penalty term total training error e —
0 0 09
04|® e
08
osp o1
06 07
M o
-07 o005 Tos
08 BER! 2
o9te*® Yae Fos
R Ty 's"s sesesessssesesessnss 8
4 0 204
0 10 20 30 [10 20 30 El
gradient steps gradient steps Fos
class-wise training errors AUC(ROC), class 1 vs. all others
04 53 1.05 02
. 1
. o2 |
03 ® eese sesescsesseessssensy o1
NPC
095 . o
02 e % 0.2 0.4 06 08 1
K) Y ¥
oo 09 false positive rate
o
0.1 085
L) .e
© 6 00om00000000eN000 .
oles o e 08} * .
0 0 20 30 o 10 20 30
gradient steps.
B stepsizes
. prototype
o - relevances
15 .
0 0 0 30
gradient steps.
g
prot. 1, class 1 eigenvalues of rel.mat. g 01 2dwisualization °£“‘° data set
: : . (84
006 ?
om0 2 oos .
4 002 <
o 7 006 °
5 100 150 50 100 > .
eigenvalue index = 004 °
prot. 2, class 2 rel. matrix, diag. 5 ™ ° ® °
1 008 2 °
. oo 7 o02e '
004 5
1 0.02 . 0 . °
T R § s
feature number £ 0% P
g ®oe0
008 © -0.04
50 004 © e .
002 5 .
100 o 8 -006
180 e 8
004 § 008
50 100150 & - B o
oftdiag. el. & proj. on first eigenvector of A, scaled by sqrt of eigenvalue

Final Confusion Matrix

1 100.0%

N
n
N
IS
@
&

True Class

2
Predicted Class

0 N oA W N

2.2.3 Demo III: A difficult two-class problem, single run with custom prototypes

This data set has 32 features and 98 samples, but does not have a very clear separation.

>> load samplesData/twoclass-difficult.mat
>> gmlvq = GMLVQ.GMLVQ(fvec, 1bl, GMLVQ.Parameters(), 50,
Matrix relevances with null-space correction
Prototype configuration:

1 1 2

Minimum standard deviation of features:

>> result = gmlvqg.runSingle();

>> plot(result);

0.56657

Console session

[112]);

glyg costs per example wio penalty term

total training error

0.45
b
-01 04
-0.2 035
03 % 03t
04 0251
.
051 & 02 oo =*
LT IRy
06 ""'V*--....____ 0.15 K ——
-07 01
0 10 20 3 40 50 0 10 20 3 40 50
gradient steps gradient steps
07 class-wise training errors 1 05 AUC(ROC), class 1 vs. all others
.
06 1
05 095
04fe® 091 o mmtmespeseapommutunprset
0.85
03[o i
08
02 2B s
WL o
o © 00700 srmmmmmmIIR g 07
o . . . | L .
0 10 20 30 40 50 0 10 2 3 4 50
gradient steps
B stepsizes
‘& prototype
o relevances
150 e
1 —'..
Y
e
05 Fy "
pEALS
0 .
0 10 20 30 40 50
gradient steps
| prot. 1, class 1 of rel.mat.
0.15
o 0.1
0.05
1 0 S I S
10 20 30 10 20 30
eigenvalue index
prot. 2, class 1 rel. matrix, diag.
| ; : .] .
0.15
0 o1
0.05 J
4 1 il
10 20 30 10 20 30

prot. 3, class 2

A fo dm o0

hx

Final Confusion Matrix

1 3 6.8%
2 44 18.5%

True Class

2
Predicted Class

feature number

10 20 30
off-diag. el.

proj. on second eigenvector of A, scaled by sqrt of sigenvalue

015

0.1

005

-0.05

| Training ROC, class 1 (neg) vs. all others (pos.)

-1 0 1 2 3
proj. on first eigenvector of A, scaled by sqrt of eigenvalue

09 A
0| @
07
2
S 06
0
2
£ 05
2
8
go4
03
02
0.1 J ——AUC-0874%
@ NPC
0
0 02 04 06 08 1
false positive rate
2d-vi of the data set
L]
e o .
o [
L] L]
.o. . %0 o o
Ly o
. L)
@ o ’ .
a, gte &,
.
e © -
o € ° o
® 5 o 00
< e o oo
° oo °
L]
e

We can see that the eigenvalues are very close to singularity. To prevent this, we can tune the mu
parameter.

Continued console session

>> gmlvq.params.mu = 0.2;
>> result = gmlvq.runSingle();
>> plot(result) ;

1 Training ROC, class 1 (neg.) vs. all others (pos.)

gdvq costs per example w/o penalty term i
e 0455 09

0 o4 08
-0.1 035
., H 07
02 * °
. 2
S 06
03 o
o g 0% . o
oal T T £ 05
. PUSIRIRH g
-05, - © 04
0 10 20 30 40 50 0 10 2 30 40 50 E
gradient steps gradient steps - 03
class-wise training errors AUC(ROC), class 1 vs. all others
07 105 02
1
095 01
09 0
085 0 0.2 0.4 0.6 0.8 1
08 false positive rate
075
D
o7t
.
0 10 2 30 40 50
0 10 20 30 40 50
gradient steps
°
2 2d-vi ization of the data set
prot. 1, class 1 eigenvalues of rel.mat. S o5 T
2 o
! 0.06 S ;
@
004
0 5 04
002 =
4 o g .
10 20 30 10 20 30 > 03
eigenvalue index 2 ° ° >
I 2
; prot. 2, class 1 rel. matrix, diag. g o2
006 @
0 0.04 = 01
002 2
Bl s
10 20 30 0 10 20 30 g 0
feature number 2
|5
. 3, class 2
prot. 3, class oo -
002 T
o 8 -02
0.02 2 °
0.04 c
S .03
fh-ling. o, 5} L - 05 0 05 15
off-diag. ¢ 2 proj. on first eigenvector of A, scaled by sqrt of eigenvalue

Final Confusion Matrix
1 20.5%
4 24.1%

2
Predicted Class

~

True Class

2.3 Multiple runs of GMLVQ

In this section we will be discussion the runValidation(...) and runL10() function of the GMLVQ-
class. These functions perform multiple training processes on a part of the data, while doing
validation classification on the remaining data. They return an (specialized) instance of the
ResultSet-class, which includes the Result instances for each run, as well as the average result
where all properties are averaged. Again, using the plot(...) function you can plot the entire
resultset, or one of the subresults.

The runValidation(nRuns, percentage) function runs n times with percentage of the data
left out for validation. For each run, it makes a stratified partition of the data, i.e. the relative
frequencies of the various classes will be kept constant and it will not happen that one class is
completely omitted in one of the runs. In other words: percentage of the samples per class is left
out.

The runl10() function runs nSamples times, each time leaving out one sample for validation.
L10O can seriously mis-estimate performance, and should really only be used for very small data
sets.

Performance

Performing multiple runs (especially L10) can be really slow.
Both the runValidation(...) and runL10() functions parallelize the execution by per-
forming each separate run in parallel. This is only possible if you have the Parallel
Toolbox installed and activated, otherwise it will default to serial behaviour. Note that
this also causes the output of the function to be out-of-order.

W 0 N O U WN

2.3.1 Demo IV: A seven-class data set, multiple runs with 10% of data left out

This is the same data as in Demo I, so we have 800 samples. We see that the output of
runValidation(...) does not show ordered properly, this is because the code is run in paral-
lel. Even when run in serial, it might show up out-of-order due to underlying code differences.

Console session

>> load samplesData/uci-segmentation-sampled.mat
>> gmlvq = GMLVQ.GMLVQ(fvec, 1bl, GMLVQ.Parameters(), 40);
Matrix relevances with null-space correction
Defaulted to one prototype per class
Prototype configuration:
1 2 3 4 5 6 7
Warning: Multi-class problem. ROC analysis is for class 1 (neg.) vs. all others (pos.)
Minimum standard deviation of features: 0.025258

>> result = gmlvqg.runValidation(10, 10);
Learning curves, averages over 10 validation runs with 10% of examples per class left out for
— testing

Validation run 2 of 10
Validation run 4 of 10
Validation run 3 of 10
Validation run 6 of 10
Validation run 5 of 10
Validation run 1 of 10
Validation run 8 of 10
Validation run 9 of 10
Validation run 7 of 10

Validation run 10 of 10
>> plot(result) ;

10

proj. on second eigenvector of A, scaled by sqrt of eigenvalue

total error rates

AUC(ROC) w.r.t. to class1vs. all others

1 training
test

1

0.8
0.6 0.9
0.4 '
P 0.8 [
S e ;
0.7]
10 20 30 40 10 20 30 40
gradient steps gradient steps
0.8 class-wise training errors 08 class-wise test errors
[
06} %0
S
0.4 b

gradient steps

analagous for validation set

o
o
0.4
05/e
-0.6
5
0.7
10 20 30 40 10 20 30 40
gradient steps gradient steps

prot. 1, class 1

prot. 2, class 2

eigenvalues of rel.mat.

o 0.2}
0.1
g P o Ml
5 10 15 5 10 15 5 10 15
eigenvalue index
prot. 3, class 3 prot. 4, class 4 rel. matrix, diag.
o o 0.2}
ol 1]

5 10 15 5

prot. 6, class 6

10 15 5 10 15

5
o o
10)
h 5 10 15 h 5 10 15 151
5 10 15
5 Prot.7,class 7 off-diag. el.
0@
<01]
-2
5 10 15
isu: of all data
©
8 _ocp@ 0
8 @ °

000000
Nooswn

05

0.5

. 0
proj. on first eigenvector of A, scaled by sqrt of eigenvalue

true positive rate

4 threshold-avg. test set ROC (class 1 vs. all others

0.9,

0.8

0.7

0.6

05

0.4

03

0.2

0.1

U
NPC per

96882
rformance

0.4

0.6

0.8

false positive rate

Final (Training) 3; Confusion Matrix

1

Final (Validation) 3} Confusion Matrix

4 4
s g5
o o
2o £l
= =
7 7
1 5 6 7 T o
Predicted Class Predicted Class
trainingPerf(41) Confusion Matrix validationPerf(41) Confusion Matrix
1102 01 02 1117
i I o B 3 1062
7 n
2| |ea7] 2 3|
3|21 7.7 3|03 10 13
9°| 2% 5% 9°|26| lea |z
©4f02 .9| 14 | 6.1 Sy 02|86 (16 8
g *|0% g 80 H 5% 1430 7 1%
Fs|zs 77.1 Sl 25 8
3 |72 e N O
s 897 6 103
0% 10074
113 12.4|
. | ey - 24
N 0y < © 4

11

5 » o
Predicted class

5 o
Predicted class

2.3.2 Demo V: A difficult two-class problem, validation with 10% left out

This is the same data as in Demo III, where the classification was not excellent. We will now run
this 10 times with each time 10% of the data left out. The code is similar to that of Demo IV.

total error rates

AUC(ROC) w.r.t. to class1vs. all others

1 * training 1 - training
. test . test
0.8
0.6 OIQtl.fI——-—!
. -
= -‘,@+ .f_
0.4 . 08{% *e + LS NER
02"é . A.?.\?\’Mi' [}
. Bagmman o St 0.7
10 20 30 40 50 10 20 30 40 50
gradient steps gradient steps
o class-wise training errors class-wise test errors
: ° 1 o 1
o 2 06 o 2
0.4 0.5 °®
‘. 0.4 ves .
N e
o2 S Wl
0
10 20 30 40 50 10 20 30 40 50

gradient steps

&cst fct. per example w/o penalty

gradient steps

0 analagous for validation set

0.1
02
- 02f o
™ 03l ™
0.4 -0 o
“ LY
041 @ a0 e
. v
0.6 05
10 20 30 40 50 : 10 20 30 40 50
gradient steps gradient steps
prot. 1, class 1 eigenvalues of rel.mat.
1 0.15
o 0.1
0.05
-
10 20 30 10 20 30
eigenvalue index
prot. 2, class 1 rel. matrix, diag.
1 0.15
o 0.1
0.05
El 0
10 20 30 10 20 30
feature number
prot. 3, class 2
1 0.1
0 s ™ I-_h et 0
A 0.1
10 20 30
off-diag. el.
o
2 of all data
g
c
S o4 °
@
S
£ 03 L
j=d °
@ i ° °
> L) °
2 024 ° °
3 °e ° °
2 oo 3
S ot & ° oo ° 1
@ °Q °
< ® oo 0% © _o°
S 0 o °e \ ° °
] [
§ -01 ety 000 © : °
]
5 e o o & °
g 02 ° '. ° 4
°
b=
c
8 -03 o g
3 ° . °
§ -04
= o
3 - 0 1 2
2 proj. on first eigenvector of A, scaled by sqrt of eigenvalue

P threshold-avg. test set ROC (class 1 vs. all others;

09

08

I =
o o N

true positive rate
o
S

@ NPC performance

AUC=0.789

0 0.2 0.4 0.6
false positive rate

Final (Training) > Confusion Matrix

1 85%
2 88 402 180%

True Class

2
Predicted Class

0.8 1

Final (Validation) 3> Confusion Matrix

True Class
o
=

62.2%

37.8%

26.7%

2
Predicted Class

trainingPerf(51) Cq Matrix Perf(51) Confusion Matrix
1 36.6 3.4 1 2.8 1.2
@ 91.5% 85% 2 70% 30%
8 g
S S
@ o
2 2
= =
2 8.8 40.2 2 17 3.3
18% 82% 34% 66%
N v N v
Predicted class Predicted class

We can see that the validation performance is bad compared to the training performance (which
we saw in Demo IIT), which hints at overfitting the data.

12

O 0 N O L1 A W N

N8 s o
o Ul AW N33O

2.3.3 Demo VI: A small subset of a simple two-class problem, Leave-1-Out run

In this case we only have a small subset of the data from Demo II, only 36 samples for 186 features.

The best we can do here is to run L10 as last resort.

Console session

>> load samplesData/twoclass-simple-small.mat;
>> gmlvq = GMLVQ.GMLVQ(fvec, 1bl, GMLVQ.Parameters(), 30);
Matrix relevances with null-space correction
Defaulted to one prototype per class
Prototype configuration:
1 2
Minimum standard deviation of features: 0.0089232

>> result = gmlvq.runL100) ;

Learning curves, averages over 36 L10 runs
Leave one out: 1 of 36

Leave one out: 8 of 36

Leave one out: 28 of 36
Leave one out: 35 of 36
>> plot(result);

Leave-One-Out ROC (class 1 vs. all others)

total training error rate AYE(ROC) w.rt. to class 1 vs. all others
1 o vaning o vaining 0D
o8 1 ——— 08
.
06 035 07
e 2
06
04 09 g
. 205
3
ozf ® o8 o &
ce : 204
o . £
0 08
10 20 0 10 £ E) 03
gradient steps
02
0.35,_classwise training errors gGpst fot. wio penalty term (training) 01 p— Y oy T
Py o N @ NPC performance
sl ® [. o
. 0 02 04 06 08 1
025 @ { oe false positive rate
.
;i 05
02 .
oo 06
0.15®.
L) 07t o0
o1 08| ®
005 s T]
olese B
o 0 %0) 10 20 £
gradient steps gradient steps
Final (Training) S Confusion Matrix Final (Validation) 5 Confusion Matrix
prot. 1, class 1 . of relmat.
1
008
0 004
002
B
50 100 150 5 100 150 2 2
eigenvalue index 8 8
prot. 2, class 2 rel. matrix, diag. [¢] <]
s o 3 3
3 3
008 S =
o %ﬂﬁhmww 004
002
T o 100.0%
50 10 150 50 100 150
fealure number 7
006
50 000 1 2 1 2
oo Predicted Class Predicted Class
100 o
150) o0
B
50 100150
off-diag. el.
]
2 of all data .
S 06 trainingPerf(31) Confusion Matrix validationPerf(1) Confusion Matrix
3
3
B o4 1| 12.6389 4| 038111
2 o
g F 100% 2 100%
2 g g
3 3 <
3 H
g 02 2 3
- £ S
8 N 22,3611 .| 0.055556 | 0.58333
Z o 100% 87% 91.3%
E < o < D
S 0204 40 Predicted class Predicted class
5
5
K
-
2
§
8
2
c
5§
?
s

-4 2 o 2 4 6
proj. on first eigenvector of A, scaled by sqrt of eigenvalue

13

3 Changelog

The code was first developed and maintained by Michael Biehl up to version 2.4. Version 3.0 ¢/o
Floris Westermann. Version 3.1 ¢/o Roland J. Veen.

Main changes of version 3.1 (September 2021)

Now compatible with MATLAB 2021A (Should also work with 2021B and future versions,
not yet tested)

Added a script rundemo.m to conveniently run the supplied demos.

+GMLVQ/@Run/plot.m: Fix colormap

+GMLVQ/@Run/Run.m and AverageRun.m: Fix incorrect property size constraint
+GMLVQ/Result.m: Keep figures from going off the screen, remove obsolete plot workaround
Fixed incorrect axes and legends for several figures

Colour palettes are now more consistent across plots

Added summed and mean configuration matrices for Average Runs and Validation Runs
Also added Confusion Matrix calculations to Leave one out (L10)

Added various visualistations for confusion matrices.

Added the option to set etam and etap independent of mode. A warning will be given if the
values set make no immediate sense.

Main changes of version 3.0 (March 2019)

Major API overhaul into an object-oriented design, allowing for re-use of parameters/run
setups easily.

Possibility to store results to (re-)plot them later.

Parallelized the validation- and L1O-runs if the Parallel Toolbox is present.

Added possibility to calculate ROC vs. any class instead of just the class with label ‘1°.
Using cvpartition in Matlab to obtain stratified training data for validation runs.

Added k-means prototype initialization instead of the previously used average of all points
in the class.

Added a configurable option for the ‘randomness’ of the initial prototypes (when not using
k-means).

General performance improvements and code quality improvements

Main changes of version 2.3 (January 2017)

Bug fixed in the averaging of prototypes over validation runs. Previous version yielded
averaged prototypes that were stretched by a factor of 2, approximately. The error did not
affect the training or validation itself, only the averaged prototypes in the final output.

Main changes of version 2.2 (April 2016)

ROC calculation has been modified, it is now based on differences d(x, w1)—d(x, ws) without
normalization by d(x,w;) + d(x,w — 2). See compute_roc.m for comments and details.

14

Main changes of version 2.1 (August 2015)

Corrected legends in plots showing step size vs learning time

Corrected calculation of mean confusion matrix in run_validation(...). Now the confusion
matrix is determined in each validation run separately (in terms of percentages) and then
averaged over validation runs in the end. Resulting matrix is now in line with the averaged
class-wise errors.

Main changes of version 2 (April 2015)

Less explicit input parameters to functions (moved to function set_parameters(...))
Improved step size control, really independent for matrix and prototype updates
Singularity control via penalty term included, parameter mu introduces
single_run(...) also displays temporal evolution of step sizes

Null-space correction controlled in set_parameters(...) (no dimension-dependent default
anymore)

Initial step sizes independent of dimension and/or number of examples

Version 1

initial version

15

4

Key References

Key References below, see https://www.cs.rug.nl/~biehl for pre/re-prints.

References

1]

5}

P. Schneider, M. Biehl, B. Hammer, Adaptive Relevance Matrices in Learning Vector
Quantization Neural Computation 21: 3532-3561 (2009)

Introduction of Generalized Matrix Relevance LVQ (there: stochastic gradient descent)

P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, M. Biehl Regularization in
Matrix Relevance Learning, IEEE Trans. Neural Networks 21: 831-840 (2010)

Singularity control by penalty term: (a slightly misleading use of the term “regularization”)

M. Strickert, B. Hammer, T. Villmann, M. Biehl Regularization and improved interpre-
tation of linear data mappings and adaptive distance measures, 2013 IEEE Symp. on
Computational Intelligence and Data Mining (CIDM) In: Proc. IEEE SSCI 2013

Null-space projection: (4extensions not implemented here, more appropriate use of “regular-
ization”)

G. Papari, K. Bunte, M. Biehl, Waypoint averaging and step size control in learn-
ing by gradient descent Technical Report, In: MIWOCT 2011, Mittweida Workshop on
Computational Intelligence, Machine Learning Reports MLR-2011-06: 16-26 (2011)

Step-size control: (here extended to matrix and prototypes treated separately)

Updates and Contact

The latest version of this package can be found at https://www.cs.rug.nl/~biehl/gmlvq. Other
interesting packages are available at https://www.cs.rug.nl/~biehl/mcode.html. If you find
any bugs you can mail to ”"roland at rjv.at” or "m.biehl at rug.nl”.

16

https://www.cs.rug.nl/~biehl
https://www.cs.rug.nl/~biehl/gmlvq
https://www.cs.rug.nl/~biehl/mcode.html

	Getting started
	Downloading the latest version
	Set up the library

	Examples
	Initialization
	Single runs of GMLVQ
	Demo I: A seven-class data set, single run with one prototype per class
	Demo II: A simple two-class problem, single run with one prototype per class, ROC against class 1
	Demo III: A difficult two-class problem, single run with custom prototypes

	Multiple runs of GMLVQ
	Demo IV: A seven-class data set, multiple runs with 10% of data left out
	Demo V: A difficult two-class problem, validation with 10% left out
	Demo VI: A small subset of a simple two-class problem, Leave-1-Out run

	Changelog
	Key References
	Updates and Contact

