A CORF Computational Model of a Simple Cell
with application to Contour Detection

Johann Bernoulli Institute for Mathematics and Computer Science
Emails: {g.azzopardi, n.petkov}@rug.nl

Contribution
- CORF is a computational model of a simple cell.
- The proposed CORF model shares more properties with a simple cell than the Gabor Function (GF) model.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Orientation selectivity</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2. Cross orientation suppression</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>3. Contrast invariant orientation tuning</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>4. Response saturation</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

- CORF is more effective than GF in contour detection, which is assumed to be the primary biological role of simple cells.

Motivation

CORF = Combination Of Receptive Fields

The local LGN activity determines which LGN receptive fields are used in the CORF model.

CORF model

Prototype edge
DoG responses
Determine local arrangement

CORF properties

- **Receptive field determined by simulated reverse correlation**
- **Contrast invariant orientation tuning**
- **Cross orientation suppression**

Results of contour detection

Examples of images from the RuG data set

Input image
Ground truth
CORF output
GF output

Matlab script of the CORF operator: http://matlabserver.cs.rug.nl/

Paired t-test statistic
RuG data set: $t(39) = 4.39, p < 10^{-4}$

GF outperforms CORF

References

