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Abstract. We show that the complexity of a parabolic or conic spline approx-
imating a sufficiently smooth curve with non-vanishing curvature to within
Hausdorff distance ε is c1ε

−1/4 +O(1), if the spline consists of parabolic arcs,

and c2ε
−1/5 + O(1), if it is composed of general conic arcs of varying type.

The constants c1 and c2 are expressed in the Euclidean and affine curvature
of the curve. We also show that the Hausdorff distance between a curve and
an optimal conic arc tangent at its endpoints is increasing with its arc length,
provided the affine curvature along the arc is monotone. This property yields
a simple bisection algorithm for the computation of an optimal parabolic or
conic spline.
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1. Introduction

In the field of computer aided geometric design, one of the central topics is the
approximation of complex geometric objects with simpler ones. An important part
of this field concerns the approximation of plane curves and the asymptotic analysis
of the rate of convergence of approximation schemes with respect to different
metrics, the most commonly used being the Hausdorff metric.

Various error bounds and convergence rates have been obtained for several
types of (low-degree) approximation primitives. For the approximation of plane
convex curves by polygons with n edges, the order of convergence is O(n−2) for
several metrics, including the Hausdorff metric [13, 16, 17, 19]. When approximat-
ing by a tangent continuous conic spline, the order of convergence, for a strictly
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convex curve, is O(n−5), where n is the number of elements of the conic spline, with
respect to the Hausdorff distance metric [26]. For the approximation of a convex
curve by a piecewise cubic curve, both curves being tangent and having the same
Euclidean curvature at interpolation points (knots), the order of approximation is
O(h6), where h is the maximum distance between adjacent knots [5]. As expected,
the approximation order increases along with the degree of the approximating
(piecewise-) polynomial curve.

As approximants, conic splines represent a good compromise between flexibil-
ity and modeling power. They have a great potential as intermediate representation
for robust computation with curved objects. Some applications that come to mind
are the implicitization of parametric curves (see works on approximate implicitiza-
tion [8, 9]), the intersection of high-degree curves, the building of arrangements of
algebraic curves (efficient solutions are known for sweeping arrangements of conic
arcs [2]) and the computation of the Voronoi diagram of curved objects (the case
of ellipses has been recently investigated [10, 11]).

While these applications necessitate a tight hold on the error of approxima-
tion, no previous work provides a sharp asymptotic error bound (i.e., the constant
of the leading term in the asymptotic expansion) for the Hausdorff metric when
the interpolant is curved.

In this paper, we study the optimal approximation of a sufficiently smooth
curve with non-vanishing curvature by a tangent continuous interpolating conic
spline, which is an optimal approximant with respect to Hausdorff distance. We
present the first sharp asymptotic bound on the approximation error (and, conse-
quently, a sharp bound on the complexity of the approximation) for both parabolic
and conic interpolating splines. Our experiments corroborate this sharp bound:
the complexity of the approximating splines we algorithmically construct exactly
matches the complexity predicted by our complexity bound.

1.1. Related work

Fejes Tóth [13] considers the problem of approximating a convex C2-curve C in the
plane by an inscribed n-gon. Fejes Tóth proves that, with regard to the Hausdorff
distance, the optimal n-gon Pn satisfies

δH(C,Pn) =
1

8

(
∫ l

0

κ1/2(s) ds

)2
1

n2
+O

( 1

n4

)

. (1.1)

Here δH(A,B) is the Hausdorff distance between two sets A and B, l is the length
of the curve, s its arc length parameter, and κ(s) its curvature. An asymptotic ex-
pression for the complexity of the piecewise linear spline can easily be deduced: the

number of elements is c ε−1/2 (1+O(ε)), where c = 1
2
√

2

∫ l

s=0 κ(s)
1/2 ds. Ludwig [17]

extends this result by deriving the second term in the asymptotic expansion (1.1).
If one considers the symmetric difference metric δS instead, one can prove that

δS(C,Pn) = 1
12

(∫ l

0
κ1/3(s)ds

)3
1

n2 +O( 1
n4 ) [19]. Again, this asymptotic expression

can be refined, cf. [16].



Approximation by Conic Splines 3

Schaback [26] introduces a scheme that yields an interpolating conic spline
with tangent continuity for a curve with non-vanishing curvature, and achieves
an approximation order of O(h5), where h is the maximal distance of adjacent
data points on the curve. A conic spline consists of pieces of conics, in principle
of varying type. This result implies that approximating such a curve by a cur-
vature continuous conic spline to within Hausdorff distance ε requires O(ε−1/5)
elements. However, the value of the constant implicit in this asymptotic expression
of the complexity is not known. Ludwig [18] considers the problem of optimally
approximating a convex C4-curve with respect to the symmetric difference met-
ric by a tangent continuous parabolic spline Qn with n knots. She proves that

δS(C,Qn) = 1
240

(∫ λ

0 κ
1/5(s)ds

)5
1

n4 + o( 1
n4 ), where λ =

∫ l

0 κ
1/3(s)ds is the affine

length of the convex curve C.

These problems fall in the context of geometric Hermite interpolation, in
which approximation problems for curves are treated independent of their specific
parameterization. The seminal paper by De Boor, Höllig and Sabin [5] fits in this
context. Floater [14] gives a method that, for any conic arc and any odd integer n,
yields a geometric Hermite interpolant with 2n contacts, counted with multiplicity.
This scheme gives a Gn−1-spline, and has approximation order O(h2n), where h is
the length of the conic arc. Ahn [1] gives a necessary and sufficient condition for
the conic section to be the optimal approximation of the given planar curve with
respect to the maximum norm used by Floater. This characterization does not
however yield the best conic approximation obtained by the direct minimization
of the Hausdorff distance. Degen [6] presents an overview of geometric Hermite
interpolation, also emphasizing differential geometry aspects.

The problem of approximating a planar curve by a conic spline has also been
studied from a more practical standpoint. Farin [12] presents a global method and
discusses at length how curvature continuity can be achieved between conic seg-
ments. Pottmann [24] presents a local scheme, still achieving curvature continuity.
Yang [28] constructs a curvature continuous conic spline by first fitting a tangent
continuous conic spline to a point set and fairing the resulting curve. Li et al. [15]
show how to divide the initial curve into simple segments which can be efficiently
approximated with rational quadratic Bézier curves. These methods have many
limitations, among which the dependence on the specific parameterization of the
curve, the large number of conic segments produced or the lack of accuracy and
absence of control of the error.

1.2. Results of this paper

Complexity of conic approximants. We show that the complexity – the number
of elements – of an optimal parabolic spline approximating the curve to within
Hausdorff distance ε is of the form c1 ε

−1/4 +O(1), where we express the value of
the constant c1 in terms of the Euclidean and affine curvatures (see Theorem 5.1,
Section 5). An optimal conic spline approximates the curve to fifth order, so its
complexity is of the form c2 ε

−1/5 + O(1). Also in this case the constant c2 is
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expressed in the Euclidean and affine curvature. These bounds are obtained by first
deriving an expression for the Hausdorff distance of a conic arc that is tangent to
a (sufficiently short) curve at its endpoints, and minimizes the Hausdorff distance
among all such bitangent conics. Applying well-known methods like those of [5] it
follows that this Hausdorff distance is of fifth order in the length of the curve, and
of fourth order if the conic is a parabola. However, we derive explicit constants
in these asymptotic expansions in terms of the Euclidean and affine curvatures of
the curve.

Algorithmic issues. For curves with monotone affine curvature, called affine spi-
rals, we consider conic arcs tangent to the curve at its endpoints, and show that
among such bitangent conic arcs there is a unique one minimizing the Hausdorff
distance. This optimal bitangent conic arc Copt intersects the curve at its end-
points and at one interior point, but nowhere else. If α : I → R

2 is an affine spiral,
its displacement function d : I → R measures the signed distance between the
affine spiral and the optimal bitangent conic along the normal lines of the spiral.
The displacement function d has an equioscillation property: there are two param-
eter values u+, u− ∈ I such that d(u+) = −d(u−) = δH(α,Copt) and the points
α(u−) and α(u+) are separated by the interior point of intersection of α and Copt.
Furthermore, the Hausdorff distance between a section of an affine spiral and its
optimal approximating bitangent conic arc is a monotone function of the arc length
of the spiral section. This useful property gives rise to a bisection based algorithm
for the computation of an optimal interpolating tangent continuous conic spline.
The scheme reproduces conics. We implemented such an algorithm, and compare
its theoretical complexity with the actual number of elements in an optimal ap-
proximating parabolic or conic spline.

1.3. Paper overview

Section 2 reviews some notions from affine differential geometry. In particular, we
introduce affine arc length and affine curvature, which are invariant under equi-
affine transformations. Conic arcs are the only curves in the plane having constant
affine curvature, which explains the relevance of these notions from affine differ-
ential geometry for our work. Section 3 introduces affine spirals, a class of curves
which have a unique optimal bitangent conic. We show that the displacement func-
tion, which measures the distance of the curve to its offset curve along its normals,
has an equioscillation property in the sense that it has extremes at exactly two
points on the curve. Furthermore, the Hausdorff distance between an arc of an
affine spiral and its optimal bitangent conic arc is increasing in the length of this
arc. This useful property gives rise to a bisection algorithm for the computation of
a conic spline approximating a smooth curve with a minimal number of elements.
Section 6 presents the output of the algorithm for a collection of examples. The
main result of Section 4 is a relation between the affine curvatures of a curve and
a bitangent offset curve. We use this result in Section 5 to derive an expression
for the complexity of optimal parabolic and conic splines approximating a regular
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curve. We do so by deriving a bound on the Hausdorff distance between an affine
spiral arc and its optimal bitangent conic. We conclude with topics for future work
in Section 7.

2. Preliminaries from differential geometry

Circular arcs and straight line segments are the only regular smooth curves in the
plane with constant Euclidean curvature. Conic arcs are the only smooth curves
in the plane with constant affine curvature. The latter property is crucial for our
approach, so we briefly review some concepts and properties from affine differential
geometry of planar curves. See also Blaschke [3].

2.1. Affine curvature

Recall that a regular curve α : J → R
2 defined on a closed real interval J , i.e., a

curve with non-vanishing tangent vector T (u) := α′(u), is parameterized according
to Euclidean arc length if its tangent vector T has unit length. In this case, the
derivative of the tangent vector is in the direction of the unit normal vector N(u),
and the Euclidean curvature κ(u) measures the rate of change of T , i.e., T ′(u) =
κ(u)N(u). Euclidean curvature is a differential invariant of regular curves under
the group of rigid motions of the plane, i.e., a regular curve is uniquely determined
by its Euclidean curvature, up to a rigid motion.

The larger group of equi-affine transformations of the plane, i.e., affine trans-
formations with determinant one (in other words, area preserving linear transfor-
mations), also gives rise to a differential invariant, called the affine curvature of
the curve. To introduce this invariant, let I ⊂ R be an interval, and let γ : I → R

2

be a smooth, regular plane curve. We shall denote differentiation with respect to

the parameter u by a dot: α̇ = dα
du , α̈ = d2α

du2 , and so on. Then regularity means that
α̇(u) 6= 0, for u ∈ I. Let the reparameterization u(r) be such that γ(r) = α(u(r))
satisfies

[γ′(r), γ′′(r)] = 1. (2.1)

Here [v, w] denotes the determinant of the pair of vectors {v, w}, and derivatives
with respect to r are denoted by dashes. The parameter r is called the affine
arc length parameter. If [α̇, α̈] 6= 0, in other words, if the curve α has non-zero
curvature, then α can be parameterized by affine arc length, and (2.1) implies that

[α̇(u(r)), α̈(u(r))] u′(r)3 = 1. (2.2)

Putting

ϕ(u) = [α̇(u), α̈(u)]
1/3
, (2.3)

we rephrase (2.2) as

u′(r) =
1

ϕ(u(r))
. (2.4)
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From (2.1) it also follows that [γ′(r), γ′′′(r)] = 0, so there is a smooth function k

such that

γ′′′(r) + k(r) γ′(r) = 0. (2.5)

The quantity k(r) is called the affine curvature of the curve γ at γ(r). It is only
defined at points of non-zero Euclidean curvature. A regular curve is uniquely
determined by its affine curvature, up to an equi-affine transformation of the plane.

From (2.1) and (2.5) we conclude k = [γ′′, γ′′′]. The affine curvature of α at
u ∈ I is equal to the affine curvature of γ at r, where u = u(r).

2.2. Affine Frenet-Serret frame

The well known Frenet-Serret identity for the Euclidean frame, namely

α̇ = T, Ṫ = κN, Ṅ = −κT, (2.6)

where the dot indicates differentiation with respect to Euclidean arc length, have
a counterpart in the affine context. More precisely, let α be a strictly convex curve
parameterized by affine arc length. The affine Frenet-Serret frame {t(r), n(r)} of
α is a moving frame at α(r), defined by t(r) = α′(r), and n(r) = t′(r), respectively.
Here the dash indicates differentiation with respect to affine arc length. The vector
t is called the affine tangent, and the vector n is called the affine normal of the
curve. The affine frame satisfies

α′ = t, t′ = n, n′ = −k t. (2.7)

Furthermore, we have the following identity relating the affine moving frame {t, n}
and the Frenet-Serret moving frame {T,N}.
Lemma 2.1. 1. The affine arc length parameter r is a function of the Euclidean
arc length parameter s satisfying

dr

ds
= κ(s)1/3. (2.8)

2. The affine frame {t, n} and the Frenet-Serret frame {T,N} are related by

t = κ−1/3 T, n = − 1
3 κ

−5/3 κ̇ T + κ1/3N. (2.9)

Here κ̇ is the derivative of the Euclidean curvature with respect to Euclidean arc
length.

Proof. 1. Let γ(r) be the parametrization by affine arc length, and let α(s) =
γ(r(s)) be the parametrization by Euclidean arc length. Then α̇ = T and α̈ = κN .
Again we denote derivatives with respect to Euclidean arc length by a dot. Since
γ′ = t and t′ = γ′′ = n, we have

T = α̇ = ṙt, and N = κ−1 α̈ = κ−1(r̈t+ (ṙ)2n) (2.10)

Since [T,N ] = 1, and [t, n] = 1, we obtain 1 = κ−1ṙ3. This proves the first claim.

2. The first part of the lemma implies r̈ = 1
3 κ

−2/3 κ̇. Plugging this into the iden-
tity (2.10) yields the expression for the affine Frenet-Serret frame in terms of the
Euclidean Frenet-Serret frame. �
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The affine Frenet-Serret identities (2.7) yield the following values for the
derivatives—with respect to affine arc length—of α up to order five, which will be
useful in the sequel:

α′ = t, α′′ = n, α′′′ = −k t,
α(4) = −k′ t− k n, α(5) = (k2 − k′′) t− 2k′ n.

(2.11)

Combining these identities with the Taylor expansion of α at a given point yields
the following affine local canonical form of the curve.

Lemma 2.2. Let α : I → R
2 be a regular curve with non-vanishing curvature, and

with affine Frenet-Serret frame {t, n}. Then

α(r0 + r) = α(r0) +
(
r − 1

3! k0 r
3 − 1

4! k
′
0 r

4 +O(r6)
)
t0

+
(

1
2 r

2 − 1
4! k0 r

4 − 2
5! k

′
0 r

5 +O(r6)
)
n0,

where t0, n0, k0, and k′0 are the values of t, n, k and k′ at r0.
Furthermore, in its affine Frenet-Serret frame the curve α can be written

locally as x t0 + y(x)n0, with

y(x) = 1
2 x

2 + 1
8 k0 x

4 + 1
40 k

′
0x

5 +O(x6).

The first identity follows directly from (2.11). As for the second, it follows
from the first by a series expansion. Indeed, write

x = r − 1
3! k0 r

3 − 1
4! k

′
0 r

4 +O(r6).

Computing the expansion of the inverse function gives

r = x+ 1
3! k0 x

3 + 1
4! k

′
0 x

4 +O(x6).

Plugging in y = 1
2 r

2 − 1
4! k0 r

4 − 2
5! k

′
0 r

5 +O(r6) gives the result.

2.3. Affine curvature of curves with arbitrary parameterization

The following proposition gives an expression for the affine curvature of a regular
curve in terms of an arbitrary parameterization. See also [3, Chapter 1.6].

Proposition 2.3. Let α : I → R
2 be a regular C4-curve with non-zero Euclidean

curvature. Then the affine curvature k of α is given by

k =
1

ϕ5
[α̈,

...
α ] +

ϕ̈ ϕ− 3ϕ̇2

ϕ4
, (2.12)

where ϕ = [α̇, α̈]
1/3

.

For a proof of this result we refer to Appendix A.

Remark. Proposition 2.3 gives the following expression for the affine curvature k
in terms of the Euclidean curvature κ:

k =
9 κ4 − 5 (κ̇)2 + 3 κ κ̈

9 κ8/3
,

where κ̇ and κ̈ are the derivatives of the Euclidean curvature with respect to arc
length. This identity is obtained by observing that, for a curve parameterized
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by Euclidean arc length, the function ϕ is given by ϕ = κ1/3. This follows from
the Frenet-Serret identities (2.6) and the definition (2.3) of ϕ. Substituting this
expression into (2.12) yields the identity for k in terms of κ.

2.4. Conics have constant affine curvature

Solving the differential equation (2.5) shows that a curve of constant affine cur-
vature is a conic arc. More precisely, a curve with constant affine curvature is a
hyperbolic, parabolic, or elliptic arc iff its affine curvature is negative, zero, or
positive, respectively.

We now give expressions for the (constant) affine curvature of conics defined
by an implicit quadratic equation.

Proposition 2.4 ([22], Theorem 6.4). The affine curvature of the conic defined by
the quadratic equation

ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0

is given by k = S T−2/3, where

S =

∣
∣
∣
∣

a b

b c

∣
∣
∣
∣
, T =

∣
∣
∣
∣
∣
∣

a b d

b c e

d e f

∣
∣
∣
∣
∣
∣

.

The next result relates the affine curvatures of a regular curve in the plane
and its image under linear transformations.

Lemma 2.5. Let α be the image of a regular planar curve β under a linear trans-
formation x 7→ Ax. The affine curvatures kα and kβ of the curves α and β are

related by kα = (detA)−2/3 kβ.

Proof. Assume that β is parameterized by affine arc length. Since α(u) = Aβ(u),

it follows that the function ϕ, defined by (2.3), satisfies ϕ = [Aβ̇,Aβ̈]
1/3

=

(detA)1/3[β̇, β̈]
1/3

= (detA)1/3. According to Proposition 2.3 the affine curvature

of α is given by kα = (detA)−5/3 [Aβ̈,A
...
β ] = (detA)−2/3 kβ . �

2.5. Osculating conic at non-sextactic points

At a point of non-vanishing Euclidean curvature there is a unique conic, called
the osculating conic, having fourth order contact with the curve at that point (or,
in other words, having five coinciding points of intersection with the curve). The
affine curvature of this conic is equal to the affine curvature of the curve at the
point of contact. Moreover, the contact is of order five if the affine curvature has
vanishing derivative at the point of contact. In that case the point of contact is a
sextactic point. Again, see [3] for further details. At non-sextactic points the curve
and its osculating conic cross (see also Figure 1):

Corollary 2.6. At a non-sextactic point a curve crosses its osculating conic from
right to left if its affine curvature is locally increasing at that point, and from left
to right if the affine curvature is locally decreasing.
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Figure 1. The curve and its osculating conic (dashed). The affine
curvature is increasing in the left picture, and decreasing in the
right picture.

2.6. The five-point conic

To derive error bounds for an optimal approximating conic we use the property
that the approximating conic depends smoothly on the points of intersection with
the curve. More precisely, let α : I → R

2 be a regular curve without sextactic
points, and let si, 1 6 i 6 5, be points on I, not necessarily distinct. The unique
conic passing through the points α(si) is denoted by Cs, with s = (s1, s2, s3, s4, s5).
If one or more of the points coincide, the conic has contact with the curve of order
corresponding to the multiplicity of the point. For instance, if s1 = s2 6= si, i > 3,
then Cs has first order contact with (is tangent to) the curve at α(s1).

If si 6= sj , for i 6= j, then the implicit quadratic equation of this conic can
be obtained as follows. Let the Veronese mapping Ψ : R

2 → R
6 be defined by

Ψ(x) = (x2
1, x1x2, x

2
2, x1, x2, 1), x = (x1, x2), then the equation of the conic Cs is

f(x, s) = 0, with

f(x, s) = det
(
Ψ(x),Ψ(α(s1)),Ψ(α(s2)),Ψ(α(s3)),Ψ(α(s4)),Ψ(α(s5))

)
. (2.13)

However, if si = sj for i 6= j, then f(x, s) = 0. We obtain a quadratic equation of
the conic Cs by (formally) dividing f(x, s) by si − sj . More precisely:

Lemma 2.7. If α is a Cm-curve, m > 4, then the conic Cs has a quadratic equation
with coefficients that are Cm−4-functions of s = (s1, s2, s3, s4, s5) ∈ R

5.

Proof. Put ψ(s) = Ψ(α(s)). The Newton development of ψ in terms of the divided
differences of ψ up to order four associated with the points s1, . . . , s5 is given by

ψ(sk) = ψ(s1)+
∑k

i=2

∏i−1
j=1(sk−sj) [s1, . . . , sk]ψ, for 2 6 k 6 5. See Appendix B.

Plugging these identities into (2.13), we see that f(x, s) =
∏

16j<k65

(sk−sj)F (x, s),

with

F (x, s) = det(Ψ(x), ψ(s1), [s1, s2]ψ, . . . , [s1, . . . , s5]ψ).

Since ψ is Cm, with m > 4, it follows from Appendix B that F is a Cm−4-function,
with x 7→ F (x, s) being a non-vanishing quadratic function. �

In particular, if σ = (σ, . . . , σ) ∈ R
5, then it follows from Appendix B,

Lemma B.1, that

F (x, σ) =
1

2!3!4!
det
(
Ψ(x), ψ(σ), ψ′(σ), ψ′′(σ), ψ′′′(σ), ψ(4)(σ)

)
.
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Since α contains no sextactic points, the equation F (x, σ) = 0 defines a non-
degenerate conic, the osculating conic at α(σ).

If σ, % and u are three distinct points of I, then there is a unique conic Cσ,%,u

which is tangent to α at α(σ) and α(%), and passes through the point α(u). The
equation of this conic is

det
(
Ψ(x), ψ(σ), ψ′(σ), ψ(%), ψ′(%), ψ(u)

)
= 0.

As in the proof of Lemma 2.7 one proves that Cσ,%,u is a Cm−4-function of (σ, %, u),
and that it tends to the osculating conic at α(σ) as u→ σ and %→ σ.

3. Optimal conic approximation of affine spiral arcs

In this section we prove both the equioscillation property and the monotonicity
property of the Hausdorff distance. Both properties are global, since the affine
spiral is not necessarily short.

3.1. Intersections of conics and affine spirals

We start with a useful global property of affine spirals.

Proposition 3.1. 1. A conic intersects an affine spiral in at most five points,
counted with multiplicity.

2. The osculating conics of an affine spiral are disjoint, and do not intersect the
spiral arc except at their point of contact.

A proof of this theorem is given in [23, chapter 4]. The second part is an
exercise in [3, chapter 1]. A modern proof is given in [27].

Now consider an affine spiral arc α : [u0, u1] → R
2. Let Cu, u0 6 u 6 u1,

be the unique conic that is tangent to α at its endpoints, and intersects it at the
point α(u). For u = u0 and u = u1 the conic has a triple intersection with the
curve, or, in other words, it has contact of second order with α there.

Proposition 3.2. 1. Two conics Cu and Cu′ , u 6= u′, are tangent at α(u0) and
α(u1), and have no other intersections.

2. Conic Cu intersects arc α at α(u0), α(u), and α(u1), but at no other point.

Proof. 1. By Bezout’s theorem, two conics intersect in at most four points, counted
with multiplicity. Since conics Cu and Cu′ intersect with multiplicity two at each
of the points α(u0) and α(u1), there are no other intersections.

2. This is a straightforward consequence of Proposition 3.1, part 1.

�
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α(u0)

α(u1)

Figure 2. The curve and the family of conics Cu, u0 6 u 6 u1,
tangent at the endpoints α(u0) and α(u1) and passing through
α(u).

3.2. Displacement function

A bitangent conic of a regular curve α : I → R
2 is a conic arc which is tangent

to α at its endpoints, such that each normal line of α intersects the conic arc in a
unique point. Therefore, a bitangent conic has a parameterization β : I → R

2 of
the form β(u) = α(u)+d(u)N(u), where d : I → R is the displacement function of
the conic arc. The Hausdorff distance between α and a bitangent conic C is equal
to

δH(α,C) = maxu∈I |d(u)|.
There is a one-parameter family of bitangent conics, so the goal is to determine an
optimal bitangent conic, i.e., a conic in this family that minimizes the Hausdorff
distance.

3.3. Equioscillation property

Denote the arc of the curve between α(u0) and α(u) by α−
u , and the arc between

α(u) and α(u1) by α+
u . Similarly, C−

u and C+
u denote the arcs of Cu between α(u)

and α(u0) and between α(u) and α(u1), respectively.

Corollary 3.3 (Equioscillation property). There is a unique conic Cu∗
in the fam-

ily Cu, u0 6 u 6 u1, such that the Hausdorff distance du∗
of α and Cu∗

is minimal:

du∗
= minu06u6u1

δH(α,Cu).

Furthermore,

du∗
= δH(α−

u∗
, C−

u∗
) = δH(α+

u∗
, C+

u∗
).

Proof. Let δ±(u) = δH(α±
u , C

±
u ). Then there are two cases: (i) δ−(u) is increasing

and δ+(u) is decreasing as a function of u, and (ii) δ−(u) is decreasing and δ+(u)
is increasing as a function of u. The situation depicted in Figure 2 corresponds
to Case (i). This observation, which is a direct consequence of Proposition 3.2,
part 2, implies that there is a unique u∗ such that δ−(u∗) = δ+(u∗). Obviously,
du∗

satisfies the two claimed identities. �
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Figure 3. The graphs of the family of displacement functions.
The bold graph corresponds to the displacement function of the
optimal conic.

Let d(s;u), u0 6 s, u 6 u1, be the displacement function defined by the
condition that the point α(s) + d(s;u)N(s), lies on the conic arc Cu. Here N(s)
is the unit normal of the curve at α(s). The graphs of the functions s 7→ d(s;u),
u0 6 s 6 u1, are disjoint, except at their endpoints. See Figure 3. We conjecture
that the displacement function of an affine spiral is bimodal, i.e., its displacement
function has the profile of any of the graphs depicted in Figure 3. More precisely,
the function has one maximum, one minimum, and one interior zero, and there
are no other interior extremal points.

3.4. Monotonicity of optimal Hausdorff distance

If one endpoint of the affine spiral moves along the curve α, the Hausdorff distance
between the affine spiral and its optimal bitangent conic arc is monotone in the arc
length of the affine spiral. This result shows that bisection methods can be used
for the computation of an optimal approximating conic arc. We use this property
for the implementation of the algorithm presented in Section 6.

Proposition 3.4 (Monotonicity of Hausdorff distance along spiral arcs). Let α :
I → R

2 be an affine spiral arc, where I is an open interval containing 0. For % > 0
let α% be the sub-arc between α(0) and α(%), and let β% be the (unique) conic arc
tangent to α% at its endpoints, and minimizing the Hausdorff distance between α%

and the conic arcs tangent to α% at its endpoints. Then the Hausdorff distance
between α% and β% is a monotonically increasing function of %, for % > 0.

Proof. First we introduce some notation. The unique interior point of intersection
of α% and β% occurs at u = u(%) ∈ I. The sub-arcs of α% and β% between α(0) and
α(u(%)) are denoted by α−

% and β−
% , respectively. The complementary sub-arcs of

α% and β% are denoted by α+
% and β+

% , respectively. According to the Equioscillation
Property (Corollary 3.3) the Hausdorff distance between α% and β% is equal to the
Hausdorff distances between α±

% and β±
% , and is attained as the distance between

points a±(%) on α±
% and b±(%) on β±

% , i.e.,

δH(α%, β%) = dist(a−(%), b−(%)) = dist(a+(%), b+(%)).
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The complete conic containing β% will be denoted by K%. We will repeatedly use
the following consequence of Bezout’s theorem:

Intersection Property: For 0 < %1 < %2, the conics K%1
and K%2

have at most two
points of intersection (possibly counted with multiplicity) different from α(0).

Let %1, %2 ∈ I, with 0 < %1 < %2. The regions bounded by α±
%2

and β±
%2

are denoted

by R±. Since K%1
is either compact or unbounded, and not disjoint from the

boundary of R+, it intersects this boundary in an even number of points (counted
with multiplicity). Our strategy is to prove that β−

%1
lies inside R−, or that β+

%1
lies

inside R+. In the former case, we see that

δH(α%1
, β%1

) = dist(a−(%1), b−(%1)) < dist(a−(%2), b−(%2)) = δH(α%2
, β%2

),

whereas in the latter case

δH(α%1
, β%1

) = dist(a+(%1), b+(%1)) < dist(a+(%2), b+(%2)) = δH(α%2
, β%2

).

We distinguish two cases, depending on the order of u(%1) and u(%2).

Case 1: u(%1) > u(%2). Note that the conic K%1
is tangent to α at α(%1), a point

contained in α%2
. Therefore, in this case K%1

intersects α+
%2

in an odd number of
points, namely, once at the point α(u(%1)) and twice at the point of tangency
α(%1).

β+
%2

, the other part of boundary of R+, in an odd number of points. By the
Intersection Property, this odd number is equal to one. Since both endpoints of
β%1

lie on the same side of β%2
, this point of intersection does not lie on β%1

. In
other words, the interior of β+

%1
lies inside the region R+.

Case 2: u(%1) < u(%2). In this case K%1
does not cross α+

%2
, since it intersects α+

%2

in two coinciding points at the tangency α(%1), but at no other point. Therefore,
K%1

intersects β+
%2

, the other part of the boundary of R+, in at least two points (at
least one entrance and at least one exit point). By the Intersection Property, apart
from α(0), these are the only points in which K%1

and K%2
intersect. Therefore,

β−
%1

intersects neither β−
%2

nor α−
%2

in an interior point. In other words, the interior

of β−
%1

lies inside the region R−. �

Remark. A similar monotonicity property holds for the Hausdorff distance between
an affine spiral and a bitangent parabolic arc. The proof is omitted, since it is
straightforward, and along the same lines as the proof of Proposition 3.4.

4. Affine curvature of offset curves

The main result of this section is a relation between the affine curvatures of a
curve and a bitangent offset curve.

Let α : I → R
2 be a regular curve parameterized by affine arc length, with

affine arc length parameter u ∈ I. Here I is an open interval, containing 0. We
consider offset curves tangent to α at α(0) and α(%). The affine curvature of such
a curve is related to the affine curvature k of α, as indicated in the first part of the
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following Lemma. In the second part, an analogous result relates these curvatures
when there is an additional point of intersection at α(σ).

Lemma 4.1 (Affine curvature of offset curves). Let α be a Cm-regular curve.

1. Let β : I×I → R
2 be a Cn-function, such that, β(·, %) is a curve tangent to

α at α(0) and α(%), for % ∈ I. If m,n > 5, there are Cl-functions P,Q : I×I → R,
with l = min(m− 5, n− 4), such that

β(u, %) = α(u) + d(u, %)
(
P (u, %)t(u) +Q(u, %)n(u)

)
, (4.1)

where d(u, %) = u2 (u−%)2. Here t(u) and n(u) are the affine tangent and the affine
normal of α, respectively. Furthermore, the affine curvature kβ(u, %) of β(·, %) at
0 6 u 6 % is given by

kβ(u, %) = k(0) + 8Q(0, 0) +O(%). (4.2)

2. Let β : I × I × I → R
2 be a Cn-function, such that, β(·, σ, %) is a curve tangent

to α at α(0) and α(%) and intersecting α at α(σ), for σ, % ∈ I and 0 6 σ 6 %. If
m,n > 6, and, moreover, β also intersects α at α(σ), with 0 6 σ 6 %, then there
are Cl-functions P,Q : I × I → R, with l = min(m− 6, n− 5), such that

β(u, σ, %) = α(u) + d(u, σ, %)
(
P (u, σ, %)t(u) +Q(u, σ, %)n(u)

)
, (4.3)

where d(u, σ, %) = u2 (u−%)2 (u−σ). Furthermore, the affine curvature kβ(u, σ, %)
of β(·, σ, %) at 0 6 u 6 % is given by

kβ(u, σ, %) = k(0) + k′(0)u+ 8 (5u− σ − 2%)Q(0, 0, 0) +O(%2).

Proof. 1. If α is Cm, then the functions (u, %) 7→ [β(u, %) − α(u), n(u)] and
(u, %) 7→ [β(u, %) − α(u), t(u)] are of class Cmin(m−1,n). For fixed %, these func-
tions have double zeros at u = 0 and u = %. The Division Property, cf. Appen-
dix B, Lemma B.2, guarantees the existence of Cmin(m−5,n−4)-functions P and
Q satisfying [β(u, %) − α(u), n(u)] = d(u, %)P (u, %) and [β(u, %) − α(u), t(u)] =
d(u, %)Q(u, %). In other words, P and Q satisfy identity (4.1).

According to Proposition 2.3 the affine curvature of the curve β(·, %) is a
Cn−4-function given by

kβ =
1

ϕ5
[βuu, βuuu] +

1

ϕ4
(ϕuu ϕ− 3ϕ2

u), (4.4)

ϕ = [βu, βuu]
1/3

. In (4.4), the functions kβ , ϕ, β, and their partial derivatives
are evaluated at (u, %). Since n > 5, and 0 6 u 6 %, it follows that kβ(u, %) =
kβ(u, 0) + O(%). So, to prove (4.2), it is sufficient to determine β(u, 0) and its
derivatives up to order four. Writing β0(u) = β(u, 0), we see that

β0(u) = α(u) + f(u) (P0 t(u) +Q0 n(u)) +O(u5),



Approximation by Conic Splines 15

where f(u) = u4, P0 = P (0, 0) andQ0 = Q(0, 0). In view of the affine Frenet-Serret
identities (2.7) we get

β′
0 = (1 + f ′ P0) t+ f ′Q0 n+O(u4),

β′′
0 = f ′′ P0 t+ (1 + f ′′Q0)n+O(u3), (4.5)

β′′′
0 = (−k + f ′′′ P0) t+ f ′′′Q0 n+O(u2).

Here the functions β0, f , t, n and k, as well as their derivatives, are evaluated at

u. Since ϕ(u, 0) = [β′
0(u), β

′′
0 (u)]

1
3 , we use the first two identities of (4.5) to derive

ϕ(u, 0) = 1 + 1
3 f

′′(u)Q0 +O(u3) = 1 + 4 u2Q0 +O(u3).

Similarly, using the second and third identity of (4.5) we get

[β′′
0 (u), β′′′

0 (u)] = k(u) +O(u) = k(0) + 8Q0 +O(u).

Identity (4.2) is obtained by plugging these expressions into (4.4).

2. Now we turn to the case where the offset curve not only is tangent to
α at its endpoints, but also has an additional point of intersection at α(σ). The
existence of functions P and Q satisfying (4.3) is proven as in Part 1, using the
Division Property. Again the affine curvature of β is given by (4.4), where this
time the functions kβ , ϕ, β, and their partial derivatives are evaluated at (u, σ, %).

In (4.3) we have d(u, σ, %) = u5 − (2%+ σ)u4 + O(%2 + σ2), P = P0 + O(u),
and Q = Q0 +O(u). Focusing on the essential terms only, we rewrite (4.3) as:

β = α+ (u5 − (2%+ σ)u4) (P0 t+Q0 n) +O(u6) +O((% + σ)u5) +O(%2 + σ2).
(4.6)

Here α, t and n are evaluated at u, and β at (u, σ, %). For a smoother presentation,
we introduce the following terminology. The class Oi(u, σ, %), 0 6 i 6 4, consists
of all Cm−i-functions of the form O(u6−i) + O((% + σ)u5−i) + O(%2 + σ2). Using
this notation we rewrite (4.6) as

β = α+ f (P0 t+Q0 n) +O0(u, σ, %).

where f(u, σ, %) = u5 − (2%+ σ)u4.

If g ∈ Oi(u, σ, %), then gu ∈ Oi+1(u, σ, %), for 1 6 i 6 4. Therefore, we get, as
in (4.5):

βu = (1 + fu P0) t+ fuQ0 n+O1(u, σ, %),

βuu = fuu P0 t+ (1 + fuuQ0)n+O2(u, σ, %), (4.7)

βuuu = (−k + fuuu P0) t+ fuuuQ0 n+O3(u, σ, %).

Since ϕ = [βu, βuu]
1
3 , we use the first two identities of (4.7) to derive

ϕ = 1 + 1
3 fuuQ0 +O2(u, σ, %),
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so ϕ = 1 + O3(u, σ, %), ϕ
2
u = O4(u, σ, %), and ϕuu = 1

3 Q0 fuuuu + O4(u, σ, %).
Similarly, using the second and third identity of (4.5) we get

[βuu, βuuu] = k(u) +O4(u, σ, %).

It follows that

kβ(u, σ, %) = k(u) + 1
3 fuuuu Q0 +O4(u, σ, %)

= k(0) + k′(0)u+ 8 (5u− σ − 2%)Q0 +O(%2).

Note that in the last identity we used that O4(u, σ, %) = O(u2 +σ2 + %2) = O(%2),
since 0 6 u, σ 6 %. This concludes the proof of the second part. �

If the offset curves are bitangent conics, the affine curvature of these conics
can be expressed in the Euclidean and affine curvature of the curve α at the points
of intersection. Furthermore, we can determine the displacement function up to
terms of order five if the conic is a parabola, and up to terms of order six in the
general case. These results will enable us to determine an asymptotic expression
for the Hausdorff distance between a small arc and its optimal bitangent conic.

Corollary 4.2 (Bitangent conics). Let α be a strictly convex regular Cm-curve.

1. If m > 8, a parabolic arc tangent to α at α(0) and α(%) has the form

β(u, %) = α(u) + u2 (%− u)2D(u, %)N(u), (4.8)

where D is a Cm−8-function with D(0, 0) = − 1
8 k(0)κ(0)1/3. Here N(u) is the

Euclidean normal of α, and κ is its Euclidean curvature.

2. If m > 9, a conic arc tangent to α at α(0) and α(%) and intersecting at α(σ),
with 0 6 σ 6 %, has the form

β(u, σ, %) = α(u) + u2 (%− u)2 (u− σ)D(u, σ, %)N(u), (4.9)

where D is a Cm−9-function with D(0, 0, 0) = − 1
40 k

′(0)κ(0)1/3. Moreover, its
affine curvature is of the form

kβ(σ, %) = 1
5 (2k(0) + k(σ) + 2k(%)) +O(%2).

Proof. 1. Obviously, the family of parabolic arcs can be written in the form
β(u, %) = α(u) + d(u, %)N(u), provided % is sufficiently small. According to
Lemma 2.7, β is a Cm−4-function, so d = [T, β − α] is a Cm−4-function with
double zeros at u = 0 and u = %. According to Lemma 4.1, the parabola has a
parameterization of the form (4.1), where P and Q are Cm−8-functions. Therefore,
d(u, %) = u2 (u−%)2Q(u, %) [T (u), n(u)], so β is of the form (4.8) with D = Q [T, n].
In particular, D is a Cm−8-function. Comparing this expression with identity (4.1)
in Lemma 4.1, we see that D(u, %) = Q(u, %) [T (u), n(u)]. From (2.9) we conclude
that D(0, 0) = κ(0)1/3Q(0, 0). Since the affine curvature of a parabolic arc is iden-
tically zero, Part 1 of Lemma 4.1 yields Q(0, 0) = − 1

8 k(0), yielding the value for
D(0, 0) stated in Part 1.
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2. As in Part 1 we prove that β has a parameterization of the form (4.9), where D
is a Cm−9-function. The affine curvature of a conic arc is constant, so Part 2
of Lemma 4.1 yields Q(0, 0, 0) = − 1

40 k
′(0). Since also in this case we have

D(0, 0, 0) = κ(0)1/3Q(0, 0, 0), we conclude that D(0, 0, 0) has the value stated
in Part 2. Furthermore, (4.2) yields

kβ = k(0) + 1
5 (σ + 2%) k′(0) +O(%2) = 1

5 (2k(0) + k(σ) + 2k(%)) +O(%2).

This concludes the proof of the second part. �

Remarks. 1. The second part of Corollary 4.2 can be generalized in the sense that
the affine curvature of a conic intersecting a strictly convex arc at five points is
equal to the average of the affine curvatures of the curve at these five points, up
to quadratic terms in the affine length of the arc. The proof is similar to the one
given above.

2. We conjecture that the ‘loss of differentiability’ is less than stated in Corol-
lary 4.2. More precisely, we expect thatD is of class Cm−4 for a bitangent parabolic
arc, and of class Cm−5 for a bitangent conic arc.

5. Complexity of conic splines

In this section our goal is to determine the Hausdorff distance of a conic arc of
best approximation to an arc of α of Euclidean length σ > 0, that is tangent to
α at its endpoints. If the conic is a parabola, these conditions uniquely determine
the parabolic arc. If we approximate with a general conic, there is one degree of
freedom left, which we use to minimize the Hausdorff distance between the the arc
of α and the approximating conic arc β. As we have seen in Section 3, the optimal
conic arc intersects the arc of α in an interior point.

The main result of this section gives an asymptotic bound on this Hausdorff
distance.

Theorem 5.1 (Error in parabolic and conic spline approximation). Let β be a
conic arc tangent at its endpoints to an arc of a regular curve α of length σ, with
non-vanishing Euclidean curvature.

1. If α is a C8-curve, and β is a parabolic arc, then the Hausdorff distance between
these arcs has asymptotic expansion

δH(α, β) = 1
128 |k0|κ5/3

0 σ4 +O(σ5), (5.1)

where κ0 and k0 are the Euclidean and affine curvatures of α at one of its end-
points, respectively.

2. If α is a C9-curve, and β is a conic arc, then the Hausdorff distance between
these arcs is minimized if the affine curvature of β is equal to the average of the
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affine curvatures of α at its endpoints, up to quadratic terms in the length of α.
In this case this Hausdorff distance has asymptotic expansion

δH(α, β) = 1
2000

√
5
|k′0|κ2

0 σ
5 +O(σ6), (5.2)

where κ0 is the Euclidean curvature of α at one of its endpoints, and k′0 is the
derivative of the affine curvature of α at one of its endpoints.

Proof. 1. According to Corollary 4.2, the parabolic arc has a parameterization of
the form (4.8). It follows from Appendix C, Lemma C.1, applied to the displace-
ment function d(u) = u2 (%− u)2D(u, %), cf. (4.8), that

δH(α, β) = 1
16 |D(0, 0)| %4 +O(%5). (5.3)

From Lemma 2.1, part 1, we derive

% = κ
1/3
0 σ +O(σ2). (5.4)

Since D(0, 0) = − 1
8 k(0)κ(0)1/3, we conclude from (5.3) and (5.4) that the Haus-

dorff distance satisfies (5.1).

2. Again, according to Corollary 4.2, cf. (4.9), a best approximating conic arc has a
parameterization of the form (4.9), with D(0, 0, 0) = − 1

40 k
′(0)κ(0)1/3. Applying

Appendix C, Lemma C.1 to the displacement function d(u) = u2 (u − σ) (% −
u)2D(u, σ, %), cf. (4.9), we see that

δH(α, β) = 1
50

√
5
|D(0, 0, 0)| %5 +O(%6), (5.5)

where the optimal conic intersects the curve α for σ = σ(%) = 1
2 %+O(%2). Identities

(5.4) and (5.5) imply that the Hausdorff distance is given by (5.2). Finally, the
affine curvature of this conic is

1
5 (2k(0) + k(1

2 %+O(%2)) + 2k(%)) +O(%2) = 1
2 (k(0) + k(%)) +O(%2).

This concludes the proof of the main theorem of this section. �

Remark. It would be interesting to give a direct geometric proof of the fact that
the best approximating conic has affine curvature equal to the average of the affine
curvatures of α at its endpoints.

The preceding result gives an asymptotic expression for the minimal num-
ber of elements of an optimal parabolic or conic spline in terms of the maximal
Hausdorff distance.

Corollary 5.2 (Complexity of parabolic and conic splines). Let α : [0, L] → R
2 be

a regular curve with non-vanishing Euclidean curvature of length L, parameterized
by Euclidean arc length, and let κ(s) and k(s) be its Euclidean and affine curvature
at α(s), respectively.
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1. If α is a C8-curve, then the minimal number of arcs in a tangent continuous
parabolic spline approximating α to within Hausdorff distance ε is

N(ε) = c1

(∫ L

0

|k(s)|1/4 κ(s)5/12ds
)

ε−1/4(1 +O(ε1/4)), (5.6)

where c1 = 128−1/4 ≈ 0.297.

2. If α is a C9-curve, then the minimal number of arcs in a tangent continuous
conic spline approximating α to within Hausdorff distance ε is

N(ε) = c2

(∫ L

0

|k′(s)|1/5 κ(s)2/5ds
)

ε−1/5(1 +O(ε1/5)), (5.7)

where c2 = (2000
√

5)−1/5 ≈ 0.186.

We only sketch the proof, and refer to the papers by McClure and Vitale [19]
and Ludwig [17] for details about this proof technique in similar situations. Con-
sider a small arc of α, centered at α(s). Let σ(s) be its Euclidean arc length.
Then the Hausdorff distance between this curve and a bitangent parabolic arc is
1

128 |k0|κ5/3
0 σ(s)4 +O(σ(s)5), cf. Theorem 5.1. Therefore,

σ(s) =
4
√

128 |k(s)|−1/4 κ(s)−5/12 ε1/4(1 +O(ε1/4)).

The first part follows from the observation that N(ε) =

∫ L

0

1

σ(s)
ds. The proof of

the second part is similar.

6. Implementation

We implemented an algorithm in C++ using the symbolic computing library GiNaC
1,

for the computation of an optimal parabolic or conic spline, based on the mono-
tonicity property. For computing the optimal parabolic spline, the curve is sub-
divided into affine spirals. Then for a given maximal Hausdorff distance ε, the
algorithm iteratively computes optimal parabolic arcs starting at one endpoint.
At each step of this iteration the next breakpoint is computed via a standard
bisection procedure, starting from the most recently computed breakpoint. The
bisection procedure yields a parabolic spline whose Hausdorff distance to the sub-
tended arc is ε. An optimal conic spline is computed similarly. The bisection step is
slightly more complicated, since the algorithm has to select the optimal conic arc
from a one-parameter family. Here the equioscillation property gives the criterion
for deciding whether the computed conic arc is optimal.

Below we present two examples of computations of optimal parabolic and
conic splines. We compare the computed number of elements of these splines with
the theoretical asymptotic complexity given in Corollary 5.2, thereby neglecting
the higher order terms in (5.6) and (5.7).

1http://www.ginac.de
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Figure 4. Approximation of the spiral for ε ranging between
10−1 to 10−8.

6.1. A spiral curve

We present the results of our algorithm applied to the spiral curve, parameterized
by α(t) = (t cos(t), t sin(t)), with 1

6π 6 t 6 2π.

Figures 4(a) and 4(b) depict the result of the algorithm applied to the spiral
for different values of the error bound ε, for the approximation by conic arcs and
parabolic arcs respectively. For ε > 10−2, there is no visual difference between the
curve and its approximating conic.
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ε Parabolic Conic
Exp./ Th. Exp./ Th.

10−1 5 3
10−2 9 4
10−3 15 6
10−4 26 9
10−5 46 13
10−6 82 21
10−7 145 32
10−8 257 51

Table 1. The complexity (number of arcs) of the parabolic spline
and the conic spline approximating the Spiral Curve. The theoreti-
cal complexity matches exactly with the experimental complexity,
for various values of the maximal Hausdorff distance ε.

Table 1 gives the number of arcs computed by the algorithm, and the theo-
retical bounds on the number of arcs for varying values of ε, both for the parabolic
and for the conic spline.

6.2. Cayley’s sextic

We present the results of our algorithm applied to the Cayley’s sextic, the curve
parameterized by α(t) = (4 cos( t

3 )3 cos(t), 4 cos( t
3 )3 sin(t)), with − 3

4 π 6 t 6 3
4 π.

This curve has a sextactic point at t = 0. For all values of ε we divide the pa-
rameter interval into two parts [− 3

4 π, 0] and [0, 3
4 π] each containing the sextactic

point as an endpoint, and then approximate with conic arcs using the Incremental
Algorithm.

The pictures in Figure 5(a) give the conic spline approximation images for
Cayley’s sextic for different values of ε. The first picture in Figure 5(b) gives the
original curve and its parabolic spline approximation for ε = 10−1. The rest of the
pictures in Figure 5(b) gives only the parabolic spline approximation for Cayley’s
sextic for different errors, since the original curve and the approximating parabolic
spline are not visually distinguishable.

Table 2 gives the number of arcs computed by the algorithm, and the theo-
retical bounds on the number of arcs for varying values of ε, both for the parabolic
and for the conic spline. The difference in the experimental and theoretical bound
in the conic case for ε = 10−1 can be explained by the fact that the higher order
terms are not taken into consideration for computing the theoretical bound. This
causes the anomaly for relatively higher values of ε.
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(b) Parabolic spline approximation

Figure 5. Plot of the approximations of a part of Cayley’s sextic
for ε ranging from 10−1 to 10−8.

7. Future work

It would be interesting to determine the constants in the approximation order of
some of the existing methods for geometric Hermite interpolation (Floater [14],
Schaback [26]), using the methods of this paper. Another open problem is to
determine more terms in the asymptotic expansions of the complexity of optimal
parabolic and conic splines derived in Section 5, like Ludwig [17] extends the
complexity bound of the linear spline approximation of Fejes Tóth [13].
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ε Parabolic Conic
Exp./Th. Exp./ Th.

10−1 6 4/2
10−2 8 4
10−3 14 6
10−4 24 8
10−5 44 12
10−6 76 18
10−7 134 28
10−8 238 44

Table 2. The complexity of the parabolic spline and the conic
spline approximating Cayley’s sextic. The theoretical complexity
matches exactly with the complexity measured in experiments
(except for ε = 10−1 in the conic case), for various values of the
maximal Hausdorff distance ε.

To enable certified computation of conic arcs with guaranteed bounds on the
Hausdorff distance we would have to derive sharp upper bounds on the Haus-
dorff distance between a curve and a bitangent conic, extending the asymptotic
expression for these error bounds for short curves, as given in Theorem 5.1. Such
a certified method could lead to robust computation of geometric structures for
curved objects, like its Voronoi Diagram. In this approach the curved object would
first be approximated by conic splines, after which the Voronoi Diagram of the
conic arcs of these splines would be computed. The number of elements of such
a conic spline would be orders of magnitude smaller than the number of line seg-
ments needed to approximate the curved object with the same accuracy. Deciding
whether this feature outweighs the added complexity of the geometric primitives
in the computation of the Voronoi Diagram would have to be the goal of extensive
experiments.

Appendix A. Proof of Proposition 2.3

Proof. Identity (2.4) implies γ′(r) = Γ(u(r)), where Γ(u) = 1
ϕ(u) α̇(u). We denote

differentiation with respect to u by a dot, like in α̇, and differentiation with respect
to r by a dash, like in γ′. Then γ′′(r) = u′(r) Γ̇(u(r)), and γ′′′(r) = u′′(r) Γ̇(u(r))+

u′(r)2 Γ̈(u(r)). From the definition of Γ we obtain

Γ̇ = − ϕ̇

ϕ2
α̇+

1

ϕ
α̈, and Γ̈ =

(

2
ϕ̇2

ϕ3
− ϕ̈

ϕ2

)

α̇− 2
ϕ̇

ϕ2
α̈+

1

ϕ

...
α.
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Furthermore, since u′(r) = 1
ϕ(u(r)) , it follows that u′′(r) = − ϕ̇(u(r))

ϕ(u(r))3 . Therefore,

γ′′(r) = − ϕ̇

ϕ3
α̇+

1

ϕ2
α̈, and γ′′′(r) =

(

3
ϕ̇2

ϕ5
− ϕ̈

ϕ4

)

α̇− 3
ϕ̇

ϕ4
α̈+

1

ϕ3

...
α,

where we adopt the convention that ϕ, α, and their derivatives are evaluated at
u = u(r). Hence, the affine curvature of α at u ∈ I is given by

k(u) = [γ′′, γ′′′]

=
1

ϕ5
[α̈,

...
α ] −

(

3
ϕ̇2

ϕ7
− ϕ̈

ϕ6

)

[α̇, α̈] + 3
ϕ̇2

ϕ7
[α̇, α̈] − ϕ̇

ϕ6
[α̇,

...
α ]

=
1

ϕ5
[α̈,

...
α ] +

ϕ̈

ϕ6
[α̇, α̈] − ϕ̇

ϕ6
[α̇,

...
α ].

From (2.3) it follows that [α̇, α̈] = ϕ3 and [α̇,
...
α ] = 3ϕ2 ϕ̇. Using the latter

identity we obtain expression (2.12) for the affine curvature of α. �

Appendix B. Divided differences and the Division Property

Recall that, for a real-valued function f defined on an interval I and points
x0, x1, . . . , xn ∈ I, the n-th divided difference [x0, . . . , xn]f is defined as the coeffi-
cient of xn in the polynomial of degree n that interpolates f at x0, x1, . . . , xn. This
definition is equivalent to the well-known recursive definition; see [7, Chapter 4]
or [25, Chapter 5]. The interpolating polynomial can be written in the Newton
form

p(x) = f(x0) + (x− x0) [x0, x1]f + · · · + (x− x0) · · · (x− xn−1) [x0, . . . , xn]f.
(B.1)

The n-th divided difference is well defined if the points are distinct. However, if f
is sufficiently differentiable on I, then the n-th divided difference is also defined if
some of the points coincide. More precisely, if f is a Cn-function, then the n-th
divided difference has the following integral representation, known as the Hermite-
Genocchi identity:

[x0, x1, · · · , xn] f =

∫

Σn

f (n)(t0x0 + t1x1 + · · · + tnxn) dt1 · · · dtn,

where t0 = 1 − ∑n
i=1 ti, and the domain of integration is the standard Σn =

{(t1, . . . , tn) | t1 + · · · + tn 6 1, ti > 0, for i = 0, 1, . . . , n}. For a proof
we refer to [4, Chapter 1], [20] or [21]. The Hermite-Genocchi identity implies
that [x0, x1, · · · , xn] f is symmetric and continuous in (x0, x1, . . . , xn). If f is
a Cm-function, with m > n, this divided difference is a Cm−n-function of
(x0, x1, . . . , xn). Furthermore, if xi = ξ for i = 0, . . . , n, then

[ξ, . . . , ξ
︸ ︷︷ ︸

n+1

] f =
1

n!
f (n)(ξ). (B.2)
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Furthermore, taking x0 = · · · = xn−1 = ξ, and xn = x, we see that

[ξ, . . . , ξ
︸ ︷︷ ︸

n

, x] f =
1

(n− 1)!

∫ 1

u=0

(1 − u)n−1f (n)
(
(1 − u)ξ + ux

)
du. (B.3)

The key result used in this paper is the following ‘Newton development’ of a
function f , akin to the Taylor series expansion.

Lemma B.1. Let f : I → R be a Cm-function defined on an interval I ⊂ R, and
let x0, . . . , xn−1 ∈ I. Then

f(x) = f(x0) +

n−1∑

k=1

k−1∏

i=0

(x− xi) [x0, . . . , xk] f +

n−1∏

i=0

(x− xi) [x0, x1, · · · , xn−1, x] f.

If m > n, then [x0, x1, · · · , xn−1, x] f is a Cn−m-function of x. Furthermore, if
x0 = . . . = xn−1 = ξ, then the preceding identity reduces to the Taylor expansion
with integral remainder:

f(x) = f(ξ)+
∑n−1

k=1
(x−ξ)k

k! f (k)(ξ)+ (x−ξ)n

(n−1)!

∫ 1

u=0
(1−u)n−1 f (n)(ux+(1−u)ξ) du.

The result follows from the observation that the polynomial p, defined
by (B.1), interpolates f at x0, . . . , xn, so in particular f(xn) = p(xn). Taking
xn = x yields the first identity. The Taylor expansion follows using identities (B.2)
and (B.3).

Since [x1, . . . , xk] f = 0 if f(xi) = 0, 1 6 i 6 k, a straightforward conse-
quence of Newton’s expansion (Lemma B.1) is the following.

Lemma B.2 (Division Property). Let I ⊂ R be an interval containing points
x1, . . . , xn, not necessarily distinct, and let f : I → R be a Cm-function, m > n,
having a zero at xi, for 1 6 i 6 n. Then

f(x) =

n∏

i=1

(x− xi) [x1, . . . , xn, x] f.

where the divided difference [x1, . . . , xn, x] f is a Cm−n-function of x.

Appendix C. Approximation of n-flat functions

In this section we derive error bounds for univariate real functions with multiple
zeros at the endpoints of some small interval [0, r]. To stress that the error also
depends on the size of the interval we consider a one-parameter family of functions
(u, r) 7→ f(u, r), where r is a small positive parameter. We look for a bound of the
error

max06u6r |f(u, r)|.
To obtain asymptotic bounds for this error as r goes to zero, we assume that the
function f is defined on a neighborhood of (0, 0) in R × R.
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Lemma C.1. Let I ⊂ R be an interval which is a neighborhood of 0 ∈ R.

1. Let f : I × I → R be a Cm-function such that the function u 7→ f(u, r) has an
n-fold zero at u = 0 and at u = r, with 2n+ 2 6 m. Then

max06u6r |f(u, r)| =
1

22n (2n)!

∣
∣
∣
∣

∂2nf

∂u2n (0, 0)

∣
∣
∣
∣
r2n +O(r2n+1).

2. Let f : I × I × I → R be a Cm-function such that the function u 7→ f(u, s, r)
has an n-fold zero at u = 0 and at u = r, and an additional single zero at u = s,
with 2n+ 3 6 m. Let

δ(s, r) = max06u6r |f(u, s, r)|.
Then δ is a continuous function, and

min06s6r δ(s, r) =
cn

(2n+ 1)!

∣
∣
∣
∣

∂2n+1f

∂u2n+1 (0, 0, 0)

∣
∣
∣
∣
r2n+1 +O(r2n+2), (C.1)

where

cn =
nn

2n+1 (2n+ 1)n+ 1

2

.

Moreover, the minimum in (C.1) is attained at s = s0(r), where s0 is a Cm−2n+1-
function, with s0(0) = 1

2 .

Proof. 1. We prove that, for r > 0 sufficiently small, the function u 7→ f(u, r)
has a unique extremum in the interior of the interval (0, r). According to the
Division Property (see Appendix B, Lemma B.2), there is a Cm−2n-function F :

I × I → R such that f(u, r) = un (r − u)n F (u, r). Observe that
∂2nf

∂u2n (0, 0) =

(−1)n (2n)!F (0, 0).

Note that the ‘model function’ g(u) = un (r − u)n F (0, 0) has its extreme
value 1

22nF (0, 0) on 0 6 u 6 r at u = 1
2r. We shall prove that the function f(u, r)

has its extreme value at u = 1
2r+O(r2). To this end we apply the Implicit Function

Theorem to solve the equation
∂f
∂u

(u, r) = 0.

Since 0 6 u 6 r, we scale the variable u by introducing the variable x such
that u = rx, with 0 6 x 6 1, and observe that f(rx, r) = r2n f̃(x, r), with

f̃(x, r) = xn(1 − x)n F (rx, r). Therefore,

∂f̃

∂x
(x, r) = nxn−1(1 − x)n−1E(x, r),

where E(x, r) = (1−2x)F (0, 0)+O(r), uniformly in 0 6 x 6 1. Since x 7→ ∂f̃
∂x

(x, r)

has an (n − 1)-fold zero at x = 0 and x = r, the Division Property allows us

to conclude that E is a Cm−2n+1-function. Since E(1
2 , 0) = 0, and ∂E

∂x
(1
2 , 0) =

−2F (0, 0) 6= 0, the Implicit Function Theorem tells us that there is a unique
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Cm−2n+1-function r 7→ x(r) with x(0) = 1
2 and

∂f̃
∂x

(x(r), r) = 0. Therefore, f̃(·, r)
has a unique extremum at x = x(r). Hence,

max06u6r |f(u, r)| = |f̃(x(r), r)| r2n

= |f̃(1
2 , 0)| r2n +O(r2n+1)

=
|F (0, 0)|

22n
r2n +O(r2n+1)

=
1

22n (2n)!

∣
∣
∣
∣

∂2nf

∂u2n (0, 0)

∣
∣
∣
∣
r2n +O(r2n+1).

2. The proof of the second part goes along the same lines, but is slightly more
complicated due to the occurrence of two critical points of the function f(·, s, r)
in the interior of the interval (0, r). Again, the Division Property guarantees the
existence of a Cm−2n−1-function F : I × I × I → R such that f(u, s, r) = un (r −
u)n (s− u)F (u, s, r).

The ‘model function’ g(u) = un (r − u)n (s − u)F (0, 0, 0) has two critical
points for 0 6 u 6 r: one on the interval [0, s] and one on the interval [s, r]. The
derivative of this function is of the form

g′(u) = un−1 (r − u)n−1
(
−(2n+ 1)u2 + (2ns+ n+ 1)u− ns

)
F (0, 0, 0).

A straightforward calculation shows that g′ has two zeros u±(s), and that the
critical values of g at these zeros are equal iff s = 1

2 . In the remaining part of the
proof we show that the function f(·, s, r) has its extreme values at u = u±(s) +
O(r2), again by applying the Implicit Function Theorem to solve the equation
∂f
∂u

(u, s, r) = 0.

The critical values of f(·, s, r). Putting u = rx and s = ry, with 0 6 x, y 6

1, we obtain f(rx, ry, r) = r2n+1 f̃(x, y, r), with f̃(x, y, r) = xn (1 − x)n (x −
y)F (rx, ry, r). To determine the critical points of x 7→ f̃(x, y, r) on the interval
(0, 1), we observe that

∂f̃

∂x
(x, y, r) = xn−1 (1 − x)n−1Q(x, y, r), (C.2)

where Q is a function of the form

Q(x, y, r) =
(
−(2n+ 1)x2 + (2ny + n+ 1)x− ny

)
F (0, 0, 0) +O(r),

uniformly in x, y ∈ [0, 1]. Since ∂f̃
∂x

is a Cm−1-function such that x 7→ ∂f̃
∂x

(x, r) has

(n− 1)-fold zeros at x = 0 and x = 1, the Division Property allows us to conclude
that Q, determined by (C.2), is a Cm−2n+1-function.

Assume F (0, 0, 0) > 0 (the case F (0, 0, 0) < 0 goes accordingly). Then, if

0 < y < 1, the function x 7→ f̃(x, y, 0) has one minimum at x = x0
−(y) and one

maximum at x = x0
+(y), where x0

± are the zeros of the quadratic function x 7→
Q(x, y, 0). Since

∂Q
∂x

(x0
±(y), y, 0) 6= 0, the Implicit Function Theorem guarantees
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the existence of Cm−2n+1-functions x± : I × I → R, with x−(y, r) < x+(y, r),
such that x±(y, 0) = x0

±(y), and Q(x±(y, r), y, r) = 0. So, in view of (C.2), the

function x 7→ f̃(x, y, r) has one minimum at x = x−(y, r), and one maximum at
x = x+(y, r). Putting

δ̃(y, r) = max06x61 |f̃(x, y, r)|, (C.3)

we see that

δ̃(y, r) = max
(
|f̃(x−(y, r), y, r)|, |f̃ (x+(y, r), y, r)|

)
.

The minimax norm of the family {f(·, s, r) | s ∈ [0, r]}. For fixed x and r, with

0 < x < 1 and r > 0 sufficiently small, the function y 7→ f̃(x, y, r) is decreasing.
See Figure 6. This follows from the observation that

∂f̃

∂y
(x, y, r) = −xn(1 − x)nE(x, y, r),

with E(x, y, r) = F (0, 0, 0) + O(r), uniformly in x, y ∈ [0, 1]. Therefore, there is
a %0 > 0 such that, for 0 6 r 6 %0, we have E(x, y, r) > 0 for 0 6 x, y 6 1, and

hence
∂f̃
∂y

(x, y, r) < 0.

0.2 0.4 0.6 0.8 1

Figure 6. Graph of the function x 7→ f̃(x, y, r), for r fixed and
y = y0 (solid), y = y1 (dashed), and y = y2 (dotted), with y0 <

y1 < y2.

From this observation it follows that, for fixed r and y ranging from 0 to 1,
the graphs of the functions x 7→ f(x, y, r) are disjoint, except at their endpoints.

See again Figure 6. Therefore, the function y 7→ δ̃(y, r) attains its minimum iff

∆(y, r) = 0,

where ∆(y, r) = f̃(x−(y, r), y, r) + f̃(x+(y, r), y, r).

Claim: There is a Cm−2n+1-function y0, such that, for 0 6 r 6 %0:

∆(y, r) = 0 iff y = y0(r).

and y0(r) = 1
2 +O(r).
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To prove this claim, we first prove that ∆(1
2 , 0) = 0. To see this, observe that

f̃(x, 1
2 , 0) = −f̃(1 − x, 1

2 , 0),

so

∂f̃

∂x
(x, 1

2 , 0) =
∂f̃

∂x
(1 − x, 1

2 , 0).

Therefore, x+(1
2 , 0) = 1 − x−(1

2 , 0), and hence ∆(1
2 , 0) = 0. Since

∂∆

∂y
(y, 0) =

∂f̃

∂y
(x−(y, 0), y, 0) +

∂f̃

∂y
(x+(y, 0), y, 0) < 0,

the function y 7→ ∆(y, 0) has a unique zero at y = 1
2 . Furthermore, the Im-

plicit Function Theorem guarantees the existence of a Cm−2n+1-function y0 with
∆(y0(r), r) = 0, and y0(0) = 1

2 .
In view of (C.3) we have

min06y61 δ̃(y, r) = |f̃(x±(y0(r), r), y0(r), r)|
= |f̃(x±(1

2 , 0), 1
2 , 0)| +O(r)

= max06x61 |xn(1 − x)n(x− 1
2 )| +O(r)

= cn +O(r).

Finally, min06s6r δ(s, r) = r2n+1 min06y61 δ̃(y, r) = cn r
2n+1 + O(r2n+2). The

minimum is attained at s = s0(r) = r y0(r). Obviously, s0 is a Cm−2n+1-function.
This concludes the proof of the second part of the Lemma. �
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Birkhäuser Verlag, 1979.

[21] N. Nörlund. Vorlesungen über Differenzenrechnung, volume XIII of Grundlehren der

Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1924.

[22] P.J. Olver, G. Sapiro, and A. Tannenbaum. Affine invariant detection: edge maps,
anisotropic diffusion, and active contours. Acta Appl. Math., 59:45–77, 1999.

[23] V. Ovsienko and S. Tabachnikov. Projective Differential Geometry Old and New.

From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups, vol-
ume 165 of Cambridge Tracts in Mathematics. Cambridge University Press, 2005.

[24] H. Pottmann. Locally controllable conic splines with curvature continuity. ACM

Trans. Graphics, 10(4):366–377, 1991.



Approximation by Conic Splines 31

[25] M.J.D. Powell. Approximation Theory and Methods. Cambridge University Press,
Cambridge, 1981.

[26] R. Schaback. Planar curve interpolation by piecewise conics of arbitrary type. Con-

structive Approximation, 9:373–389, 1993.

[27] S. Tabachnikov and V. Timorin. Variations on the Tait-Kneser theorem. Technical
report, Department of Mathematics. Pennsylvania State University, 2006.

[28] X. Yang. Curve fitting and fairing using conic splines. Computer-Aided Design,
36(5):461–472, 2004.

Acknowledgements

We thank the referees for their helpful comments.

Sunayana Ghosh
Department of Mathematics and Computing Science
University of Groningen
PO Box 407
9700 AK Groningen
The Netherlands
e-mail: S.Ghosh@cs.rug.nl

Sylvain Petitjean
LORIA-INRIA
BP 239, Campus scientifique
54506 Vandœuvre cedex
France
e-mail: Sylvain.Petitjean@loria.fr

Gert Vegter
Department of Mathematics and Computing Science
University of Groningen
PO Box 407
9700 AK Groningen
The Netherlands
e-mail: G.Vegter@cs.rug.nl


