
Envelope Surfaces

Nico Kruithof
∗

and Gert Vegter
Department of Mathematics and Computing Science

University of Groningen, The Netherlands
P.O. Box 800,

9700 AV Groningen, The Netherlands

{nico,gert}@cs.rug.nl

ABSTRACT
We construct a class of envelope surfaces in R

d, more pre-
cisely envelopes of balls. An envelope surface is a closed C1

(tangent continuous) manifold wrapping tightly around the
union of a set of balls. Such a manifold is useful in modeling
since the union of a finite set of balls can approximate any
closed smooth manifold arbitrarily close.

The theory of envelope surfaces generalizes the theoreti-
cal framework of skin surfaces [5] developed by Edelsbrun-
ner for molecular modeling. However, envelope surfaces are
more flexible: where a skin surface is controlled by a single
parameter, envelope surfaces can be adapted locally.

We show that a special subset of envelope surfaces is piece-
wise quadratic and derive conditions under which the enve-
lope surface is C1. These conditions can be verified automat-
ically. We give examples of envelope surfaces to demonstrate
their flexibility in surface design.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
Problems and Approximations; I.3.5 [Computer graph-
ics]: Computational Geometry and Object Modeling—Curve,
surface, solid, and object representations
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1. INTRODUCTION
The construction of smooth surfaces has obtained consid-

erable attention in computational geometry. In recent years
research has focused on surface reconstruction from finite
point samples or from a finite set of medial balls, on the
design of smooth surfaces for molecular modeling starting
from a finite set of balls, and on meshing such surfaces for
further geometric processing.

In this paper we introduce envelope surfaces, a class of
closed C1 surfaces1 in R

d that wrap tightly around the union
of a set of balls. Such objects are useful in surface design,
since any closed smooth surface can be approximated to
within arbitrarily small Hausdorff distance by the union of
a finite set of balls. The ideas originate from the theory of
skin surfaces [5] developed by Edelsbrunner for molecular
modeling. In fact, skin surfaces are a special type of enve-
lope surfaces. However, envelope surfaces are more flexible:
for a set of n input balls in R

d the number of degrees of free-
dom of an envelope surface is Ω(n), whereas a skin surface
associated with such a set of balls is controlled by a single
parameter (called the shrink factor).

1.1 Weighted points and envelope surfaces
A weighted point in R

d is a pair (p,w), with p ∈ R
d

and w ∈ R. If w ≥ 0, we associate this pair with the ball
B(p,

√
w) with center p and radius

√
w.

Given a finite set P of weighted points (input balls) in R
d,

we construct a continuous real-valued weight function W on
a domain D in R

d, containing the centers of these points,
such that W interpolates the given weights at the centers of
the corresponding balls in P . In other words: W (p) = w,
for (p, w) ∈ P . The envelope surface associated with this
weight function is the boundary of the union of the infinite
family of balls

{B(p,
p

W (p)) | p ∈ D and W (p) ≥ 0}. (1)

In this paper D will be a compact domain, usually the con-
vex hull of the set of centers of the balls in P . Compactness
of D implies that the envelope surface is bounded.

1.2 Results
Our contribution consists of three parts.

1. We derive necessary and sufficient conditions for smooth-
ness (tangent continuity) of the envelope surface of the fam-

1In this paper a surface is a hypersurface (codimension one

submanifold) in R
d.



ily (1). This envelope surface is the zero-set of the function
H : R

d → R, defined by

H(x) = minp∈D

`

‖x − p‖2 − W (p)
´

. (2)

We prove that this function is C1 if the associated weight
function W1 : D → R, defined by

W1(p) = ‖p‖2 − W (p), (3)

is strictly convex. Furthermore, we show that the zero-set
of H is a regular hypersurface of R

d if it does not contain
any zeros of the weight function. In general, the envelope
surface is Ck if W is Ck.
2. Subsequently, we present a flexible method for the design
of tangent continuous (C1) envelope surfaces from a finite
set of input balls. The domain D of the interpolating weight
is the convex hull of the set of centers of these balls, endowed
with a triangulation T of the set of centers. We show how
to design a tangent continuous piecewise quadratic envelope
surface by constructing a continuous weight functions that is
piecewise quadratic with respect to T and has a strictly con-
vex associated weight function. Furthermore, we construct a
polyhedral subdivision of R

d such that each quadratic patch
is the intersection of the envelope surface with one of the
polyhedral cells.

The piecewise quadratic weight function is controlled lo-
cally by associating a control parameter to each edge of the
triangulation T of D. Therefore, the number of degrees of
freedom in the design of an envelope surface is considerably
larger than in the case of skin surfaces, where the shrink
factor is the single control parameter.
3. Finally, we show that our envelope surfaces extend the
class of skin surfaces [5] and that our scheme generalizes the
approximation method based on skin surfaces presented in
[9]. The polyhedral subdivision defining the decomposition
of the surface into quadratic patches is a generalization of
the mixed complex associated with skin surfaces.

1.3 Previous work
A special class of envelope surfaces is formed by skin sur-

faces, introduced by Edelsbrunner in [5]. These are mainly
used for modeling large molecules in biological computing.
Each atom in the molecule is represented by a sphere and
atoms that lie close to each other are connected by smooth
patches. In our earlier work [9] we approximate a smooth
surface by a skin surface. An algorithm that approximates
a polyhedron by a skin surface can be found in [4]. Two
examples showing the increased flexibility of envelope sur-
faces compared to skin surface are given in Figure 6 and 5.
Several algorithms exist for meshing skin surfaces [2, 3, 10].
We expect that our algorithm [10] can be adapted to mesh
envelope surfaces introduced in this paper.

Another surface representation that defines a surface by a
set of interior balls is the Medial Axis Transform (MAT). An
algorithm that constructs an approximating surface using
the MAT is presented in [11]. The balls of the MAT are
centered on the medial axis, which is a skeletal structure of
the surface, whereas the balls defining an envelope surfaces
lie on a convex three-dimensional domain.

Blobby objects or metaballs [1] also control a surface based
on a set of balls. A disadvantage of these surfaces over skin
surfaces is that for metaballs there is no known combinato-
rial structure that decomposes the surface into manageable
pieces. Moreover, the input balls for blobby objects are en-
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Figure 1: The function L(f) is the Legendre-Fenchel
transform (conjugate) of the convex function f .

tirely contained inside the surface, and are not maximal. In
fact, for blobby objects two balls centered close to each other
are approximately equivalent to a single ball with the sum
of the radii of the two balls. This is not desirable in our
setting where we want to increase the ‘sampling density’ of
the balls to obtain a better approximation.

1.4 Outline
In Section 2 we introduce the Legendre-Fenchel transform,

our main theoretical tool. This tool is applied in Section 3
to derive necessary and sufficient conditions for tangent con-
tinuity of envelope surfaces. Section 4 introduces piecewise
quadratic envelope surfaces, associated with a weight func-
tion that is piecewise quadratic with respect to a triangula-
tion of the set of centers of a finite set of input balls. Here
we also introduce the polyhedral complex, defining the de-
composition of the envelope surface into quadratic patches.
Section 5 shows how skin surfaces fall in this framework, and
Section 6 presents examples of our locally adaptive construc-
tion of piecewise quadratic envelope surface. Section 7 con-
cludes the paper and discusses possibilities for future work.

2. LEGENDRE-FENCHEL TRANSFORM
We use the Legendre-Fenchel transform to show under

which conditions the envelope surface is C1. Let f : D → R

be a continuous function defined on a compact subset D of
R

d.

Definition 1. The Legendre-Fenchel transform (or: con-
jugate) of f is the function L(f) : R

d → R, defined by

L(f)(x) = maxp∈D(〈x, p〉 − f(p)). (4)

See Figure 1. Note that the maximum exists, since f is
continuous and D is compact. Let f : D → R be a strictly
convex function defined on a compact subset D of R

d.

Lemma 2. For x ∈ R
d there is a unique point, denoted by

λ(x), at which the maximum in (4) is attained. The function
λ : R

d → D is continuous, and the set λ−1(p) is convex, for
p ∈ D.

Proof. Uniqueness of λ(x) follows from the strict con-
vexity of f (See also Figure 1). The function λ : R

d → D is
continuous (see full version2).

To show that λ−1(p) is convex, let x0, x1 ∈ R
d such that

λ(x0) = λ(x1) = p0. From the strict convexity of f it follows

2A full version of this paper can be found at:
http://www.cs.rug.nl/~nico/EnvelopeSurfaces.ps.gz



Figure 2: An example of an envelope surface. The weight function, defined on a line segment, is a quadratic
univariate function with leading coefficient 1, 0.5, 0 and -0.5, respectively (from left to right).

that 〈x, p〉 − f(p) < L(f)(x), for p 6= λ(x). Let x′ = (1 −
γ)x0 + γx1, with 0 ≤ γ ≤ 1, be a point on the line segment
x0x1. Then, for p 6= p0:

〈x′, p〉 − f(p) < (1 − γ)L(f)(x0) + γ L(f)(x1)

= 〈x′, x0〉 − f(p0).

Therefore, λ(x′) = p0, so λ−1(p0) is convex.

Note that the set λ−1(p) is connected since it is convex.
The one-sided directional derivative of f at x0 ∈ R

d in the
direction v ∈ R

d, is

f ′(x0; v) = lim
h↓0

f(x0 + hv) − f(x0)

h
,

provided this limit exists.
A set A is convex if for any two points x, x′ ∈ A the line

segment xx′ lies in A and A is strictly convex if the open line
segment (x, x′) lies in the interior of A for any two points
x, x′ ∈ A. A function f is (strictly) convex if the set of
points above the graph of f is (strictly) convex.

Proposition 3. If f : D → R is a strictly convex contin-
uous function defined on a compact subset D of R

d, then the
Legendre-Fenchel transform L(f) is a convex C1-function.
Its gradient at x ∈ R

d is

(∇L(f)) (x) = λ(x). (5)

A point p0 is equal to λ(x0) if and only if the directional
derivatives are non-positive:

∂Φ

∂p
(x0, p0)(v) ≤ 0, for all v ∈ R

d,

where the function Φ : R
d × D → R is defined by Φ(x, p) =

〈x, p〉 − f(p), and ∂Φ
∂p

(x0, p0)(v) is the directional derivative

of the function p 7→ Φ(x0, p) at p0 in the direction v.

Proof. Omitted from this version.

Remark. In the full version of the paper we also show that
L(f) is Ck if f is a Ck-function, with k ≥ 2. If the function
Φ(x0, ·) is Ck in a neighborhood of an interior point p0 ∈ D,
then there is a unique point x0 ∈ R

d with p0 = λ(x0), and
p = λ(x) is a solution of the equation ∂Φ

∂p
(x, p) = 0 for x

near x0.

3. ENVELOPE SURFACES
Let D be a compact convex subset of R

d, and let W :
D → R be a continuous function. Consider the family of
spheres {Cp | p ∈ D}, where Cp is the sphere with center p
and weight W (p). A point x ∈ R

d lies on the envelope S of

this family of spheres if it lies on at least one sphere, and
on or outside all other spheres. In other words, x lies on the
envelope if H(x) = 0, where H : R

d → R is defined by (2).
Since D is compact and W is continuous, the minimum is
attained in at least one point of D. The main result of this
section states that, under certain conditions on the weight
function W , the zero set of H is a C1-submanifold of R

d.

Proposition 4. Assume that the associated weight func-
tion W1, defined by (3), is a strictly convex function. Then

1. For x ∈ R
d the minimum in (2) is attained in a unique

point λ(x), and the function λ : R
d → D is continuous.

2. H is a C1-function, with derivative ∇H(x) = 2(x −
λ(x)). In particular, x is a critical point of H if and
only if x ∈ D and x = λ(x).

3. The zero set of H is a C1-submanifold of R
d if it does

not contain any zeros of W .

Proof. 1. Rewrite H as follows

H(x) = ‖x‖2 − max
p∈D

2〈p, x〉 − ‖p‖2 + W (p) (6)

= ‖x‖2 − 2L(1/2 W1)(x).

Here L(1/2 W1) : R
d → R is the Legendre-Fenchel transform

(or: conjugate) of 1/2 W1. We refer to Section 2 for the
definition, and some key properties relevant for our context.
Since W1 is strictly convex, for x ∈ R

n there is a unique
point λ(x) in D in which the maximum in (6) is attained.
Obviously, the minimum in (2) is also attained at λ(x). The
function λ : R

d → D is continuous, cf. Lemma 2.
2. According to Proposition 3 the L(1/2 W1) is C1, since
D is compact and W1 is strictly convex. Therefore H is a
C1-function, the derivative of which satisfies

H ′(x) = 2〈x, ·〉 − 2L(1/2 W1)
′(x) = 2〈x − λ(x), ·〉.

The expression for the derivative of L(1/2W1) is given in
Proposition 3.
3. From the second part we conclude that H is C1 and we
assume that k ≥ 2. By the Implicit Function Theorem, it is
sufficient to prove that H is regular at every point of its zero
set. Let x be a point of H−1(0). Since λ(x) ∈ D, every point
x in the complement of D is different from λ(x). According
to the second part of the proposition, H is regular at such
points. Next consider x ∈ D. Since W (x) 6= 0, it follows
from ‖x − λ(x)‖2 − W (λ(x)) = H(x) = 0 that x 6= λ(x).
Therefore, H is regular at x.

Remarks. 1. If W1 is a Ck-function in a neighborhood of
a point p0 in the interior of D, with k ≥ 1, then there is a



unique point x0 with p0 = λ(x0), and H is a Ck-function on
a neighborhood of x0.

2. If W1 is not strictly convex, then the zero set of H need
not be a C1-surface. An example is given in the left figure of
Figure 2. The weight function is defined on a line segment by
W (p) = ‖p‖2 + c, with c > 0. The function W1 is constant
and therefore convex, but not strictly convex. In this case
the zero set of H is not C1 since it is the boundary of the
union of the two input circles.

Piecewise smooth envelopes. Piecewise smooth envelope
surfaces can be constructed from piecewise smooth weight
functions. So let D be a compact convex polyhedron in R

d,
endowed with a triangulation T . The function W : D → R

is piecewise Ck with respect to T if

1. W is continuous on D, and

2. the restriction Wσ of W to a d-dimensional simplex σ
of T can be extended to a Ck-function on a neighbor-
hood of the closure of σ.

The envelope surface associated with W is a C1 surface if
the function W1 defined in (3) is strictly convex, cf. Propo-
sition 4. Each of the functions Wσ should therefore satisfy
the following condition:

Strict Convexity Condition. For each simplex σ ∈ T , the
function Wσ,1, defined by Wσ,1(p) = ‖p‖2 − Wσ(p) on σ, is
strictly convex.

Obviously, this condition does not guarantee strict convex-
ity of W1 on the transition between simplices, i.e., at lower
dimensional simplices of T . Therefore we require that the
family {Wσ} satisfies the following condition:

Monotonous Transition Condition. If the d-dimensional sim-
plices σ and σ′ share a facet τ with normal v directed from
σ to σ′, then for p0 ∈ τ :

W ′
σ′(p0; v) ≤ W ′

σ(p0; v).

Lemma 5. Let W : D → R be a piecewise C1-function
with respect to the triangulation T , satisfying the Strict Con-
vexity Condition and the Monotonous Transition Condition.
Then the function W1 : D → R, defined by (3), is strictly
convex.

Proof. We shall prove that W1 is strictly convex along
line segments l ∩ D, where l is a line in R

d. To this end,
it is sufficient to prove that W1 is convex along such lines.
Indeed, the triangulation T partitions l∩D in a finite alter-
nating sequence of points and open intervals, formed by the
intersection of l with the simplices of T . Let l∩τ be such an
open interval, and suppose the simplex τ lies in the closure
of the d-dimensional simplex σ. Then W1 coincides with Wσ

on this interval, so W1|l∩τ is strictly convex. Therefore W1

is strictly convex once we know that W1 is convex along l
(or, more precisely, that W1|l∩D is convex).

We first prove that W1 is convex on any line disjoint from
the (d − 2)-skeleton of T , and conclude, via a limit process,
that W is convex on any line.

So consider a line l with direction v that only intersects
simplices of dimension d and d − 1. Since W satisfies the
Strict Convexity Condition, it is sufficient to prove that
W ′

σ′,1(p0; v) ≤ W ′
σ,1(p0; v), for a point p0 on a (d−1)-simplex

τ shared by two d simplices σ and σ′, such that v is directed
into σ. Note that v is not parallel to τ since l is disjoint from
the (d−2)-skeleton of T . Write v = v‖+v⊥, where v‖ is par-
allel to τ and v⊥ is perpendicular to τ . Since Wσ,1 and Wσ′,1

are the restrictions of C1-functions defined on a neighbor-
hood of p0 in R

d, the derivatives of these functions at p0 exist
and are linear, so: W ′

σ,1(p0; v) = W ′
σ,1(p0; v‖)+W ′

σ,1(p0; v⊥).
and W ′

σ′,1(p0; v) = W ′
σ′,1(p0; v‖) + W ′

σ′,1(p0; v⊥). Since the
restrictions of the functions Wσ,1 and Wσ′,1 to the facet τ
are equal, the derivatives of these functions at p0 in direc-
tions parallel to v are equal. In particular W ′

σ′,1(p0; v‖) =

W ′
σ,1(p0; v‖). According to the Monotonous Transition Con-

dition W ′
σ′,1(p0; v⊥) ≤ W ′

σ,1(p0; v⊥). These identities and
inequalities imply that

W ′
σ′,1(p0; v) ≤ W ′

σ,1(p0; v).

Hence W1 is convex along l.
To prove that W1 is convex along any line l, let {ln}, be

a sequence of lines converging to l, such that ln is disjoint
from the (d − 2)-skeleton of T . The restriction of W1 to l
is a convex function, since it is the limit of the sequence of
convex functions W1|ln .

If the function W is piecewise Ck with respect to the tri-
angulation T of D and W1 is strictly convex, then the func-
tion H is piecewise Ck on the pull-back λ∗(T ) of T under
λ : R

d → D. The pull-back λ∗(T ) is the subdivision of R
d

into the regions λ−1(τ ), where τ ranges over all simplices of
T . In general this subdivision can have a weird structure,
even though the regions λ−1(τ ) are connected. If W is piece-
wise quadratic with respect to T , the cells of the pull-back
are polyhedra. This context is studied in detail in the next
section.

4. PIECEWISE QUADRATIC WEIGHT
FUNCTIONS

Let P be a finite set of balls and let T be a triangulation
of their centers. In accordance with the ideas presented in
the previous section, we construct an envelope surface by
defining a piecewise quadratic weight function on T . This
weight function is differentiable except possibly at lower di-
mensional cells, where it is merely assumed to be continuous.

In this section, the weight function is piecewise quadratic.
In this case we show that the envelope surface is piecewise
quadratic and that there is a polyhedral complex partition-
ing the envelope surface into the quadratic pieces.

Quadratic functions. A quadratic function q on R
d is of

the form q(x) = xT Qx + aT x + b, for a symmetric d × d
matrix Q, a d-vector a and a constant b. The matrix Q is
called the defining matrix of q. Since Q is symmetric, it has
real eigenvalues [8, Ch. 7]. We shall sloppily speak of the
eigenvectors and values of the quadratic function q.

Quadratic weight function. Each quadratic function is de-
fined on a simplex. We first analyze the envelope surface
corresponding to a single quadratic weight function. In or-
der to avoid boundary conditions, we extend the domain
D of the weight function to an n-dimensional affine sub-
space of R

d containing the domain. Hence we extend the
line segment of centers in Figure 2 to the line containing the
segment and avoid spherical patches where the outer cir-
cles touch the envelope surface. These weight functions are



of special interest since the corresponding envelope surfaces
are quadrics. Note that in this setting, D is not compact
as assumed in the text above. Therefore, the minimum in
Equation (2) might not be attained. Write

H(x) = infp∈D

`

‖x − p‖2 − W (p)
´

= ‖x‖2 − infp∈D (2〈p, x〉 − W1(p)) ,

where W1 is defined in (3). If W1 is strictly convex, then
2〈p, x〉 − W1(p) has a positive definite quadratic part and
the infimum is attained. So,

H(x) = minp∈D

`

‖x − p‖2 − W (p)
´

.

Lemma 6. If W is a quadratic function, defined on an
affine subspace D of R

d and W1 is a strictly convex function,
then

1. The map λ defined in Lemma 2 is linear,

2. The set λ−1(p) is orthogonal and complementary to D.

3. The function H is a quadratic function that is rota-
tionally symmetric in D,

4. The eigenvectors of W and H in the direction of D
coincide and an eigenvalue di of W corresponds to an
eigenvalue di/(di − 1) of H. The eigenvalues of H
corresponding to eigenvectors in the direction orthog-
onal to D are equal to 1. The unique critical point
p of W is also the unique critical point of H, and
W (p) = −H(p).

Proof. Omitted from this version

Corollary 7. The type of the quadric H−1(0) only de-
pends on the eigenvalues of the quadratic weight function.

The eigenvalues of H determine the type of quadric. For
example, let W be defined on a one-dimensional affine space
with leading coefficient c. Then, according to Lemma 6,
part 4, the envelope surface is a hyperboloid if 0 < c < 1,
a cylinder for c = 0 and an ellipsoid for c < 0. See also
Figure 2.

Decomposition of the surface. For x ∈ S the ball Bx

with center λ(x) and radius-squared W (λ(x)) is called the
defining ball of x. It is tangent to S at x. For a simplex σ of
T let Sσ be the set of points of the envelope surface S such
that the centers of its defining balls lie on the relative interior
of σ. We shall prove that {Sσ | σ ∈ T} is a decomposition of
S into quadratic patches. Even stronger, we shall construct
a polyhedral decomposition {µσ | σ ∈ T} of R

d such that
Sσ is the intersection of S with the polyhedral cell µσ.

More precisely, for a simplex σ of T let µσ = {x ∈ R
d |

λ(x) ∈ rel-int(σ)}. Since λ is continuous, it maps the closure
µσ of µσ onto σ.

Example. Let W (p) = 1/2‖p‖2 be defined on the trian-
gle (p0, p1, p2) with p0 = (−1,−1), p1 = (−1, 2) and p2 =
(2,−1); see Figure 3(a). We compute the polyhedral cell
µ〈p0〉, which is formed by all points x where H(x) = Φ(x, p0),
since rel-int〈p0〉 = p0. Hence, µ〈p0〉 = {x = (ξ0, ξ1) |
ξ0, ξ1 ≤ −.5}. Since λ changes continuously with x, it fol-
lows that µ〈p0,p1〉 is bounded by polyhedral cells of incident
simplices of 〈p0, p1〉. Let x = (ξ0, ξ1) and p′ ∈ rel-int〈p0, p1〉
be the point minimizing Φ(x, p) over all p ∈ rel-int〈p0, p1〉.

Then x ∈ µ〈p0,p1〉 if Φ(x, p′) = H(x). For ξ1 ≤ −1/2 we
have Φ(x, p′) > Φ(x, p0), hence Φ(x, p′) > H(x). Simi-
larly for ξ1 ≥ 1 we have Φ(x, p′) > Φ(x, p1) and for ξ0 >
−1/2, Φ(x, p′) > Φ(x, p′′), with p′′ the point minimizing
Φ(x, p) over all p ∈ rel-int〈p0, p1, p2〉. Hence, µ〈p0,p1〉 =
(−∞,−1/2] × (−1/2, 1).

The remaining cells of the polyhedral complex are deter-
mined similarly.

Remark. The set µσ is different from the set {x ∈ R
d |

λ(x) ∈ σ}. The example in Figure 3(b),(c) illustrates this.
The cell µσ with σ = 〈p0, p1, p3〉 does not contain the cells
µτ for τ = 〈p0, p3〉 or τ = 〈p0〉. However, the set µ(σ) =
∪p∈σ µ(p) does contain these cells.

In the following proposition, we show that the the cells
{µσ | σ ∈ T} form a polyhedral complex that decomposes
the envelope surface in pieces of quadrics.

Proposition 8. The cells µσ, with σ ∈ T , and their non-
empty intersections form a polyhedral complex decomposing
R

d. Moreover, the cells have the property that

1. for σ, σ′ ∈ T , with σ′ ≤ σ, the cells µσ and µσ′ inter-
sect

2. the intersection of µσ with S is contained in the quadratic
envelope surface obtained from the extension of Wσ to
aff(σ)

Proof. We use Lemma 9 to show that the cells µσ and
their non-empty intersections form a polyhedral complex.
Before we can apply this lemma, we have to show that the
cells µσ are convex and partition R

d.
We first show that the cells µτ with τ ∈ T form a partition

of R
d and are pairwise disjoint. To this end, let x ∈ R

d and
τ ∈ T be the simplex containing the point λ(x) ∈ D in its
relative interior. There may be more simplices containing
λ(x), but only one simplex contains λ(x) in its relative in-
terior. Hence, the cells are pairwise disjoint and their union
is R

d.
To prove that the cell µσ is convex, let x0, x1 ∈ µσ and

x′ = (1 − γ)x0 + γx1 for γ ∈ [0, 1]. The cell µσ is convex if
x′ ∈ µσ. Let p′ = (1−γ)λ(x0)+γλ(x1). We shall prove that
λ(x′) = p′, then x′ ∈ µσ since p′ ∈ rel-int(σ). To this end,
let Φ : R

d × D → R be defined by Φ(x, p) = 〈x, p〉 − W1(p).
By Proposition 3, the points p′ and λ(x′) are equal iff

∂Φ

∂p
(x′, p′)(v) ≤ 0, for all v ∈ R

d.

By the same proposition, we have ∂Φ
∂p

(x0, λ(x0))(v) ≤ 0 and
∂Φ
∂p

(x1, λ(x1))(v) ≤ 0. We expand the directional derivative
to:

∂Φ

∂p
(x, p)(v) = 〈x, v〉 − W ′

1(p; v). (7)

Since x0, x1 ∈ µσ, the points λ(x0) and λ(x1) lie in the
relative interior of σ. Let σ′ be the simplex containing the
points λ(x0)+εv, for small positive ε. Then σ′ also contains
the points λ(x1)+ εv for small positive ε. Hence, W (λ(xi)+
εv) = Wσ′(λ(xi) + εv), for i = 0, 1. If v is parallel to aff(σ),
then the simplices σ and σ′ are equal, otherwise σ ≤ σ′.
Restricted to σ′, W is a quadratic function. In view of (7),
the directional derivative of Φ is linear in x and p. But
then, ∂Φ

∂p
(x′, p′)(v) = ∂Φ

∂p
((1 − γ)x0 + γx1, (1 − γ)λ(x0) +

γλ(x1))(v) = (1−γ) ∂Φ
∂p

(x0, λ(x0))(v)+γ ∂Φ
∂p

(x1, λ(x1))(v) ≤
0. Hence, p′ = λ(x′), x′ ∈ µσ and µσ is convex.
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p2

µ〈p0〉

µ〈p0,p1〉

µ〈p0,p1,p2〉

(a) Three input circles with the
polyhedral complex.

p0

p1

p2

p3

(b) The four input circles together
with their triangulation.

µ〈p0〉

µ〈p1,p3〉

µ 〈p0
,p3

〉

µ〈p1,p2,p3〉

(c) The polyhedral complex de-
composing the envelope surface
into pieces of quadrics.

Figure 3: The decomposition of the envelope surface into quadrics.

In view of Lemma 9, the cells µσ with a non-empty inte-
rior form a polyhedral complex. A cell with empty interior
is a common face of two cells with non-empty interiors by
the continuity of λ.
1. Let x ∈ µσ \ µσ and τ ∈ T the simplex such that x ∈ µτ .
Note that σ 6= τ . From the continuity of λ we derive that
λ(x) is a point on the boundary of σ. Since λ(x) lies in the
relative interior of τ , we have τ ≤ σ.
2. Let x be a point in µσ. Using the continuity of λ, the
point λ(x) is contained in σ. Hence H(x) = Hσ(x), with
Hσ(x) = minp∈σ(‖x − p‖2 − Wσ(p)). Since Wσ,1 is strictly
convex, H has a unique minimum λ(x) ∈ σ for all p ∈ aff(σ)
and Hσ(x) = minp∈aff(σ)(‖x − p‖2 − Wσ(p)). Lemma 6
states that Hσ is a quadratic function. The surface S is
defined as the zero set of H , hence

µσ ∩ S = µσ ∩ H−1(0) = µσ ∩ H−1
σ (0).

The following general lemma is used in Proposition 8 to
show that the cells µσ, with σ ∈ T , form a polyhedral com-
plex.

Lemma 9. Let C be a finite set of closed convex sets, with
non-empty interior partitioning R

d. The sets in C and their
non-empty intersections form a polyhedral complex if they
only intersect in their boundaries.

Proof. First, we show that the sets are convex polyhe-
dra. Since the sets are convex and their interiors are disjoint,
there exists a, not necessarily unique, hyperplane separating
the interiors of any two sets in C. For two sets c, c′ ∈ C, with
c 6= c′, denote with H(c, c′) the closed half-space containing
c and bounded by a hyperplane separating c and c′.

For fixed c ∈ C, let x be a point in the interior of the
intersection of all halfspaces H(c, c′), for c′ ∈ C and c′ 6= c.
Since x does not lie in any set c′ ∈ C for c′ 6= c, the point x
is contained in the set c. Hence,

c =
\

c′∈C,c′ 6=c

Hc,c′ ,

which is a polyhedron by definition.

The intersection of two convex polyhedra is empty or an-
other convex polyhedron. Since the sets in C only intersect
in their boundary, the intersection is a face of both.

Mixed complex. The polyhedral complex for envelope sur-
faces is a generalization of the mixed complex for skin sur-
faces. For a skin surface with shrink factor s, the triangula-
tion T is the weighted Delaunay triangulation and the graph
of the weight function on a simplex σ is a paraboloid with
leading term equal to s. The apex of the paraboloid lies
on the intersection point of the affine hull of the Delaunay
simplex δσ and the dual Voronoi cell νσ, called is the focus
f(σ) of σ.

A calculation in the spirit of Lemma 6 shows that {f(σ)+
(1−s)(x−f(σ))|x ∈ δσ} is the image of µσ under orthogonal
projection onto aff(δσ). From a similar analysis of the direc-
tional derivatives in directions orthogonal to δσ, it follows
that {f(σ) + s(x − f(σ))|x ∈ νσ} is the image of µσ onto
aff(νσ). Combining these two results, we obtain the follow-
ing identity of the polyhedral cell: µσ = (1− s) · δσ ⊕ s · νσ,
which matches the definition of mixed cell.

Parameterization of the weight function. For ease of ma-
nipulating the piecewise quadratic weight functions, we de-
fine the weight function on a simplex by values at its ver-
tices and at midpoints of its edges. The space of quadratic
functions in R

d has dimension 1
2
d(d + 1). Therefore, if the

vertices are affinely independent, the quadratic function is
uniquely determined by specifying its value on every vertex
and at midpoints of the edges.

To show that the weight function thus obtained is contin-
uous, let σ, σ′ ∈ T be two full dimensional simplices and let
τ be their common n-dimensional face. Restricted to τ , W ∗

is quadratic and interpolates the weights at the vertices and
at midpoints of the edges of τ . These weights determine the
quadratic weight function uniquely, and W ∗|τ = Wσ|τ =
Wσ′ |τ .



Figure 4: Two existing interpolation schemes. On
the left the skin curve [5] (s = 1/2) and on the right
the extended skin curve presented in [9].

5. EXISTING SCHEMES
The new interpolation scheme, to be presented in Sec-

tion 6, generalizes two existing methods. In this section,
we describe these methods in the context of the previous
sections. An example in 2D of both methods is shown in
Figure 4.

We first show how skin surfaces fit in our approach. The
radii of the input balls are shrunk in the construction of a
skin surface by the same shrink factor (see the full version).

In [9], we adapted the construction of skin surfaces such
that the weight function interpolates the weights of the ini-
tial balls to the effect that the input balls are contained in
the resulting skin surface. We call the skin surface defined
in this way the extended skin surface.

Both methods define a one-parameter family of envelope
surfaces, depending only on the shrink factor s. For a shrink
factor equal to one, the weight functions of both methods
are equal and so are their envelope surfaces. We also use
this weight function denoted by W ∗ and called the initial
weight function as starting point for the new interpolation
scheme.

Initial weight function. Let T be the (weighted) Delaunay
triangulation of the input set P . The initial weight function
W ∗ is piecewise quadratic with respect to T . Each quadratic
function W ∗

σ on a d-simplex σ is uniquely defined by the
following two conditions:

• W ∗
σ interpolates the weights on vertices of σ

• the defining matrix is the identity matrix.

We show that the W ∗ satisfies the Monotonous Transition
Condition.

Lemma 10. The weight function W ∗ satisfies the Monotonous
Transition Condition.

Proof. The paraboloids defining W ∗ become hyperplanes
in W ∗

1 , hence W ∗
1 is simplexwise affine. The Delaunay tri-

angulation has the property that these hyperplanes define a
convex function [6], hence W ∗

1 is convex.
Since W ∗

1 is convex, the function W ∗
1 satisfies the Monotonous

Transition Condition (see the full version), and W ∗ satisfies
the Monotonous Transition Condition as well.

Even though the Strict Convexity Condition is not satisfied,
the initial weight function W ∗ is a good starting point for
our construction since the envelope surface it defines is the
boundary of the union of the input balls.

Lemma 11. The envelope surface defined by the initial
weight function W ∗ is equal to the boundary of the union
of the input balls.

Proof. The weight function interpolates the weights on
centers of the input balls. Hence, the input balls are con-
tained in the envelope surface. It remains to show that the
approximating balls lie within the union of the input balls.

Let p′ be a point in D and let σ ∈ T be the simplex
containing p′. Write p′ as a convex combination of the ver-
tices pi of σ: p′ =

P

i
γi pi with γi ≥ 0 and

P

i
γi = 1. Since

W ∗(x) = ‖p‖2+W ∗
1 (p), so Φ(x, p) = ‖x‖2−2〈p, x〉−W ∗

1 (p)
is affine in p when p ranges over σ and Φ(x,

P

i
γipi) =

P

i γiΦ(x, pi). Let x ∈ R
d be a point outside the union of

the balls in P . Then, Φ(x, pi) is positive, for any weighted
point (pi, pi) ∈ P , since W ∗(pi) = pi. But then Φ(x, p′) > 0
and, hence, x also lies outside the ball centered at p′.

Recall from the end of Section 4 that each quadric is
uniquely determined by specifying the function values at
vertices and at midpoints of the edges. We denote the ini-
tial weight at the vertex pi ∈ P of T with W ∗

i and the
initial weight at the midpoint of the edge pipj with W ∗

ij .
The initial weight function W ∗ interpolates the weights of
the input balls if the value W ∗

i is set to the weight of the
input ball centered at pi. Moreover, the defining matrix of
W ∗|σ is the identity matrix if the quadratic weight func-
tion restricted to any edge has leading coefficient equal to
one. If pi, pj are two vertices of σ, then the quadratic
weight function on the edge pi, pj has leading coefficient
equal to one if the weight W ∗

ij at the midpoint of the edge

is: W ∗
ij = (W ∗

i + W ∗
j )/2 − ‖pi − pj ‖2/4.

Skin surfaces. In the full version of the paper, we show
that the weight function for a skin surface is obtained by
multiplying the initial weight function with s: W s(x) =
s W ∗(x). In terms of the parameterization described above,
the weight function is obtained by multiplying the weights
at vertices and at midpoints of edges with s.

Corollary 12. For s < 0 < 1, the skin surface skns(X )
is tangent continuous.

Proof. The eigenvalues of the quadratic weight function
restricted to a simplex are all equal to s. Hence, W s sat-
isfies the Strict Convexity Condition. By Lemma 10, W ∗

satisfies the Monotonous Transition Condition and so does
W s. Hence, the envelope surface obtained from the weight
function W s is C1, which is also shown in [5].

Since all weights are multiplied by s, the weights on the
vertices and edges controlling the weight function are also
multiplied by s. The weight of the input balls are scaled with
a factor s, and therefore the input balls are not contained
in the skin surface. See also Figure 4 (left).

Extended skin surfaces. The fact that the input balls are
shrunk in the construction of skin surfaces makes them not
directly suitable for the construction of envelope surfaces
containing the input balls. In [9], we proposed a method
that first multiplies the weights of the input balls with 1/s,
and then computes the skin surface with shrink factor s.
Further, we construct a range of s-values such that the skin
surface is homeomorphic to the boundary of the union of



the input balls. An example of this construction is shown in
the right part of Figure 4.

Since the extended skin surface is a skin surface (of the
grown set of input balls), it is a C1-manifold, as is shown
in Corollary 12. The weight function defining the extended
skin surface interpolates the weights on vertices. The weight
at the midpoint of an edge pipj depends linearly on s and

is given by Wij =
Wi+Wj

2
− s

‖pi−pj‖
2

4
, where Wi and Wj

denote the weight on vertex pi and pj respectively.
During the growth of the input balls the (weighted) De-

launay triangulation may change. If we only increase the
weights on the edges and do not adapt the triangulation ac-
cordingly, the Monotonous Transition Condition is not sat-
isfied and the envelope surface is not C1. Therefore, we have
to adjust the the Delaunay triangulation, as is done in [9].

6. THE NEW INTERPOLATION SCHEME
The schemes described in the previous section are global

in the sense that they define a one parameter family of
weight functions. In this section we propose an adaptive
interpolation scheme, adapting the weights on the edges in-
dependently. This results in a local constrol of the envelope
surface, and hence in a class of envelope surfaces which are
much more flexible than skin surfaces. However, the enve-
lope surface is only C1 if Strict Convexity Condition and the
Monotonous Transition Condition are satisfied, cf. Lemma 5.

Checking the smoothness conditions. The Strict Con-
vexity Condition is satisfied if the Hessian of the function
Wσ,1 : D → R, defined by Wσ,1(p) = ‖p‖2 −Wσ(p), is posi-
tive definite. For a quadratic function, this is the case if the
eigenvalues of the defining matrix are positive. Hence, the
eigenvalues of the defining matrix of Wσ have to be smaller
than one. The Strict Convexity Condition with respect to a
simplex σ only depends on Wσ and, therefore, only on the
weights at the vertices and at midpoints of the edges of σ.

To see how to check the Monotonous Transition Condi-
tion, let σ, σ′ ∈ T be two full dimensional cells with a com-
mon facet τ and let v be the normal of τ directed from σ to
σ′. Let the map w be defined on τ by w(p) = W ′

σ′(p; v) −
W ′

σ(p; v). Since the gradient of a quadratic function is a
linear map, w is linear. Therefore, w(p) ≥ 0 for all p ∈ τ
iff w(p) ≥ 0 for every vertex p of τ . Hence, the Monotonous
Transition Condition is satisfied at every point of τ iff w(p) ≥
0 for every vertex p of τ . The Monotonous Transition Con-
dition of a face τ incident to σ and σ′ depends on Wσ and
Wσ′ and therefore on the weights at the vertices and at mid-
points of the edges of σ and σ′.

Changing the weights. Conceptually, the algorithm is sim-
ilar to the extended skin surface algorithm. First it con-
structs the initial weight function W ∗ and then it continu-
ously increases the weights on midpoints of the edges. We
define a local growth parameter tij for every edge pipj and
parameterize the weight at the midpoint of an edge by:

Wij =
Wi+Wj

2
+ (tij − 1)

‖pi−pj‖
2

4
.

Note that the envelope surface is an extended skin sur-
face with s = 1 − tij , if all growth parameters are equal.
Initially all scalars tij are equal to zero. We continuously
increase the local growth parameters as long as the Strict
Convexity Condition and the Monotonous Transition Con-
dition are satisfied. The envelope surface is therefore C1.

Since the conditions are locally determined, we can fix the
local growth parameters that would invalidate one of the
conditions and increase the other local growth parameters.

Another method fixes the local growth parameter on edges
between disjoint balls in an early stage and increases the
local growth parameter at midpoints of the edges between
intersecting weighted points as much as possible. This gave
us the interpolation on the fingers of the hand in Figure 5.

Examples. Envelope curves that have an increasing weight
on the midpoint of an edge are shown in Figure 2. Two
examples of the interpolation scheme of [9] versus the local
interpolation scheme are given in Figure 6, 7 and 5. By con-
struction, the extended skin surface interpolates the input
balls with concave patches. The local interpolation scheme,
on the other hand, allows for envelope surfaces with inter-
polating patches that are both convex and concave, viz. Fig-
ure 6. In Figure 5, we increased the weight on the edges in
the direction of the fingers and not on edges between balls
of different fingers. The result is an envelope surface that
interpolates nicely in the direction of the fingers. The ex-
tended skin curve is either bumpy (b), or contains patches
in between fingers (c).

The envelope surfaces in Figure 7 show the flexibility of
these surfaces for only four input balls (top left). The en-
velope can be decomposed into quadric patches determined
by simplices of the triangulation, see Section 4. The patches
are color-coded by the dimension of this simplex. The top
row of Figure 7 shows envelope surfaces for which the lo-
cal growth parameter at midpoints of the edges is increased
with the same amount. These envelope surfaces are also ex-
tended skin surfaces. In the bottom row, we increased the
local growth parameter on midpoints of one, two and three
edges, respectively. The spheres are connected due to this
increase.

7. CONCLUSIONS AND FUTURE WORK
We introduce envelope surfaces, a class of smooth surfaces

constructed from a finite set of balls. Envelope surfaces ex-
tend the class of skin surfaces, and increase the number of
free design parameters considerably: a skin surface deter-
mined by n input balls in R

d has a single degree of freedom
(its shrink factor), whereas a piecewise quadratic envelope
surface for such input has Ω(n) free parameters (although
confined to a convex domain by smoothness constraints). An
envelope surface is determined by a weight function, which
interpolates the square of the radii of the input balls on
the convex hull of their centers. We introduce two condi-
tions the weight function should satisfy in order to guaran-
tee smoothness (tangent continuity) of the envelope surface.
These conditions can be verified automatically. If the weight
function is piecewise quadratic, then the envelope surface is
also piecewise quadratic.
Envelope surfaces form a rich area for further research.

1. We conjecture that level sets of the weight function
W and those of the function H defining the envelope
surface implicitly are isotopic for all isovalues. The
conjecture is true for skin surfaces. Also, if W is dif-
ferentiable then the critical points of W and H coincide
and at a critical point p, W (p) = −H(p), cf. Proposi-
tion 4.



(a) Input set (b) Extended skin curve (c) The new interpolation scheme

Figure 6: The extended skin surface introduced in [9] defines concave patches between the input balls. With
envelope surfaces introduced in this paper it is possible to interpolate both with convex and with concave
patches.

(a) An approximating
set of circles

(b) The extended skin
curve (introduced in [9])

(c) The extended skin
curve with a lower
shrink factor (scheme of
[9])

(d) The new interpola-
tion scheme (this paper)

Figure 5: Different interpolation schemes

Figure 7: Envelope surfaces of four balls with differ-
ent values for the local growth parameters.



2. Except for some prototypes used to give a proof of
concept, we have not developed a modeler for these
surfaces so far. With such a modeler it is possible to
construct and modify an envelope surface interactively
and test the applicability of envelope surfaces to their
full extent. Several schemes are proposed in Section 6
to construct a weight function interactively. Validation
of these schemes on realistic data is also possible with
a modeler.

3. In Section 4 necessary and sufficient conditions are in-
troduced for smoothness of envelope surfaces defined
by piecewise smooth weight functions on a triangu-
lation T of the set of centers of input balls. These
conditions define a convex feasible region in the space
of weights of the edges of T . We plan to investigate
this feasible region, and to design strategies for flex-
ible design of envelope surfaces by manipulating the
edge-weights.

4. We plan to extend our meshing algorithm for skin sur-
faces [10] to the meshing of envelope surfaces.

5. Differential geometry provides an other approach to
the study of envelopes of spheres. In particular, spheres
in R

d are represented by points of the Lorentz-sphere
(also known as the de Sitter space) with respect to
some semi-definite inner product in R

d+1 [7]. A sys-
tematic study of one-parameter families of spheres in
3D leads to the Dupin cyclides, a class of quartic en-
velopes of two-dimensional spheres. We plan to further
investigate envelopes of families of spheres using this
context.
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