
Contour Generators of Evolving Implicit Surfaces

Simon Plantinga
∗

Gert Vegter

Institute for Mathematics and Computing Science
University of Groningen

ABSTRACT
The contour generator is an important visibility feature of
a smooth object seen under parallel projection. It is the
curve on the surface which seperates front-facing regions
from back-facing regions. The apparent contour is the pro-
jection of the contour generator onto a plane perpendicular
to the view direction. Both curves play an important role
in computer graphics.

Our goal is to obtain fast and robust algorithms that com-
pute the contour generator with a guarantee of topological
correctness. To this end, we first study the singularities of
the contour generator and the apparent contour, for generic
views, and for generic time-dependent projections, e.g. when
the surface is rotated or deformed. The singularities indi-
cate when components of the contour generator merge or
split as time evolves.

We present an algorithm to compute an initial contour gen-
erator, using a dynamic step size. An interval test guaran-
tees the topological correctness. This initial contour gener-
ator can then be maintained under a time-dependent pro-
jection by examining its singularities.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation—
Line and curve generation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Geomet-
ric algorithms, languages, and systems; G.1.0 [Numerical
Analysis]: General—Interval arithmetic

General Terms
Algorithms, Theory

Keywords
Implicit surfaces, contour generators, guaranteed topology,
interval arithmetic, singularities, evolving surfaces

∗email: {simon,gert}@cs.rug.nl

SMA’03 Seattle, Washington USA

1. INTRODUCTION
An important visibility feature of a smooth object seen un-
der parallel projection along a certain direction is its contour
generator, also known as outline, or profile. The contour
generator is the curve on the surface, separating front-facing
regions from back-facing regions. This curve may have sin-
gularities if the direction of projection is non-generic. The
apparent contour is the projection of the contour generator
onto a plane perpendicular to the view direction. In many
cases, drawing just the visible part of the apparent contour
gives a good impression of the shape of the object. In this
paper, we will not distinguish between visible and invisible
parts of the contour generator. Stated otherwise, we as-
sume the surface is transparent. Generically, the apparent
contour is a smooth curve, with some isolated singularities.
See Figure 1.

The contour generator and the apparent contour play an
important role in computer graphics and computer vision.
Rendering a polyhedral model of a smooth surface yields a
jaggy outline, unless the triangulation of the surface is finer
in a neighbourhood of the contour generator. This observa-
tion has led to techniques for view-dependent meshing and
view-dependent refinement techniques, cf. [1].

Also, to render a smooth surface it is sufficient to render only
the part of the surface with front-facing normals, so the con-
tour generator, being the boundary of the potentially visible
part plays a crucial role here. In non-photorealistic render-
ing [16] one just visualizes the apparent contour, perhaps en-
hanced by strokes indicating the main curvature directions
of the surface. This is also the underlying idea in silhouette
rendering of implicit surfaces [6]. In computer vision, tech-
niques have been developed for partial reconstruction of a
surface from a sequence of apparent contours corresponding
to a discrete set of nearby projection directions. We refer to
the book [9] for an overview, and for a good introduction to
the mathematics underlying this paper. Other applications
use silhouette interpolation [11] from a precomputed set of
silhouettes to obtain the silhouette for an arbitrary projec-
tion. In computational geometry, rapid silhouette computa-
tion of polyhedral models under perspective projection with
moving viewpoints has been achieved by applying suitable
preprocessing techniques [4].

This paper presents a method for the robust computation
of contour generators and apparent contours of implicit sur-
faces. For an introduction to the use of implicit surfaces for

-2 0 2

X

-2

0

2

Y

-2 -1 1 2

-3

-2

-1

1

2

3

Figure 1: A smooth surface (left), its apparent contour under parallel projection along the z direction
(middle), and its contour generator, seen from a different position (right). For generic surfaces (or, generic
parallel projections) the contour generator is a smooth, possibly disconnected curve on the surface, whereas
the apparent contour may have isolated cusp points.

smooth deformable object modeling we refer to [18] and [5].

We first consider generic static views, where both the sur-
face and the direction of projection are static. Then we
pass to time-dependent views, where the direction of pro-
jection changes with time. We derive conditions that locate
the changes in the topology of the contour generator and
the apparent contour. It turns out that generically there
are three types of events, or bifurcations, leading to such a
change in topology. These bifurcations have been studied
from a much more advanced mathematical point of view,
where they are known under the names lips, beak-to-beak,
and swallowtail bifurcation. See also [8]. For a nice non-
mathematical description we refer to the beautiful book by
Koenderink [15]. Also see Arnol’d [3] and Bruce [7] for a
sketch of some of the mathematical details related to sin-
gularity theory. Arnol’d [2] contains some of the results
of the paper in a complex analytic setting. Our approach is
somewhere inbetween the level of Koenderink’s book and the
sophisticated mathematical approach. We use only elemen-
tary tools, like the Inverse and Implicit Function Theorem,
and finite order Taylor expansions. These techniques are
used to design algorithms, in the same way as the Implicit
Function Theorem gives rise to Newton’s method.

Most curve tracing algorithms step along the curve using a
fixed step size. See for example [6] or [14]. For a good ap-
proximation, the user has to choose a step size that is ‘small
enough’ to follow the details of the curve. Some algorithms
predict a dynamic step size, based on the local curvature.
Both methods cannot guarantee a correct approximation to
the curve. Also, these curve tracing algorithms assume there
are no singularities. By examining the singularities before
tracing the curve we can avoid them in the tracing process.
We developed a condition based on interval analysis, that
guarantees topological correctness of the traced curve.

In Section 2 we present the framework, and discuss crite-
ria for a point on the contour generator and apparent con-
tour to be regular. Section 3 examines singularities under
some time-dependent view, for example when the viewpoint
moves or when the surface deforms. In section 4 we explain
the transformation to local models. For the implementation
interval analysis is used. A brief overview can be found in

section 5. The algorithm for computing the contour gener-
ator is explained in section 6.

2. CONTOUR GENERATOR AND
APPARENT CONTOUR

Contour generators of implicit surfaces
To understand the nature of regular and singular points of
the contour generator, and their projections on the apparent
contour, we assume S is given as the zero-set of a smooth
function F : R3 → R, so S = F−1(0). Furthermore, we
assume that 0 is a regular value of F , i.e., the gradient ∇F
is non-zero at every point of the surface. The gradient vector
∇F (p) is the normal of the surface at p, i.e., it is normal to
the tangent plane of S at p. This tangent plane is denoted
by Tp(S). If v is the direction of parallel projection, then
the contour generator Γ is the set of points at which the
normal to S is perpendicular to the direction of projection,
i.e., p ∈ Γ iff the following conditions hold:

F (p) = 0

〈∇F (p), v〉 = 0.
(1)

For convenience, we assume throughout the paper that v =
(0, 0, 1). Then the preceding equations reduce to

F (x, y, z) = 0

Fz(x, y, z) = 0.
(2)

Here, and in the sequel, we shall occasionally write Fz instead
of ∂F

∂z
(p). We also use notation like Fx and Fzz, with a similar

meaning.

We assume that S is a generic surface, i.e. there are no
degenerate singular points on its contour generator. Some
functions can yield degenerate contour generators. For ex-
ample the cylinder F (x, y, z) = x2 + y2 − 1 has a two-
dimensional contour generator for the view direction along
the z-axis. Using a small perturbation, we can transform
the cylinder into the ellipsoid F (x, y, z) = x2 + y2 + ǫz2 − 1,
having a 1-dimensional contour generator. See [20].

We now derive conditions for the contour generator Γ and
the apparent contour γ to be regular at a given point. Recall
that a curve is regular at a certain point if it has a non-

zero tangent vector at that point. The next result gives
conditions in terms of the function defining the surface.

Proposition 2.1.
1. A point p ∈ Γ is a regular point of the contour generator
if and only if

Fzz(p) 6= 0 or ∆(p) 6= 0, (3)

where ∆(p) is a Jacobian determinant defined by

∆(p) =
∂(F, Fz)

∂(x, y)

����
p

=

����Fx(p) Fy(p)
Fxz(p) Fyz(p)

���� .
2. A point p ∈ γ is a regular point of the apparent contour
if and only if

Fzz(p) 6= 0. (4)

Proof. 1. The condition for p to be regular is

∇F (p) ∧ ∇Fz(p) 6= 0.

Since Fz(p) = 0, a straightforward calculation yields

∇F (p)∧∇Fz(p) = Fzz · (Fy,−Fx, 0) +
∂(F, Fz)

∂(x, y)
· (0, 0, 1). (5)

Here all derivatives are evaluated at p. Since ∇F (p) =
(Fx(p), Fy(p), 0) 6= 0, we see that (Fy,−Fx, 0) and (0, 0, 1)
are linearly independent vectors. Therefore, the linear com-
bination of these vectors in the right-hand side of (5) is zero
iff the corresponding scalar coefficients are zero. The ne-
cessity and sufficiency of condition (3) is a straightforward
consequence of this observation.

2. Since ∇F (p) 6= 0 ∈ R3 , and Fz(p) = 0, we see that
(Fx(p), Fy(p)) 6= (0, 0). Assuming Fy(p) 6= 0, we get

∂(F, Fz)

∂(y, z)

����
p

=

����Fy Fz
Fyz Fzz

����
p

= Fy(p)Fzz(p) 6= 0. (6)

Let p = (x0, y0, z0). Then, the Implicit Function Theorem
yields locally defined functions η, ζ : R → R , with η(x0) =
y0 and ζ(x0) = z0, such that (2) holds iff y = η(x) and z =
ζ(x). The contour generator is a regular curve parametrized
as x 7→ (x, η(x), ζ(x)), locally near p, whereas the apparent
contour is a regular curve in the plane parametrized as x 7→
(x, η(x)), locally near (x0, y0).

Singular points of contour generators
We apply the preceding result to detect non-degenerate sin-
gularities of contour generators of implicit surfaces. This
result will be applied later in this section, when we consider
contour generators of time-dependent surfaces.

Again, let the regular surface S be the zero set of a C3-
function F : R3 → R, for which 0 is a regular value. We
consider the contour generator Γ of S under parallel pro-
jection along the vector v = (0, 0, 1). The equations for Γ
are

F = Fz = 0.

We consider the contour generator as the zero-set of the
function Fz, restricted to S.

Corollary 2.2. Point p is a non-degenerate singular point
of Γ iff the following two conditions hold:

F (p) = Fz(p) = Fzz(p) =
∂(F, Fz)

∂(x, y)

����
p

= 0, (7)

and Σ(p) 6= 0, where, for Fx(p) 6= 0,

Σ(p) = − Fx
2 Fxzz

2 Fy
2 + 2Fx

3 Fxzz Fy Fyzz − Fx
4 Fyzz

2

− 2Fx
3 Fxyz Fy Fzzz + 2Fx

2 Fxy Fxz Fy Fzzz

+ Fx
2 Fxxz Fy

2 Fzzz − Fx Fxx Fxz Fy
2 Fzzz

− Fx
3 Fxz Fyy Fzzz + Fx

4 Fyyz Fzzz,

(8)

whereas, for Fy(p) 6= 0, we have

Σ(p) = − Fxzz
2 Fy

4 + 2Fx Fxzz Fy
3 Fyzz − Fx

2 Fy
2 Fyzz

2

− 2Fx Fxyz Fy
3 Fzzz + Fxxz Fy

4 Fzzz

+ Fx
2 Fy

2 Fyyz Fzzz + 2Fx Fxy Fy
2 Fyz Fzzz

− Fxx Fy
3 Fyz Fzzz − Fx

2 Fy Fyy Fyz Fzzz.

(9)

Proof. Condition (7) reflects the fact that p is a singular
point of Fz|S, cf. (3), whereas (8) expresses non-degeneracy
of this singular point. Condition (8) is obtained by a straight-
forward expansion1 of (24) (see appendix A), with G = Fz,

and V = X as in (25), where λ =
F0

xz

F0
x

, F 0
z = F 0

zz = 0, and

F 0
yz =

F0

y

F0
x

F 0
xz. Condition (9) is derived similarly.

Generic projections: fold and cusp points
In view of Proposition 2.1, regular points of the apparent
contour are projections of points (x, y, z) ∈ R3 satisfying

F (x, y, z) = Fz(x, y, z) = 0, and Fzz(x, y, z) 6= 0.

This being a system of two equations in three unknowns,
we expect that the regular points of the apparent contour
form a one-dimensional subset of the plane. Furthermore,
the singular points of the apparent contour are projections of
points satisfying an additional equation, viz. Fzz(x, y, z) = 0,
and are therefore expected to be isolated. This is true for
generic surfaces. To make this more precise, we consider the
set of functions F : R3 → R, satisfying

(F (x, y, z), Fz(x, y, z), Fzz(x, y, z),∆(x, y, z)) 6= (0, 0, 0, 0),
(10)

and

(F (x, y, z), Fz(x, y, z), Fzz(x, y, z), Fzzz(x, y, z)) 6= (0, 0, 0, 0).
(11)

If F satisfies (10), then Proposition 2.1 tells us that the
contour generator Γ of S = F−1(0) under parallel projection
along v is a regular curve. Moreover, for a point (x, y, z) ∈ Γ
there are two cases:

1. Fzz(x, y, z) 6= 0; in this case the point projects to a
regular point (x, y) of the apparent contour γ. Such
a point is called a fold point of the contour generator.

1using a computer algebra system

Figure 2: (a) A local model of the surface at a fold
point is x + z2 = 0. Both the contour generator Γ,
and the visible contour γ, are regular at the fold
point, and its projection onto the image plane, re-
spectively. (b) A local model at a cusp point is
x+yz+z3 = 0. Here the contour generator is regular,
but the apparent contour has a regular cusp.

This terminology is justified by the local model of the
surface near a fold point, viz.

x+ z2 = 0. (12)

See also Figure 2a. Here the contour generator is the
y-axis in three space, so the apparent contour is the
y-axis in the image plane.

2. Fzz(x, y, z) = 0; in this case the point projects to a
singular point (x, y) of γ. Such a point is called a cusp
point of the contour generator if, in addition to (10),
condition (11) is satisfied, i.e., if both ∆(x, y, z) 6= 0
and Fzzz(x, y, z) 6= 0. In this case the surface has the
following local model near the cusp point:

G(x, y, z) = x+ yz + z3 = 0. (13)

See also Figure 2b. The local model G is sufficiently
simple to allow for an explicit computation of its con-
tour generator and apparent contour: the former is
parametrized by z 7→ (2z3,−3z2, z), the latter is a reg-
ular cusp parametrized by z 7→ (2z3,−3z2).

Intuitively speaking, a local model of the surface near a point
is a ‘simple’ expression of the defining equation in suitably
chosen local coordinates. Usually, as in the cases of fold
and cusp points, a local model is a low degree polynomial,
which can be easily analyzed in the sense that the contour
generator and the apparent contour are easily determined.

So far we have only considered parallel projection. The
standard perspective transformation [13], which moves the
viewpoint to ∞, reduces perspective projections to parallel
projections. By deforming the surface using this transfor-
mation, perspective projections can be computed by using
parallel projection on the transformed implicit function.

3. EVOLVING CONTOURS
As we have seen, generic surfaces satisfy conditions (10) and
(11), since violation of one of these conditions would corre-
spond to the existence of a solution of four equations in
three unknowns. However, evolving surfaces depend on an
additional variable, t say. Time dependency is expressed by
considering implicitly defined surfaces

St = {(x, y, z) ∈ R3 | F (x, y, z, t) = 0},
where F : R3 × R → R is a smooth function of the space
variables (x, y, z) and time t. Generically we expect that
exactly one of the conditions (10) and (11) will be violated
at isolated values of (x, y, z, t). For definiteness, we assume
(0, 0, 0, 0) is such a value.

Violation of (10) corresponds to a singularity of the con-
tour generator. In this case the implicit surfaces, defined
by F (x, y, z, 0) = 0 and Fz(x, y, z, 0) = 0, are tangent at
(x, y, z) = (0, 0, 0), but the tangency is non-degenerate. Stated
otherwise, the function G : R3 → R, defined by G(x, y, z) =
Fz(x, y, z), restricted to the surface S0, has a non-degenerate
singularity at (0, 0, 0).

Generically, there are two types of bifurcations, correspond-
ing to different scenarios for changes in topology of the con-
tour generator. The beak-to-beak bifurcation corresponds
to the merging or splitting of connected components of the
contour generator. Under some additional generic condi-
tions (inequalities), a local model for this phenomenon is
the surface, defined by

G(x, y, z, t) = x+ (−y2 + t)z + z3, (14)

Here the contour generator is defined by x = 2z3,−y2 +
3z2 = −t. See also Figure 3.

Figure 3: The beak-to-beak bifurcation. With re-
spect to the local model (14) the bifurcation cor-
responds to t < 0 (left), t = 0 (middle), and t > 0
(right).

Putting Gt(x, y, z) = G(x, y, z, t), we check that G0 satisfies
(7) at p = (0, 0, 0), and that |Σ(p)| = −4. (In fact, G0

x = 1,
so all higher order derivatives of G0

x vanish identically, so
only the last term in the right hand side of (8) is not identi-
cally equal to zero.) Therefore, G0

z|S has a non-degenerate
singular point of saddle type at p. According to the Morse
lemma (see [10] or [17]), the level set of G0

z|S through p con-
sists of two regular curves, intersecting transversally at p,
which concurs with Figure 3 (middle).

A second scenario due to the violation of (11) is the lips bi-
furcation, corresponding to the birth or death of connected
components of the contour generator. Again, under some
additional generic conditions a local model for this phe-
nomenon is the surface, defined by

G(x, y, z, t) = x+ (y2 + t)z + z3, (15)

Here the contour generator is defined by x = 2z3, y2 +3z2 =
−t. In particular, for t > 0 the surface St has no connected
component of the contour generator near (0, 0, 0), for t = 0,
the point (0, 0, 0) is isolated on the contour generator, and
for t < 0 there is a small connected component growing
out of this isolated point as t decreases beyond 0. See also
Figure 4.

Figure 4: The lips bifurcation. Left: t < 0. Middle:
t = 0. Right: t > 0.

As for the beak-to-beak bifurcation, we show that G0|S has
a non-degenerate singular point at (0, 0, 0), which in this
case is an extremum.

Violation of (11) involves the occurrence of a higher order
singularity of the apparent contour. Note, however, that in
this situation the contour generator is still regular at the
point (x, y, z), cf. Proposition 2.1. Imposing some addi-
tional generic conditions a local model for this type of bi-
furcation is

G(x, y, z, t) = x+ yz + tz2 + z4 = 0. (16)

Here the apparent contour is parametrized as z 7→ (tz2 +
z4,−2tz − 4z3). See also Figure 5.

4. TRANSFORMATIONS AND
NORMAL FORMS

In Section 2 we presented local models of various types of
regular and singular points on contour generators and ap-
parent contours, both for generic static surfaces, and for
surfaces evolving generically in time. These local models
are low degree polynomials, which are easy to analyze, and
which yet capture the qualitative behavior of the contour
generator and the apparent contour in a neighborhood of
the point of interest. In this section we explain more pre-
cisely what we mean by capturing local behavior.

Consider two regular implicit surfaces S = F−1(0) and T =

Figure 5: The swallowtail bifurcation. Left: t < 0.
Middle: t = 0. Right: t > 0.

G−1(0). An invertible smooth map Φ: R3 → R3 for which

F ◦ Φ = G (17)

maps T to S. In fact, we consider Φ to be defined only
locally near some point of T , but we will not express this
in our notation. The map Φ need not map the contour
generator of T onto that of S, however. To enforce this, we
require that Φ maps vertical lines onto vertical lines, i.e., Φ
should be of the form

Φ(x, y, z) = (h(x, y),H(x, y, z)), (18)

where h : R2 → R2 and H : R3 → R are smooth maps. The
map h is even invertible, since Φ is invertible. To allow our-
selves even more flexibility in the derivation of local models,
we relax condition (17) by requiring the existence of a non-
zero function ϕ : R3 → R such that

F (Φ(x, y, z)) = ϕ(x, y, z)G(x, y, z). (19)

Definition 4.1. Let S = F−1(0) and T = G−1(0) be
regular surfaces, near p = (0, 0, 0) ∈ R3. An admissible local
transformation from T to S, locally near p, is a pair (Φ, ϕ),
where ϕ : R3 → R is non-zero at p, and Φ: R2 × R → R3

is locally invertible near p, and of the form (18), such that
(19) holds. We also say that Φ brings F in the normal form
G.

If the surfaces S and T depend smoothly on k parameters,
i.e., they are defined by functions F : R3 × Rk → R and
G : R3 × Rk → R, respectively, then we require that the
parameters are not mixed with the (x, y, z)-coordinates, i.e.,
we require that (19) is replaced with

F (Φ(x, y, z, µ)) = ϕ(x, y, z, µ)G(x, y, z, µ),

where Φ: R3 × Rk → R3 × Rk is of the form

Φ(x, y, z, µ) = (h(x, y, µ),H(x, y, z, µ), ψ(µ)).

Then Φµ, defined by Φµ(x, y, z) = Φ(x, y, z, µ), maps Tµ to

Sψ(µ), and preserves contour generators. Furthermore, the
map hµ : R2 → R2 , defined by hµ(x, y) = h(x, y, µ), maps

the apparent contour of Tµ onto that of Sψ(µ).

Proposition 4.2. If Φ is an admissible local transforma-
tion from T to S, locally near a point p on the contour gen-
erator of T , where Φ is of the form (18), then

1. Φ maps T to S, locally near p ∈ S;

2. Φ maps the contour generator of T to the contour gen-
erator of S, locally near p;

3. h maps the apparent contour of T onto the apparent
contour of S, locally near the projection π(p) ∈ R2 .

Proof. From (18) and (19) it is easy to derive

F (Φ(p)) = ψ(p)G(p),

Fz(Φ(p))Hz(p) = ψz(p)G(p) + ψ(p)Gz(p).

Since ψ(p) 6= 0, and Hz(p) 6= 0, we conclude that G(p) =
Gz(p) = 0 iff F (Φ(p)) = Fz(Φ(p)) = 0.

Example: local model at a truncated cusp point
We now illustrate the use of admissible transformations by
deriving a local model for the class of implicit surfaces de-
fined as the zero set of a function of the form:

F (x, y, z) = a(x, y) + b(x, y)z + c(x, y)z2 + z3, (20)

with a(0, 0) = b(0, 0) = c(0, 0) = 0, and

∂(a, b)

∂(x, y)

����
0

6= 0. (21)

Note that the local model x+ y z + z3 = 0, derived in Sec-
tion 2 for a cusp point, belongs to this class. Our goal is to
show that the latter is indeed a local model for all surfaces
of the type (20). Since F (0) = Fz(0) = Fzz(0) = 0, and

∂(F, Fz)

∂(x, y)

����
0

=
∂(a, b)

∂(x, y)

����
0

6= 0,

we see that 0 ∈ R3 is a regular point of the contour gener-
ator of S, whereas (0, 0) is a singular point of the apparent
contour, cf. Proposition 2.1

As a first step towards a normal form of the implicit surface,
we apply the Tschirnhausen transformation z 7→ z− 1

3
c(x, y)

to transform the quadratic term (in z) in F away. More
precisely,

F (x, y, z − 1
3
c(x, y)) = a(x, y) − 1

3
b(x, y) c(x, y) + 2

27
c(x, y)3

+ (b(x, y) − 1
3
c2(x, y)) z + z3

= G(ϕ(x, y), z),

where G(x, y, z) = x+ yz + z3, and

ϕ(x, y) = (a(x, y) − 1
3
b(x, y) c(x, y) + 2

27
c(x, y)3,

b(x, y) − 1
3
c(x, y)2).

It is not hard to check that the Jacobian determinant of ϕ
at 0 ∈ R2 is equal to

∂(a, b)

∂(x, y)

����
0

,

so ϕ is a local diffeomorphism near 0 ∈ R2 . Let ϕ be its
inverse, then, putting

Φ(x, y, z) = (ϕ(x, y), z − 1
3
c(ϕ(x, y)),

we get

F ◦ Φ(x, y, z) = G(x, y, z).

In other words, the admissible transformation Φ brings F
into the normal form G. In particular, it maps the surface
T = G−1(0) and its contour generator onto S = F−1(0),
and ϕ maps the apparent contour of T onto the apparent
contour of S.

5. INTERVAL ANALYSIS
One way to prevent rounding errors due to finite precision
numbers is to use interval arithmetic. Instead of numbers,
intervals containing the exact solution are computed. An
inclusion function �f for a function f : Rm → Rn computes
for each m-dimensional interval I (i.e. an m-box) an n-
dimensional interval �f(I) such that

x ∈ I ⇒ f(x) ∈ �f(I)

An inclusion function is convergent if

width(I) → 0 ⇒ width(�f(I)) → 0

where the width of an interval is the largest width of I .

For example if f : R → R is the square function f(x) = x2,
then a convergent inclusion function is�f([a, b]) =

�
[min(a2, b2),max(a2, b2)], a · b ≥ 0
[0,max(a2, b2)], a · b < 0

Inclusion functions exist for the basic operators and func-
tions. To compute an inclusion function it is often sufficient
to replace the standard number type (e.g. double) by an
interval type.

We assume there are convergent inclusion functions for our
implicit function F and its derivatives, and will denote them
by F (and similiar for the derivatives). From the context it
will be clear when the inclusion function is meant.

Interval arithmetic can be implemented using demand-driven
precision. For the interval bounds, ordinary doubles (with
conservative rounding) can be used for fast computation. In
the rare case that the interval becomes too small for the
precision of a double, a multi-precision number type can be
used.

Interval Newton Method
For precision small intervals around the required value are
used. Another use of interval arithmetic is to compute func-
tion values over larger intervals. If for an implicit surface
F = 0 and a box I we have 0 /∈ �F (I), we can be certain
that I contains no part of the surface. This observation can
be extended to the Interval Newton Method, that finds all
roots of a function f : Rn → Rn in a box I .

The first part of the algorithm recursively subdivides the
box, discarding parts of space containing no roots. If the
boxes are small enough a Newton method refines the solu-
tions and guarantees that all roots are found. Solving

f(x) + J(I)(z − x) = 0,

where x is the centre of I , J is the Jacobian matrix of f and
J(I) is the interval matrix of J over the interval I , results in
an interval Y containing all roots z of f . This interval can
be used to refine I . Also, if Y ⊂ I there is a unique root

of f in I . See [12] for the mathematical details. A more
practical introduction can be found in [19] or [20].

6. TRACING THE CONTOUR
GENERATOR

Our goal is to approximate the contour generator by a piece-
wise linear curve. This initial approximation can then be
maintained under some time-dependent view. To this end
the singularities of the contour generator for an evolving
view or surface can be precomputed using interval analysis.
Since the topology doesn’t change between these singulari-
ties, the initial contour generator can be updated continu-
ously, until we reach a time where a singularity arises. The
local model at this singularity indicates how the topology
has to be updated. See Section 4. For details we refer to
the full version of this paper.

Note that for a singularity of the contour generator of a
time-dependent surface, we have0BB� F (x, y, z, t)

Fz(x, y, z, t)
Fzz(x, y, z, t)
∆(x, y, z, t)

1CCA = 0.

These singularities can therefore be considered as the zeroes
of a function from R4 to R4 . Using the Interval Newton
Method, we can find all t for which a singularity occurs.

For the initial contour generator we can assume there are no
singularities. The construction consists of two steps.

Firstly, for each component we have to find an initial point
to start the tracing process. Interval analysis enables us to
find points on all components of the contour generator. See
below for details. These (regular) points serve as starting
points for the tracing process.

Secondly, we trace the component by stepping along the con-
tour generator. For each starting point we trace the com-
ponent, by moving from a point pi to the next point pi+1.
We take a small step in the direction of the tangent to the
contour generator at pi. Then, we move the resulting point
back to the contour generator, giving us pi+1. An interval
test guarantees that we stay on the same component, with-
out skipping a part. If the test fails, we decrease the step
size and try again, until the interval test succeeds. If we
reach the initial point p0, the component is fully traced. See
Figure 9 for some results of the algorithm.

Finding initial points
A tangent vector to the contour generator at p can be found
by computing

w(p) = ∇F (p) ∧∇Fz(p) =

0� FyFzz
−FxFzz

FxFyz − FyFxz

1A .

Since the components of the contour generator are bounded,
closed curves, there are at least two points on each compo-
nent where the x-component of w(p) disappears, i.e. where
FyFzz = 0.

Let R,S : R3 → R3 be the functions

R(p) =

0�F (p)
Fz(p)
Fy(p)

1A and S(p) =

0� F (p)
Fz(p)
Fzz(p)

1A
The Interval Newton Method can find all roots of R and
S. These roots are used to create a list of (regular) initial
points.

Tracing step
Let N(x) be the normalized vector field

N(x) =
∇F (x) ∧∇Fz(x)

‖∇F (x) ∧∇Fz(x)‖
.

For x on the contour generator, N(x) is a tangent vector at
x. From pi we first move to q0 = pi + δN(pi), where δ is
the step size. To move back to the contour generator, we
alternately move towards F = 0 and Fz = 0 by replacing qi

by 8>><>>: qi+1 = qi − F (qi)∇F (qi)

‖∇F (qi)‖2
towards F

qi+1 = qi − Fz(q
i)∇Fz(qi)

‖∇Fz(qi)‖2
towards Fz

until ‖qi+2 − qi‖ is sufficiently small. The resulting point
is the next point on the contour generator, pi+1. For this
new point we perform the interval test (explained below) to
determine whether pipi+1 is a good approximation of the
contour generator. If not, we decrease δ (e.g. by setting it
to δ/2), and repeat the tracing step from pi.

Interval test
For a fixed step size, there is always a possibility of acciden-
tally jumping to another component of the contour genera-
tor, or of skipping a part (figure 6).

F = 0

Fz = 0

N(pi)

pi

pi+1

Figure 6: Left: N(pi) is a tangent to the intersection
of F = 0 and Fz = 0. Right: a fixed step size can
miss part of the contour generator.

To assure that pipi+1 is a good approximation for the con-
tour generator, first we construct a sphere S with centre pi,
that contains pi+1. Then we take the bounding box B of S:

B = [pix − ∆, pix + ∆] × [piy − ∆, piy + ∆] × [piz − ∆, piz + ∆],

where ∆ = ‖pi+1 − pi‖. Over this box we compute the
interval

I = 〈N(pi), N(B)〉,

whereN(B) contains all normalized vectors
∇F (s) ∧∇Fz(t)

‖∇F (s) ∧∇Fz(t)‖
,

with s, t ∈ B.

Lemma 6.1. If I > 1
2

√
2, (i.e. ∀i ∈ I : i > 1

2

√
2), then

the part of the contour generator within S consists of a single
component (fig. 7).

N(p)

pi

pi+1
S

Figure 7: The sphere containing the line segment,
and its bounding box.

Proof. We define G(x) = 〈x− pi, N(pi)〉. The level sets
of G are planes perpendicular to N(pi). Let f : R3 → R3 be
the function

f(x) =

0�F (x)
Fz(x)
G(x)

1A .

Suppose there are two points x and y of the contour gen-
erator in B, lying in a plane perpendicular to N(pi), i.e.
f(x) = f(y) = (0, 0, θ) for some θ. Then there are points s
and t on xy where0�∇F (s)

∇Fz(t)
N(pi)

1A (y − x) =

0�0
0
0

1A
For x 6= y, we find that 〈∇F (s)∧∇Fz(t),N(pi)〉 = 0. Since
s, t ∈ B this contradicts the interval test. Therefore, within
box B each plane perpendicular to N(pi) contains at most
one point of the contour generator.

The interval condition I > 1
2

√
2 implies that the angle be-

tween N(pi) and N(x) is at most π
4
. The contour generator

lies in a cone C around N(x) (fig. 8) with top angle π
2
, for

if it leaves the cone at point a, then 〈N(pi), N(a)〉 would be
smaller than 1

2

√
2. It can only leave the sphere in S ∩ C.

In this part of the sphere the contour generator can’t re-
enter S, because that would require an entry point b where
〈N(pi), N(b)〉 < 1

2

√
2. Therefore, there is only a single con-

nected component of the contour generator within sphere
S.

N(p)pi

S

C

Figure 8: The contour generator lies within a cone.

If the interval test succeeds, we can use the same sphere S to
remove redundant points from the initial point list. If there

are point in the list that lie within S, they must be part of
the component we are tracing, so they can be discarded.

To test whether the component is fully traced, we test if the
initial point p0 is contained in S. If it is, testing

〈pi+1 − pi, p0 − pi〉 > 0

tells us whether we’re done with this component (otherwise
we just started the trace and are still moving away from p0).

The interval bound is valid if the centre of the cube is on the
contour generator. Since pi is in general close to, but not on
the contour generator, in practice we take a slightly larger
bound. Also, ∆ should be slightly larger than ‖pi+1 − pi‖,
to prevent pi+1 from being too close to other parts of the
contour generator outside S.

7. CONCLUSION AND FUTURE
RESEARCH

We presented a framework for the analysis of an implicit
surface near regular and singular points of its contour gen-
erator and apparent contour, and also derived conditions for
detecting changes of topology of these visibility features in
generic one-parameter families of implicit surfaces.

We developed an algorithm to compute a topologically cor-
rect approximation of the initial contour generator. A dy-
namic step size, combined with an interval test, guarantees
that no part of the contour generator is skipped.

We plan to extend this work by implementing a robust al-
gorithm for maintaining the contour generator under time-
dependent directions of projection or surfaces, in such a way
that its topology is guaranteed.

8. REFERENCES
[1] P. Alliez, N. Laurent, H. Sanson, and F. Schmitt.

Efficient view-dependent refinement of 3d meshes
using sqrt(3)-subdivision, 2001. To appear in the
Visual Computer.

[2] V.I. Arnol’d. Wave front evolution and equivariant
Morse lemma. Comm. Pure Appl. Math., 29:557–582,
1976.

[3] V.I. Arnol’d. Catastrophe Theory. Springer-Verlag,
Berlin, 1986.

[4] G. Barequet, C.A. Duncan, M.T. Goodrich, S. Kumar,
and M. Pop. Efficient perspective-accurate silhouette
computation. In Proc. 15th Annu. ACM Sympos.
Comput. Geom., pages 417–418, 1999.

[5] J. Bloomenthal. Introduction to Implicit Surfaces.
Morgan-Kaufmann, 1997.

[6] D.J. Bremer and J.F. Hughes. Rapid approximate
silhouette rendering of implicit surfaces. In Proceedings
of Implicit Surfaces ’98, pages 155–164, 1998.

[7] J.W. Bruce. Seeing - the mathematical viewpoint. The
Mathematical Intelligencer, 6:18–25, 1984.

[8] J.W. Bruce and P.J. Giblin. Outlines and their duals.
Proc. London Math. Soc. (3), 50:552–570, 1985.

Figure 9: Contour generator of a sphere and of 8 metaballs (see appendix B) near the vertices of a cube.
The small squares indicate the initial points. The dots on the sphere show the dynamic step size. Note that
the metaballs are close to a singularity under motion of the viewpoint. The sizes of the eight components
range from 439 to 879 segments.

[9] R. Cipolla and P.J. Giblin. Visual Motion of Curves
and Surfaces. Cambridge University Press, 2000.

[10] A.T. Fomenko and T.L. Kunii. Topological Modeling
for Visualization. Springer-Verlag, Tokyo, 1997.

[11] X. Gu, S.J. Gortler, H. Hoppe, L. McMillan, B.J.
Brown, and A.D. Stone. Silhouette mapping.
Computer Science Technical Report TR-1-99, Harvard
University, March 1999.

[12] E.R. Hansen and R.I. Greenberg. An Interval Newton
Method. Applied Mathematics and Computation,
12:89–98, 1983.

[13] D. Hearn, M.P. Baker. Computer Graphics, 2nd
edition Prentice-Hall, Englewood Cliffs, NJ, 1994.

[14] C.M. Hoffman. Geometric and Solid Modeling.
Morgan-Kaufman, 1989.

[15] J.J. Koenderink. Solid Shape. Artificial Intelligence.
MIT-Press, Cambridge, Massachusetts, 1990.

[16] L. Markosian, M.A. Kowalski, S.J. Trychin, L.D.
Bourdev, D. Goldstein, and J.F. Hughes. Real-time
nonphotorealistic rendering. In SIGGRAPH’97
Proceedings, pages 415–420, 1997.

[17] J. Milnor. Morse Theory, Vol.51 of Annals of
Mathematics Studies, Princeton University Press,
Princeton, NJ, 1963.

[18] A. Opalach and S.C. Maddock. An Overview of
Implicit Surfaces. Introduction to Modelling and
Animation Using Implicit Surfaces, pages 1.1–1.13,
1995.

[19] J.M. Snyder. Interval Analysis for Computer Graphics.
SIGGRAPH’92 Proceedings, pages 121–130, 1992.

[20] B.T. Stander and J.C. Hart. Guaranteeing the
topology of an implicit surface polygonization for
interactive modeling. SIGGRAPH’97 Proceedings,
pages 279–286, 1997.

APPENDIX
A. SINGULARITIES OF FUNCTIONS

ON SURFACES
Non-degenerate singular points
Consider an implicit surface S = F−1(0), where F : R3 → R
is a C2 function. We assume that 0 is a regular value of F ,
so according to the Implicit Function Theorem S is a regular
C2-surface.

Our goal is to determine conditions which guarantee that
the restriction of a C2 function G : R3 → R to the surface S
has a non-degenerate singular point.

As for notation, the gradient of a function F : R3 → R at
p ∈ R will be denoted by ∇F (p). Furthermore, the Hessian
quadratic form of a function F : R3 → R at p ∈ R will be
denoted by HF (p). Usually, we suppress the dependence
on p from our notation, and denote this quadratic form by
HF . With respect to the standard euclidean inner product
its matrix is the usual symmetric matrix whose entries are
the second order partial derivatives of F . We denote partial
derivatives using subscripts, e.g., Fx denotes ∂F

∂x
, Fxy denotes

∂2F
∂x∂y

, etc.

Theorem A.1. Let F,G : R3 → R be C2 functions, and
let 0 be a regular value of F . Let p be a point on the surface
S = F−1(0).

1. p is a singular point of G|S iff there is a real number λ
such that

∇G(p) = λ∇F (p). (22)

2. Furthermore, the singular point p is non-degenerate iff

(HG − λHF) | TpS (23)

is a non-degenerate quadratic form, where λ is as in
(22).

Remark The scalar λ in (22) is traditionally called a La-
grange multiplier.

Corollary A.2. The singularity p of G|S is non-degenerate
iff the 2 × 2-matrix ∆, defined by (24), is non-singular:

∆ = V T ·(

0�Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz

1A−λ

0�Fxx Fxy Fxz
Fxy Fyy Fyz
Fxz Fyz Fzz

1A)·V, (24)

where λ is the Lagrange multiplier defined by (22), and V is
a 3 × 2-matrix whose columns span the tangent space TpS.
Here all first and second order derivatives are evaluated at
p. Furthermore, G|S, the singular point p is a maximum or
minimum if det(∆) > 0, and a saddle point if det(∆) < 0.

In particular, we may take V = X, V = Y , or V = Z if
Fx(p) 6= 0, Fy(p) 6= 0, or, Fz(p) 6= 0, respectively, where

X =

0� Fy Fz
−Fx 0
0 −Fx

1A, Y =

0�−Fy 0
Fx Fz
0 −Fy

1A, Z =

0�−Fz 0
0 −Fz
Fx Fy

1A.
(25)

Proof of Theorem A.1
1. Saying that p is a singular point of G|S is equivalent to
dGp(v) = 0, for all v ∈ TpS. Since TpS = ker dFp, we see
that this is equivalent to the existence of a scalar λ such
that dGp = λ dFp.

2. Since 0 is a regular value of F , we have ∇F (p) 6= 0. We
assume that Fx(p) 6= 0, and argue similarly in case Fy(p) 6= 0
or Fz(p) 6= 0. Furthermore, assume that p = (0, 0, 0). Ac-
cording to the Implicit Function Theorem, there is a unique
local solution x = f(y, z), with f(0, 0) = 0, of the equation
F (x, y, z) = 0. Implicit differentiation yields

Fx fy + Fy = 0, (26)

Fx fz + Fz = 0, (27)

where fy and fz are evaluated at (y, z), and Fx, Fy and Fz
are evaluated at (f(y, z), y, z). Similarly,

Fxx f
2
y + 2Fxyfy + Fyy + Fxfyy = 0. (28)

Similar identities are obtained by differentiating (26) with
respect to y, and (27) with respect to z.

Using y and z as local coordinates on S, we obtain the fol-
lowing expression of G|S with respect to these local coordi-
nates:

g(y, z) = G(f(y, z), y, z).

Differentiating this identity twice with respect to y we obtain

gyy = Gxx f
2
y + 2Gxyfy +Gyy +Gx fyy. (29)

Since Fx(p) 6= 0, we solve fyy from (28), and plug the result-
ing expression into (29), to get

gyy = (Gxx −λFxx) f2
y +2(Gxy −λFxy) fy +(Gyy −λFyy), (30)

where

λ =
Gx

Fx

is the Lagrange multiplier, cf. (22). We rewrite (30) as

gyy =
�
fy 1 0

�
(HG − λHF)

0�fy1
0

1A
=

1

F 2
x

�
Fy −Fx 0

�
(HG − λHF)

0� Fy
−Fx
0

1A
We similarly derive

gyz =
1

F 2
x

�
Fy −Fx 0

�
(HG − λHF)

0� Fz
0

−Fx

1A ,

and

gzz =
1

F 2
x

�
Fz 0 −Fx

�
(HG − λHF)

0� Fz
0

−Fx

1A .

Since the vectors (Fy,−Fx, 0) and (Fz, 0,−Fx) span the tan-
gent space TpS, we see that�

gyy gyz
gyz gzz

�
=

1

F 2
x

∆.

B. METABALLS
One approach to modeling using implicit surfaces is to use
metaballs. A single metaball consists of a density function
around a single point. The function value at the point equals
a given weight, and drops to zero at a given distance (the
radius) from the centre. By adding individual metaballs and
subtracting a threshold value, blobby objects can be joined
smoothly.

For a single metaball with weight w and radius R we use
the density function

D(P) =

(
w
�
1 −

�
r
R

�2�2

r < R

0 r ≥ R

where r is the distance from P to the centre of the metaball.

Using threshold T , the implicit function for the metaball
object is given by

F (P) =

nX
i=1

Di(P) − T.

