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Abstract

Skin surfaces are used for the visualization of molecules. They form a
class of tangent continuous surfaces defined in terms of a set of balls (the
atoms of the molecule) and a shrink factor. More recently, skin surfaces
have been used for approximation purposes.

We present an algorithm that approximates a skin surface with a topo-
logically correct mesh. The complexity of the mesh is linear in the size of
the Delaunay triangulation of the balls, which is worst case optimal.

We also adapt two existing refinement algorithms to improve the quality
of the mesh and show that the same algorithm can be used for meshing a
union of balls.
Keywords: Skin Surfaces, Meshing, Isotopy, Regular triangulation.

1 Introduction

Skin surfaces, introduced by Edelsbrunner in [14], have a rich and simple com-
binatorial and geometric structure that makes them suitable for modeling large
molecules in biological computing. Meshing such surfaces is often required for fur-
ther processing of their geometry, like in numerical simulation and visualization.
We present an algorithm for meshing skin surfaces with guaranteed topology.

Large molecules can be modeled using skin surfaces by representing each atom
by a sphere. Atoms that lie close to each other are connected by smooth patches.
A skin surface is parameterized by a set of weighted points (input balls) and a
shrink factor. If the shrink factor is equal to one, the surface is just the boundary
of the union of the input balls. If the shrink factor decreases, the skin surface
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becomes tangent continuous, due to the appearance of patches of spheres and
hyperboloids connecting the balls.

We present an algorithm in [20] that approximates an arbitrary surface with
a skin surface. The approximation is homeomorphic to the skin surface and the
Hausdorff distance between the two surfaces is arbitrarily small.

Two surfaces embedded in three space are isotopic if there is a continuous
deformation within the embedding space that transforms one surface into the
other one. In particular, isotopic surfaces are homeomorphic. The algorithm
presented in this paper constructs a mesh isotopic to the skin surface in two steps:
it constructs a coarse, isotopic mesh which is subsequently improved by slightly
adapted refinement algorithms. The complexity of the coarse mesh is quadratic
in the number of input balls, and is independent of the shrink factor. This is
worst case optimal. For the second step a broad range of refinement algorithms
can be used. Existing algorithms may have to be adapted slightly to ensure the
isotopy. We show how this is done for the refinement algorithms of Chew [11]
and Kobbelt [18]. The

√
3-subdivision algorithm by Kobbelt is very fast, and

refines the size of the triangles. However, it does not improve the quality of the
mesh elements in terms of angle size. Chew’s algorithm improves the quality of
the mesh in terms of the angles and size of the triangles. The quality mesh is
suitable for numerical computations. Our version of these algorithms preserve
the isotopy property.

Related work. Most existing algorithms meshing implicit surfaces do not guar-
antee topological equivalence of the surface and the mesh constructed. The
marching cubes algorithm [21] subdivides a region into cubes and triangulates
the surface within these cubes based on whether the vertices of the cube lie in-
side or outside the cube. A variant of this algorithm that follows the surface is
[5].

The marching triangulation method [17] extends a small initial mesh by walk-
ing over the implicit surface, starting from a seed point. Our paper [19] presents
a marching triangulation method for meshing skin surfaces by carefully choosing
the step size during the walk over the mesh. However, as the shrink factor goes
to one or to zero, the size of the mesh goes to infinity.

The algorithms in [9, 16] construct a topologically correct mesh approximat-
ing a skin surface in the special case of a shrink factor 0.5. It is likely that this
algorithm can be generalized to work for arbitrary shrink factors, but this would
probably result in a denser mesh in order to guarantee the topology. The algo-
rithm is also rather slow. Another approach is found in [10]. We could not verify
the claim that the mesh produced by the algorithm in this paper is homeomor-
phic to the skin surface. The idea is to approximate the Morse-Smale complex of
the skin surface and use a marching algorithm to approximate the skin surface
using this Morse-Smale complex. There is no guarantee that the approximating
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Morse-Smale complex is topologically correct since the computation of the sep-
aratrices requires solving an ordinary differential equation using a Runge-Kutta
method.

Another method for visualizing molecules uses Molecular Surfaces [13]. Vi-
sualization algorithms for this type of surfaces are presented in [3, 4]. The algo-
rithms presented in [6, 23] are the first general methods guaranteeing topological
equivalence of the implicit surface and the mesh.

Contribution. The approach to meshing skin surfaces described in this paper
is new. The main contribution compared to [9] is that our approach works for
any shrink factor. We also establish isotopy, which is stronger than topological
equivalence. Our algorithm is more flexible in the sense that we generate a coarse
mesh that is isotopic to the skin surface and can be refined by different algorithms,
as shown in Section 3.4, whereas the algorithm in [9] immediately constructs a
homeomorphic quality mesh. Further, our algorithm is much faster. It constructs
a mesh in minutes where the algorithm presented in [9] takes hours.

On the theoretical side, we analyze the structure of the mixed complex and
decompose the mixed cells into tetrahedra. Within a tetrahedron the intersection
with the skin surface is either empty or a topological disk. It is fairly easy to
extract the isotopic mesh from this tetrahedral complex by a marching tetrahedra
algorithm.

Outline. In Section 2 we extend the theory of skin surfaces as presented in
[14]. We start by introducing a hierarchical conbinatorial structure on the mixed
complex. With each face of this complex we associate an anchor point, which
plays a crucial role in the meshing algorithm. Section 3 describes the construction
of the coarse mesh and establishes the isotopy between this mesh and the skin
surface. In Section 3.4, we describe the two methods to improve the coarse
mesh (i) subdivision of the triangles and (ii) improvement of the quality of the
triangles with regard to the size of the minimal angle. Finally, we describe our
implementation and give results in Section 4 and 5.

2 Definitions

This section first briefly reviews skin surfaces and then introduces some new
concepts specific to the meshing algorithm. For a more thorough introduction to
skin surfaces, we refer to [14] where they were originally introduced.

2.1 Skin surfaces.

A skin surface is defined in terms of a finite set of weighted points P and a shrink
factor s, with 0 ≤ s ≤ 1. A weighted point p̂ = (p, p) ∈ Rd × R corresponds
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Figure 1: The skin curve of two weighted points (the two dashed circles). The
smaller circles form a subset of the shrunken convex hull of the input points. Its
boundary forms the skin curve.

to a ball with center p and radius
√

p. A pseudo-distance between two weighted
points is given by:

π(p̂, q̂) = ‖p − q‖2 − p − q, (1)

where p̂ = (p, p), q̂ = (q,q) and ‖·‖ denotes the Euclidean distance. The
pseudo-distance π(p̂, x) of a weighted point p̂ to an (unweighted) point x is the
pseudo-distance of p̂ to the weighted point centered at x with zero weight. Two
weighted points with zero distance are called orthogonal. An orthosphere of a set
of weighted points P is, by definition, a sphere orthogonal to each of the weighted
points in P.

The space of weighted points inherits a vector space structure from Rd+1 via
the bijective map Π : Rd×R → Rd+1, defined by Π(p̂) = (x1, . . . , xd, ‖p‖2 − p),
with p = (x1, . . . , xd). Addition of two weighted points and the multiplication of
a weighted point by a scalar are defined in the vector space structure inherited
under Π. For further reading on the space of circles and spheres we refer to [22].

Starting from a weighted point p̂ = (p,P), the shrunken weighted point p̂s

is defined as p̂s = (p, s · p). The set Ps is the set obtained by shrinking every
weighted point of P by a factor s.

The skin surface sknsP and its body bdysP associated with a set of weighted
points P, are defined by

bdysP = ∪(conv P)s (2)

sknsP = ∂ bdysP. (3)

Here conv (P) ⊂ Rd × R is the convex hull – with respect to the vector space
structure inherited under Π – of a set of weighted points P, whereas ∂ denotes
the boundary – in Rd – of the union of the corresponding set of set of balls. For
a skin curve in 2D associated with two weighted points: see Figure 1.

2.2 Delaunay triangulation.

The Delaunay triangulation and Voronoi diagram are used to decompose the skin
surface into patches of spheres and hyperboloids. We briefly give the definition
of these structures and mention some properties.
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The (weighted) Voronoi diagram (or: the power diagram) Vor(P) of a set of
weighted points P is the subdivision of Rd into cells νX that have smaller power
distance to the weighted points in X ⊆ P than to any other weighted point in P:

νX =
⋂

p̂∈X ,p̂′∈P

{x ∈ Rd|π(p̂, x) ≤ π(p̂′, x)}.

Write 〈u, v〉 for the inner product of u and v.

Observation 1. Let yp̂,p̂′ be a point with the same power distance to p̂ and p̂′,
then νX =

⋂

p̂∈X ,p̂′∈P{x ∈ Rd|〈x − yp̂,p̂′, p
′ − p〉 ≤ 0}

The dual of the Voronoi diagram is the Delaunay triangulation (or: regular
triangulation) Del(P). We denote a Delaunay simplex of a set X ⊆ P, with
νX 6= ∅, by δX . Recall that δX = conv ({p|p̂ ∈ X}). If X ( X ′ and νX ′ 6= ∅, then
νX ′ is a proper face of νX and δX is a proper face of δX ′ .

Observation 2. The affine hulls of a Delaunay simplex δX and its dual Voronoi
cell νX are complementary and orthogonal.

Hence, the affine hulls of δX and νX always intersect in a single point, the
center f(X ) of X .

General position. In the remainder of this paper we assume general position,
by which we mean that no d + 2 weighted points are equidistant to a point in Rd

and no k+2 centers of weighted points lie on a common k-flat for k = 0, . . . , d−1.
Several methods like [15] exist to symbolically perturb a data set and ensure these
conditions. Note that, under this genericity condition, an orthosphere of a set X
only exists if |X | ≤ d + 1.

Consider a Delaunay cell δX ′ and one of its faces δX , with X ( X ′. Their
duals are respectively a face of a Voronoi cell and the Voronoi cell itself. There is
a half space through δX containing δX ′ and a half space through νX ′ containing
νX such that their normals point in opposite directions.

Lemma 3. Let δX , δX ′ ∈ Del(P), such that δX is a proper face of δX ′ and let
u = x′

d − xd with xd ∈ δX , x′
d ∈ int(δX ′). Then

1. 〈u, xv − x′
v〉=0, for xv, x

′
v ∈ νX ′.

2. 〈u, xv − x′
v〉<0, for xv ∈ νX \ νX ′, x′

v ∈ νX ′

Proof. Claim (1) follows directly from Observation 2. Hence, claim (2) is inde-
pendent of the choice of x′

v.
For the proof of claim (2), let m = |X |, n = |X ′| and X ′ = {p̂1, . . . , p̂n},

such that p̂i ∈ X , for i ≤ m. Write xd and x′
d in barycentric coordinates:
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xd =
∑

γi · pi, x′
d =

∑

γ′
i · pi with

∑

γi =
∑

γ′
i = 1, γi, γ

′
i ≥ 0. Since xd ∈ δX ,

γi = 0 for i ≥ m + 1, and γ′
i > 0 since x′

d ∈ int(δX ′). Rewrite u as:

u = x′
d − xd

=
m

∑

i=1

(γ′
i − γi)pi +

n
∑

i=m+1

γ′
ipi

=

m
∑

i=1

(γ′
i − γi)(pi − p1) +

n
∑

i=m+1

γ′
i(pi − p1)

Expanding 〈u, xv − x′
v〉 yields:

〈u, xv − x′
v〉 =

m
∑

i=1

(γ′
i − γi)〈pi − p1, xv − x′

v〉

+

n
∑

i=m+1

γ′
i〈pi − p1, xv − x′

v〉

From Observation 1, with yp̂i,p̂1
= x′

v, it follows that 〈pi − p1, xv − x′
v〉 is not

positive. Moreover, by Observation 2, the inner product is zero if and only if
p̂i ∈ X . Hence, the elements of the first sum are zero and the elements of the
second sum are negative, so 〈u, xv − x′

v〉 < 0. Note that for p̂1 we can substitute
any weighted point in X .

Although the meshing algorithm generalizes to any dimension, the main ap-
plication is in R3. Therefore we present the algorithm in three space.

2.3 The mixed complex

The mixed complex Mixs(P), associated with a scalar s ∈ [0, 1], is an inter-
mediate complex between the Delaunay triangulation and the Voronoi diagram.
Each mixed cell in the mixed complex is obtained by taking Minkowski sums of
shrunken Delaunay simplices and their dual Voronoi cells.

Definition 4. For δX ∈ Del(P) the mixed cell µs
X is defined by µs

X = (1 − s) ·
δX ⊕ s · νX .

Here · denotes the multiplication of a set by a scalar and ⊕ denotes the
Minkowski sum. For s = 0 the mixed cell is the Delaunay cell. When s increases
it deforms affinely into the Voronoi cell for s = 1.

Each mixed cell is a convex polyhedron since it is the Minkowski sum of two
convex polyhedra. Based on the dimension of the Delaunay simplex, there are
four types of mixed cells. A mixed cell of type ` corresponds to a Delaunay `-
cell and is of the form µs

X with |X | = ` + 1. In 3D, mixed cells of type 3 are
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v

p̂0

p̂1

p̂2
p̂3

µs
{p̂0,p̂1}

µs
{p̂1},{p̂0,p̂1}

µs
{p̂0,p̂1,p̂2}

µs
{p̂1}

Figure 2: The skin curve of four weighted points (the dotted circles). Each
mixed cell contains parts of an hyperbola or a circle. Some labels of mixed cells
are given. Note that v = µs

{p̂0,p̂2},{p̂1,p̂2}
= µs

{p̂2},{p̂0,p̂1,p̂2}
.

tetrahedra (shrunken Delaunay 3-cells) and mixed cells of type 0 are shrunken
Voronoi 3-cells. A mixed cell of type 1 or 2 is a prism with respectively the
shrunken Voronoi facet or the shrunken Delaunay facet as its base.

The intersection of the skin surface and a mixed cell is a piece of a sphere or
a hyperboloid. In the plane, the intersection of a skin curve with a mixed cell is
either part of a circle or hyperbola. An example of the mixed complex and a skin
curve is given in Figure 2. All rectangles are mixed cells of type 1 and contain
hyperbolic patches. The other cells contain circular arcs. Depending on whether
the mixed cell is of type 0 or 2, the interior of the skin curve lies inside or outside
the circle.

Within a mixed `-cell µs
X , the skin surface is a quadratic surface of the form

I−1
X (0), with:

IX (x) = − 1

1−s

∑̀

i=1

x2
i +

1

s

3
∑

i=`+1

x2
i − R2, (4)

and x = (x1, x2, x3). More precisely, sknsX ∩ µs
X = I−1

X (0) ∩ µs
X . The coordinate

system is orthonormal with its origin at the center of X , and such that the first
` coordinates span the affine hull δX , see [14].

The following observation holds trivially for mixed cells of type 0 and 3. For
mixed cells of type 1 and 2 it follows from the choice of the coordinate axis and
the construction of the mixed cells.

Observation 5. Each proper face of a mixed cell µs
X is perpendicular to a sym-

metry set of IX

Since the symmetry axis and the symmetry plane of the hyperboloid are
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perpendicular, each face of a mixed cell of type 1 or 2 is parallel to the other
symmetry set.

Polyhedral complex. The mixed complex is a polyhedral complex. The 3-
cells of this polyhedral complex are formed by the mixed cells. We give a more
detailed description of its structure.

Definition 6. For X ,X ′ ∈ P, with νX , νX ′ 6= ∅, a polyhedral cell µs
X ,X ′ is defined

as µs
X ,X ′ = µs

X ∩ µs
X ′.

Edelsbrunner gives an intuitive picture of the mixed complex in [14]. Take
the interval of d-dimensional affine subspaces of Rd+1 defined by xd+1 = s, for
s ∈ [0, 1]. Draw Del(P ) in xd+1 = 0 and Vor(P) in xd+1 = 1. For each Delaunay
simplex and corresponding Voronoi cell construct

µX = conv (δX ∪ νX ).

All µX are convex polyhedra of dimension d+1, their interiors mutually disjoint,
and they decompose the strip between xd+1 = 0 and xd+1 = 1. The subspace
xd+1 = s intersects µX in the mixed cell µs

X .
It is clear that a polyhedral cell µs

X ,X ′ is non-empty, for 0 < s < 1, if the De-
launay and Voronoi cells of X and X ′ have a non-empty intersection. Or, equiv-
alently, if νX∩X ′, νX∪X ′ ∈ Vor(P). It is not enough for one of the two simplices
to exists. E.g., let p̂1, p̂2, p̂3 be weighted points, the centers of which are the ver-
tices of a triangle in a two-dimensional Delaunay triangulation and X = {p̂1, p̂2},
X ′ = {p̂3}. Then δX∪X ′ ∈ Del(P), but X ∩ X ′ = ∅, hence δX∩X ′ 6∈ Del(P). On
the other hand, let δX , δX ′ be two Delaunay edges, that share a common ver-
tex, but do not have an incident triangle in common, then δX∩X ′ ∈ Del(P), but
δX∪X ′ 6∈ Del(P).

For nonempty polyhedral cells, the following lemma describes the structure
of the mixed complex.

Lemma 7. A mixed cell µs
X ,X ′ is not empty iff νX∩X ′ and νX∪X ′ are nonempty

In that case,
µs
X ,X ′ = (1 − s) · δX∩X ′ ⊕ s · νX∪X ′ .

Before we prove this lemma we first make some general remarks. Note that
the lemma also holds if νX∩X ′ = ∅ or νX∪X ′ = ∅.
Corollary 8. If νX∩X ′ and νX∪X ′ are nonempty, then µs

X ,X ′ = µs
X∩X ′,X∪X ′

The corollary holds since, µs
X∩X ′,X∪X ′ = (1 − s) · δX∩X ′ ⊕ s · νX∪X ′ . Hence,

each polyhedral cell µs
X ,X ′ has a unique label, if X ⊂ X ′. To gain some intuition

for the lemma, take s equal to zero. Then the mixed complex is the Delaunay
triangulation and indeed µ0

X ,X ′ = δX ∩ δX ′ = δX∩X ′. Conversely, for s = 1, the
mixed complex is the Voronoi diagram and µ1

X ,X ′ = νX ∩ νX ′ = νX∪X ′ .
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(a) X = {p̂0},X ′ = {p̂0, p̂1, p̂2},
hence X ⊆ X ′
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(b) X = {p̂0, p̂1},X ′ = {p̂0, p̂2},
hence X 6⊂ X ′ and X ′ 6⊂ X

Figure 3: Illustration of the proof of Lemma 7.

For the proof of Lemma 7, we use a relation between the Delaunay cells and
Voronoi cells, which we prove first. Consider a Delaunay cell δX ′ and one of its
faces δX , with X ( X ′. Their duals are respectively a face of a Voronoi cell and
the Voronoi cell itself. We show that there is a half space through δX containing
δX ′ and a half space through νX ′ containing νX such that their normals point in
opposite directions.

Proof of Lemma 7. The proof is trivial if X = X ′, hence we assume that
X 6= X ′. For simplicity, let F = (1 − s) · δX∩X ′ ⊕ s · νX∪X ′ .

From Definition (4) it follows that F ⊆ µs
X and F ⊆ µs

X ′, since δX∩X ′ ⊆ δX , δX ′

and νX∪X ′ ⊆ νX , νX ′. Hence, F ⊆ µs
X ,X ′.

For the opposite inclusion, we show that the two mixed cells lie in opposite
half spaces and intersect the bounding plane in F .

We distinguish two cases. First, consider the case where X ⊆ X ′ or X ′ ⊆ X ;
See Figure 3(a). Without loss of generality we assume that X ⊆ X ′. Let u be
a vector perpendicular to δX pointing from a point in δX towards a point in the
interior of δX ′ , such that 〈u, x′

d − xd〉 > 0, for xd ∈ δX , x′
d ∈ δX ′\δX . Such a vector

u exists, since δX is a proper face of the convex polyhedron δX ′ . Note that u is
perpendicular to δX . Lemma 3(2) states that 〈u, x′

v − xv〉 < 0, for xv ∈ νX \ νX ′ ,
xv ∈ νX ′ .

For each point x in a mixed cell µs
X there exists a unique combination xd ∈ δX ,

xv ∈ νX , such that x = (1 − s) · δX + s · νX , since δX and νX are affinely
independent. Hence, since F ⊆ X , a point y0 ∈ F can be uniquely written as
y0 = (1 − s) · y0

d + s · y0
v with y0

d ∈ δX , y0
v ∈ νX ′ .

We analyse the sign of the inner product 〈u, y − y0〉 for y subsequently in
µs
X \ F , F and µs

X ′ \ F .
First, let y ∈ µs

X \ F . We write y = (1 − s) · yd + s · yv, with yd ∈ δX
and yv ∈ νX \ νX ′. The inner product 〈u, yd − y0

d〉 is zero since yd, y
0
d ∈ δX and

〈u, yv − y0
v〉 < 0 by Lemma 3(2). Hence 〈u, y − y0〉 < 0 for y ∈ µs

X \ F .
Now assume that y ∈ F . Similar to y0, we write y = (1− s) · yd + s · yv, with
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yd ∈ δX , yv ∈ νX ′ . The inner product 〈u, yd − y0
d〉 is zero since yd, y

0
d ∈ δX and

〈u, yv − y0
v〉 = 0 by Lemma 3(1).

Finally, assume that y ∈ µs
X ′ \ F , then we write y as y = (1 − s) · yd + s · yv,

with yd ∈ δX ′ \ δX and yv ∈ νX ′. The inner product 〈u, yd − y0
d〉 is positive by

construction of u, and 〈u, yv − y0
v〉 = 0, again by Lemma 3(1). Hence 〈u, y − y0〉 >

0 for y ∈ µs
X ′ \ F .

Summarizing, we have:

〈u, y − y0〉







< 0, for y ∈ µs
X \ F,

= 0, for y ∈ F,
> 0, for y ∈ µs

X ′ \ F.

Hence, µs
X and µs

X ′ lie in opposite half spaces and meet only in F .
Conversely, assume that δX is not a face of δX ′ and vice versa. Then X ∩X ′ (

X ,X ′ ( X ∪ X ′, viz. Figure 3(b). For this case the proof is similar, except for
the construction of the vector u.

Let xI ∈ δX∩X ′. The Delaunay simplex δX∩X ′ has at least co-dimension 2,
since |X ∪ X ′| − |X ∩ X ′| ≥ 2. Hence, the set of points orthogonal to δX∩X ′

through xI is at least 2-dimensional. We intersect this orthogonal set with a
small ball centered at xI . If the radius is small enough, the intersection contains
a point x0 ∈ int(δX ) and x′

0 ∈ int(δX ′).
Let u = γ · (x′

0 − x0), for some 0 < γ < 1. By construction the triangle
xI , x0, x

′
0 is perpendicular to δX∩X ′. Since ‖xI − x0 ‖ = ‖xI − x′

0‖, the triangle
xI , x0, x

′
0 is an isosceles triangle. Hence, the angles ∠xI , x0, x

′
0, ∠xI , x

′
0, x0 are

equal and acute. As a result, for y0 ∈ δX∩X ′ we have:

〈u, y − y0〉







< 0, for y ∈ δX \ δX∩X ′,
= 0, for y ∈ δX∩X ′ ,
> 0, for y ∈ δX ′ \ δX∩X ′ .

Note that u points from x0 towards the interior of δX∪X ′ . Hence, u satisfies
Lemma 3 with respect to δX and δX∪X ′ . Using a similar argument, −u satisfies
Lemma 3 with respect to δX ′ and δX∪X ′. So, for y0 ∈ νX∪X ′ we have:

〈u, y − y0〉







< 0, for y ∈ νX \ νX∪X ′,
= 0, for y ∈ νX∪X ′ ,
> 0, for y ∈ νX ′ \ νX∪X ′ .

Now we combine the results for the Delaunay simplices and the Voronoi cells to
a statement for the mixed cell. Let y0 ∈ F and write y0 as y0 = (1−s) · y0

d + s · y0
v

with y0
d ∈ δX , y0

v ∈ νX ′.
Write y ∈ µs

X \ F uniquely as y = (1 − s) · yd + s · yv, with yd ∈ δX and
yv ∈ νX . Since y 6∈ F , either yd 6∈ δX∩X ′ or yv 6∈ νX∪X ′ . Expand the inner
product 〈u, y − y0〉 to (1 − s) · 〈u, yd − y0

d〉 + s · 〈u, yv − y0
v〉. Using the estimates

above, we obtain 〈u, y − y0〉 < 0
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Figure 4: The anchor points of two-dimensional polyhedral cells. Each anchor
point is labeled by the type its cell (f for face, e for edge and v for vertex). The
triangulation constructed in Section 3.2 is also shown.

A similar reasoning yields 〈u, y − y0〉 = 0 for y ∈ F and 〈u, y − y0〉 > 0 for
y ∈ µs

X \ F . 2

Denote with aff(X) the affine hull of a set X.

Lemma 9. For X ⊂ X ′, aff(µs
X ,X ′) and aff(δX ′) ∩ aff(νX ) are complementary

and orthogonal.

Proof. To shorten notation we write F = aff(µs
X ,X ′) and G = aff(δX ′)∩aff(νX ).

Recall from Lemma 7 that µs
X ,X ′ = (1 − s) · δX ⊕ s · νX ′ .

The cells δX and νX ′ are affinely independent, hence dim F = dim δX +
dim νX ′ = d + |X | − |X ′|. Further, δX and νX are orthogonal and dimG =
dim aff(δX ′)−dim aff(δX ) = |X ′| − |X |. Hence, the dimensions of F and G add
up to d. Both δX and νX ′ are orthogonal to G, which shows the orthogonality of
F and G.

Corollary 10. The dimension of a non-empty mixed cell µs
X ,X ′ in Rd, is d −

|X ∪ X ′| + |X ∩ X ′|.

2.4 The anchor point.

For the construction of the mesh we use the anchor point of a polyhedron.

Definition 11. Let A be a convex set and p a point in R3. Then the anchor
point ap(A) is the point in A closest to p.

We are interested in the case where A is a polyhedral cell µs
X ,X ′, a Delaunay

cell δX or a Voronoi cell νX and p is the center f(X ). In fact, we use the anchor
points of the polyhedral cells as vertices of a tetrahedral complex that decomposes
the skin surface into topological disks.

We distinguish two types of critical points on a mixed cell µs
X , interior critical

points are critical points of IX contained in the interior of µs
X and boundary

11



critical points are critical points of IX restricted to the boundary of µs
X . All

critical points are anchor points of a face of the mixed cell, viz. Figure 4. However,
not all anchor points are critical points, e.g. the point that is both the anchor
point of a vertex and an edge in Figure 4(a).

Lemma 12. A (boundary or regular) critical point of IX on a polyhedral cell
µs
X ,X ′ is the anchor point of µs

X ,X ′ or the anchor point of one of its faces with
respect to f(X ).

Proof. The center f(X ) is the only critical point of the quadratic function IX . If
f(X ) is contained in µs

X ,X ′, then it is the anchor point af(X )(µ
s
X ,X ′).

It remains to show that all boundary critical points are also anchor points. By
Observation 5, a face of µs

X ,X ′ is either parallel or perpendicular to the symmetry
sets of IX . Hence, if f(X ) projects onto the facet, then the facet has a boundary
critical point. By definition, this point is the anchor point of the facet with
respect to f(X ).

Lemma 13. af(X )(µ
s
X ,X ′) = af(X ′)(µ

s
X ,X ′).

Proof. Both f(X ) and f(X ′) lie on aff(δX∪X ′) and aff(νX∩X ′). Hence they lie
on aff(δX∪X ′) ∩ aff(νX∩X ′), which is orthogonal to µs

X ,X ′ by Lemma 9.

Lemma 14. af(X )(µ
s
X ,X ′) = (1 − s) · af(X∩X ′)(δX∩X ′) + s · af(X∪X ′)(νX∪X ′).

Proof. If A and B are orthogonal, then af(X )(s A ⊕ (1 − s) B) = af(X )(s A) +
af(X )((1 − s) B). Therefore, since δX∩X ′ and νX∪X ′ are orthogonal, we have
af(X )(µ

s
X ,X ′) = (1 − s) · af(X )(δX∩X ′) + s · af(X )(νX∪X ′).

Since f(X ), f(X ∩ X ′) ∈ aff(νX∩X ′) and δX∩X ′ is orthogonal to νX∩X ′ , we
have af(X )(δX∩X ′) = af(X∩X ′)(δX∩X ′). Similarly, f(X ), f(X ∪ X ′) ∈ aff(δX∪X ′)
and δX∪X ′ is orthogonal to νX∪X ′ , hence af(X )(νX∪X ′) = af(X∪X ′)(νX∪X ′). Con-
cluding, af(X )(µ

s
X ,X ′) = (1 − s) · af(X∩X ′)(δX∩X ′) + s · af(X∪X ′)(νX∪X ′).

Now that we have the decomposition of the anchor point of a polyhedral cell
into the anchor point of Delaunay and Voronoi cells, we show that these anchor
points are easily constructed.

Lemma 15. The anchor point af(X )(δX ) lies in the interior of δX or af(X )(δX ) =
af(X ′)(δX ′), where δX ′ is a face of δX

Proof. Assume that f(X ) is not contained in int(δX ), otherwise the proof is
trivial. Since δX is a convex polyhedron, the point closest to f(X ) lies on a
proper face of δX , say δX ′ .

Since f(X ), f(X ′) ∈ aff(νX ′) and δX ′ is orthogonal to νX ′ , we have af(X )(δX ′) =
af(X ′)(δX ′).

A similar lemma holds for Voronoi cells, for which we omit the proof.

12



Lemma 16. The anchor point af(X )(νX ) lies in the interior of νX or af(X )(νX ) =
af(X ′)(νX ′), where νX ′ is a face of νX

Concluding, with the anchor points af(X )(δX ) and af(X )(νX ), with δX ∈ Del(P)
we can construct the anchor point of any polyhedral cell. Moreover, Lemma 15
and Lemma 16 give a recursive definition that makes it easy to compute af(X )(δX )
and af(X )(νX ).

3 The meshing algorithm

This section describes the construction of a tetrahedral complex for which the
intersection of a cell with the skin surface is either empty or a topological disk.
Moreover we show that the mesh extracted from this tetrahedral complex by the
marching tetrahedra algorithm [24] is isotopic to the skin surface.

3.1 Monotonicity condition.

In Section 3.2 we give a detailed construction of the tetrahedral complex. For
now, we only give the main condition imposed on the tetrahedral complex. First,
we require that each tetrahedron is contained in a single mixed cell. Recall that
the skin surface restricted to a mixed cell µs

X is a subset of the quadric I−1
X (0),

cf. Equation (4). Express a point x = (x1, x2, x3) in the local coordinate system
of IX .

Condition 17 (Monotonicity). Let ab be a line segment contained in a mixed
cell µs

X of type `, with IX (a) ≤ IX (b). The segment ab satisfies the monotonicity
condition if x2

1 + . . . + x2
` is non-increasing and x2

`+1 + . . . + x2
3 is non-decreasing

on the segment from a to b.

In words, a segment ab satisfies the monotonicity condition if the distance
to both symmetry sets of IX is monotone and the distance to one symmetry
set of the quadric does not increase when the distance to the other symmetry set
increases. For spheres (` = 0, 3) one symmetry set is empty and the monotonicity
condition is satisfied if the distance to the center of the sphere is monotone. For
hyperboloids (` = 1, 2) a segment satisfies the monotonicity condition if the
distances to the symmetry axis and the symmetry plane are monotone and the
distance to one symmetry set does not increase when the distance to the other
symmetry set increases. From Equation (4) we conclude:

Observation 18. If a line segment ab satisfies the monotonicity condition, then
IX is monotonically increasing on ab.

We construct the tetrahedral complex in such a way that all edges satisfy the
monotonicity condition. In fact, if all edges satisfy the monotonicity condition,
then a generalized monotonicity condition holds for all cells.

13



Lemma 19. Let µs
X be a mixed cell of type ` and let v1, . . . , vn be the vertices of

a cell of the tetrahedral complex in µs
X , with IX (vi) ≤ IX (vj) if i < j.

If the monotonicity condition holds for all edges then, each segment ab, with
a ∈ conv (v1, . . . , vk) and b ∈ conv (vk+1, . . . , vn), for k ∈ {1, . . . , n}, satisfies the
monotonicity condition.

In the proof we need a small lemma.

Lemma 20. Let v1v2v3 be a triangle in R2, such that the distance to the origin is
monotonically increasing (decreasing) along both v1v3 and v2v3. Then the distance
to the origin is monotonically increasing (decreasing) on the segment xv3, with
x ∈ v1v2.

Proof. Let x = (1 − t)v1 + tv2 and let d(t) = ‖(1 − t)x + tv3 ‖2 be the squared
distance to the origin on the line segment xv3. The distance d(t) is monotone
if d′(t) 6= 0 for t ∈ [0, 1]. Since d′(t) = 2〈x, v3 − x〉 + 2t〈v3 − x, v3 − x〉, d(t) is
monotone if 〈x, v3 − x〉 ≥ 0 or 〈v3, v3 − x〉 ≤ 0.

Assume that the distance to the origin increases monotonically on both line
segments v1v3 and v2v3, hence 〈v1, v3 − v1〉 ≥ 0 and 〈v2, v3 − v2〉 ≥ 0. We have

〈x, v3 − x〉 = (1 − t)〈v1, v3 − v1〉
+t〈v2, v3 − v2〉
+t(1 − t)‖v2 − v1‖2

≥ 0.

Conversely assume that the distance to the origin decreases monotonically on
both line segments v1v3 and v2v3, hence 〈v3, v3 − v1〉 ≤ 0 and 〈v3, v3 − v2〉 ≤ 0.
Then we have 〈v3, v3 − x〉 = (1 − t)〈v3, v3 − v1〉 + t〈v3, v3 − v2〉 ≤ 0.

Proof of Lemma 19. We repeatedly move vertices along edges of the cell of the
tetrahedral complex while maintaining the monotonicity condition. After the
displacement of the vertices, the line segment ab lies on one of the edges.

Since IX (vi) ≤ IX (vj) for i < j and by Equation (4), the distance to the
symmetry set spanned by the first ` coordinate axis is decreasing and the distance
to the other symmetry set is increasing. Assume for now that when we move the
vertices vi and vi+1 over the edge vivi+1, that all edges in the new cell satisfy the
monotonicity condition.

We now move v1 to a and b to vn. If k = 1, then a lies on v1. Otherwise a we
move vk−1 to vk until a lies on the face conv (v1, . . . , vk−1) and repeat this step
for k−1. Similarly we move vk+1 to vk until b lies on the face conv (vk+1, . . . , vn)
and repeat the step for k + 1 until k = n − 1. Then ab is an edge of the new
tetrahedron. Hence ab satisfies the monotonicity condition.

It remains to show that the new edges also satisfy the monotonicity condi-
tion. Therefore consider three vertices vi, vi+1 and vj . If j < i (j > i + 1) then
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Figure 5: The three different configurations of a tetrahedron. White and black
vertices lie on different sides of the skin surface.

the distance to the first symmetry set along the line segment vjvi and vjvi+1 is
decreasing (increasing) and to the second symmetry set it is increasing (decreas-
ing). We show that the distances remain monotonically increasing or decreasing
along a line segment xvj for x ∈ vivi+1. We distinguish three cases. First, assume
that the symmetry set is a point. We project the symmetry point on the plane
vjvivi+1. From the previous lemma it follows that the distance on xvj to the pro-
jection of the symmetry point is monotone, and therefore also the distance to the
symmetry point. Next, assume that the symmetry set is a line, then we project
the triangle vjvivi+1 on a plane orthogonal to the symmetry line. By applying
the previous lemma, it follows that the distance to the projection of the line on
the plane along the line segment xvj is monotone. Finally, if the symmetry set
is a plane we do not need the previous lemma. In this case the distance to the
plane at x is smaller (greater) than the distance at w3. Hence the distance to the
symmetry plane on xw3 is monotone.

To conclude, if the distance to a symmetry set is monotonically increasing
(decreasing) along both vjvi and vjvi+1, then this distance is also monotonically
increasing (decreasing) along the line segment xvj , with x ∈ vivi+1. Hence xvj

satisfies the monotonicity condition.

Mesh extraction. The coarse mesh is extracted from the tetrahedral complex
by the marching tetrahedra algorithm [24]. Each edge of the tetrahedral complex
intersects the skin surface at most once by Observation 18. We place vertices of
the mesh on these intersection points. Then the mesh is constructed by consider-
ing the number of vertices of the tetrahedron inside the skin surface as depicted in
Figure 5. The third configuration remains ambiguous, since the common interior
edge of the two triangles can be flipped.

Theorem 21. A tetrahedral complex for which each edge satisfies the monotonic-
ity condition has two properties:

1. each cell intersects the skin surface in a topological disk and

2. the mesh extracted from the tetrahedral complex is isotopic to the skin sur-
face.
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Proof. Let V − and V + be the vertices of a k-cell of the tetrahedral complex inside
and outside the skin surface, respectively. Consider the set of line segments ab
with a ∈ conv (V −), b ∈ conv (V +). The set of line segments is empty if the cell
does not intersect the skin surface, i.e. if V − = ∅ or V + = ∅. On the other hand,
if the cell intersects the skin surface, then the set of line segments spans the cell
and the line segments may intersect but only at their endpoints. On faces of the
cell, the line segments are defined consistently because there the construction is
based only on the labels of vertices of the face.

By Lemma 19, each segment satisfies the monotonicity condition. Hence IX is
monotone on ab. Moreover, a lies inside and b outside the skin surface. Therefore
ab intersects the skin surface in a single point. Since the segments span the
tetrahedron, the skin surface within the cell is a topological disk.

A simple case study shows that each segment also intersects the coarse mesh
transversally in exactly one point. The isotopy is constructed by parameterizing
the mesh and the skin surface with these segments and using linear interpolation
between the parameterizations.

We call the segments in the proof above transversal segments because each
segment intersects both the skin surface and the coarse mesh transversally in a
single point.

3.2 The tetrahedral complex.

Up to now we assumed that it is possible to construct a tetrahedral complex in
such a way that all edges satisfy the monotonicity condition. In this section we
construct this tetrahedral complex. We triangulate polyhedral cells in order of
increasing dimension.

All vertices of the tetrahedral complex are anchor points of polyhedral cells.
In case an anchor point lies on the boundary of its polyhedral cell, it coincides
with another anchor point and the simplicial complex is degenerate. Therefore,
during the construction of the tetrahedral complex we test whether the anchor
point lies in the interior of the polyhedral cell, and collapse the vertex otherwise.
For simplicity, in the remainder of this section we assume that the anchor point
lies in the interior of the mixed cell.

Subdividing polyhedral cells of positive co-dimension. On each vertex
of the polyhedral complex we place a vertex of the tetrahedral complex. Note
that these vertices are the anchor point of 0-cells of the polyhedral complex.

Next, consider an edge µs
X ,X ′ of the polyhedral complex. By Lemma 12, if

IX has a critical point on the interior of the edge, this critical point is the anhor
point of the edge. Therefore we split the edge in the anchor point af(X )(µ

s
X ,X ′)

and construct two edges from the anchor point to the vertices. By Observation 5
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a polyhedral edge is parallel to one symmetry set and is split in the point clos-
est to the projection of the other symmetry set, hence both edges satisfy the
monotonicity condition.

We distinguish two types of facets: circular facets are facets for which the
contour lines of IX restricted to the facet are circles. The other facets are called
hyperbolic because the contour lines are hyperbolas on the facet. Since the skin
surface is tangent continuous, IX |µs

X ,X ′ = IX ′ |µs
X ,X ′ and the facet inherits the

same type from both mixed cells µs
X and µs

X . All facets of mixed cells of type 0
and 3 are spherical. The facets of a mixed cell of type 1 or 2 are spherical if they
touch a mixed cell of type 0 or 3, and hyperbolic if they touch a mixed cell of
type 1 or 2.

We triangulate circular and hyperbolic facets differently. Circular facets are
triangulated by adding an edge from the anchor point of the facet to each anchor
point on the boundary of the facet, i.e., either the anchor point of an edge or a
vertex. See Figure 4(a). Since the anchor point of the facet is the point closest
to the center of the sphere, the distance to the center increases monotonically on
each edge and each edge satisfies the monotonicity condition.

Hyperbolic facets are rectangles with edges parallel or perpendicular to the
symmetry axis of the corresponding hyperboloid. The anchor point of an edge
is the point closest to the center, hence it is the point on the edge closest to the
symmetry axis the edge is orthogonal to. Similarly, the anchor point of the facet
is the point on the facet closest to the center. Thus the edges from the anchor
point of the facet to the anchor point of an edge are parallel to one axis and the
distance to the other axis increases monotonically. Further, we add edges from
the anchor point of an edge to the anchor point of an orthogonal edge. On these
edges the distance to one symmetry axis increases whereas the distance to the
other symmetry axis decreases. This triangulation is depicted in Figure 4(b).

Subdividing polyhedral cells of type 0 and 3. The mixed cells of this type
contain a spherical patch of the skin surface. Similar to spherical facets, we have
to triangulate polyhedral cells of type 0 and 3 in such a way that the distance to
the center is monotone on each edge. The anchor point of the mixed cell is the
point in the mixed cell closest to the center. Hence the distance to the center on
each line segment from the anchor point of the mixed cell to any other point in
the mixed cell is monotone, and therefore satisfies the monotonicity condition.
We have already constructed the triangulation of the boundary of the mixed cell
and triangulate the entire cell by adding edges from the anchor point of the cell
to each vertex on the boundary. The tetrahedra are formed by taking the join
of a triangle on the the triangulated boundary of the mixed cell and the anchor
point of the mixed cell.
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Subdividing polyhedral cells of type 1 and 2. The triangulation of mixed
cells of type 1 and 2 is slightly more subtle. The mixed cell contains a hyperboloid
patch of the skin surface and the mixed cell is a prism with its base parallel to
the symmetry plane of the hyperboloid. For an edge to satisfy the monotonicity
condition, the distance to both the symmetry plane and the symmetry axis has
to be monotone and the distance to one symmetry set may not increase, when
the distance to the other symmetry set increases.

We already triangulated the facets of the mixed cell. The hyperbolic facets
of the prism are the facets that are parallel to the symmetry axis. We split the
prism in the plane V through the anchor point of the mixed cell parallel to the
symmetry plane. This plane also contains the anchor points of the faces and
edges of the mixed cells that are parallel to the symmetry axis. Hence each facet
parallel to the symmetry axis is already split in V . The new facet is spherical
and we triangulate it accordingly.

Consider one split mixed cell. The base of the prism furthest away from
the symmetry plane contains the points furthest away from the symmetry plane.
Hence its anchor point is the point with maximal distance to the symmetry plane
and minimal distance to the symmetry axis. Therefore, all line segments in the
split mixed cell with this anchor point as a vertex satisfy the monotonicity con-
dition. The boundary of the prism is already triangulated and we triangulate the
split mixed cell by adding edges from the anchor point of the base to all vertices
on the boundary. The tetrahedra are the join of a triangle on the triangulated
boundary and the anchor point of the base.

Union of balls. For a shrink factor one, the skin surface of a set of balls is the
union of these balls. In this case, the mixed complex is the Voronoi diagram. This
means that only mixed cells of type 0 are three-dimensional cell. This greatly
simplifies the set of tetrahedra.

It is also desirable to retain edges of the mesh on the intersection of two balls.
The subdivision algorithm ensures this by definition. Chew’s algorithm can also
be extended to allow constrained edges, see [11].

3.3 Complexity analysis.

In many real world applications the size of the Delaunay triangulation is linear
in the number of input balls, see [12, 2]. However, the worst case complexity
of the Delaunay triangulation is quadratic in the number of input balls, see [7].
We show that the size of the coarse mesh is linear in the size of the Delaunay
triangulation and that this is worst case optimal.

Lemma 22. The size of the coarse mesh is linear in the size of the Delaunay
triangulation.
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Because of the duality relationship, the size of the Voronoi complex is equal
to the size of the Delaunay triangulation. The size of the mixed complex is linear
in the size of the Delaunay triangulation, since the complexity of each mixed cell
is linear in the complexity of the Delaunay and Voronoi cell it is constructed
from. The number of tetrahedra within a mixed cell is linear in the complexity of
the mixed cell and within each tetrahedron we construct at most two triangles.
Thus, the mesh is linear in the size of the Delaunay triangulation.

To show that this is worst case optimal, we construct a skin surface with
O(n2) holes from a set of n balls. Any mesh with O(n2) holes has complexity
O(n2), thus giving the lower bound. The construction is done as follows: the
first n/2 balls are centered on the unit circle in the xy-plane and have radius 0.5.
The other n/2 balls are centered on the z-axis and their radius is such that they
touch the first n/2 balls. The union of these balls has O(n2) holes because each
ball on the z-axis adds O(n) holes to the union. The skin surface also has O(n2)
holes because it is isotopic to the union of the balls.

3.4 Mesh enhancement.

The topologically correct mesh obtained with the marching tetrahedra algorithm
is rather coarse and may contain long and skinny triangles. Therefore, we develop
a method to enhance the mesh while maintaining the isotopy. The changes to
the mesh we allow are local and do not change the topology of the mesh.

Before we change the mesh, we first test whether the isotopy with the skin
surface is maintained. Therefore we use the transversal segments as described
in the proof of Theorem 21. In fact, we first test whether each transversal line
segment intersects the new mesh exactly once. We conclude this section with two
examples of mesh refinement algorithms.

Changing the mesh. To test whether the isotopy is maintained under a change
of the mesh we would have to test whether each transversal line segment intersects
the mesh once. We rephrase this in such a way that it is easier to verify.

Let c be a 3-cell in the tetrahedral complex, t a triangle of the mesh inter-
secting c and V − and V + the vertices of c inside and outside the skin surface,
respectively.

Lemma 23. If for all t and c, V − and V + are separated by the plane through t
and V − lies in the direction of the inner part of the mesh, then each transversal
line segment within c intersects the mesh once.

Proof. Consider a line segment p−p+, with p± ∈ conv (V ±). Since p− and p+ lie
on opposite sides of the mesh, p−p+ intersects the mesh at least once. Assume
that it intersects p−p+ more than once, then on the second intersection point
from p−, the segment moves from outside the mesh to the inside. Hence. the
inner product with the normal is negative.
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Figure 6: The Sqrt-3 subdivision method applied twice. Left: the original trian-
gle, in the middle the subdivided triangle. On the right are the vertices placed
on the skin surface.

We now have an efficient way of testing whether the isotopy of the skin surface
and the mesh is maintained. If the test fails, then the mesh is too coarse and we
refine the mesh. We show that the refinement succeeds for small triangles.

Lemma 24. A triangle t of the mesh contained in a single tetrahedron c can be
subdivided in any point x ∈ t by moving x along the transversal segments to the
skin surface.

Proof. Since x moves along the line segments within c, the line segments through
f and the subdivided faces are the same. Thus the new mesh can be obtained
from the old mesh by interpolation along the line segments.

We can also flip an edge of the triangulation if the two adjacent triangles
and the new triangles are intersected by the same transversal segments. This
condition is similar to the condition in a two-dimensional mesh that an edge can
be flipped if the union of the two triangles is convex.

To summarize, we have an efficient test to check whether the isotopy is main-
tained. If a change of the mesh would result in a violation of the isotopy test,
then we can always subdivide the face into faces that are contained within a
single tetrahedron. Each of these faces satisfy the isotopy test.

Sqrt-3 method We implemented the sqrt-3 subdivision method [18] on the
coarse mesh. The sqrt-3 subdivision method splits each triangle into 9 sub-
triangles and then moves the newly created vertices towards the skin surface
along the transversal segments.

By Lemma 24, the subdivision algorithm maintains the isotopy. Hence, it
is not necessary to test isotopy, which make the algorithm very fast. On the
other hand, the subdivision algorithm does not improve the quality of the trian-
gles. Therefore this method is not suitable for constructing a mesh for numerical
simulations.

Chew’s algorithm We also implemented Chew’s algorithm [11] to improve
the quality of the triangles of the coarse mesh and obtain a mesh suitable for
numerical simulations. After the algorithm terminates, each triangle has angles
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Molecule Our algorithm Dynamic Marching
Coarse Sqrt-3 Chew

pdb7tmn 0:00:01 0:00:02 0:00:05 0:10:00 0:00:05
DNA 0:00:14 0:00:29 0:00:55 0:35:12 0:00:51

Gramacidin A 0:00:08 0:00:31 0:01:13 1:35:23 0:03:22

Table 1: Performance comparison

between 30 and 120 degrees and has a user defined maximal size. The only
constraint on the size-criterion is that there exists a δ > 0 such that any well-
shaped triangle that fits within a circle of radius δ is well-sized. We chose the size
of a triangles inversely proportional to the maximal curvature which is nonzero
on skin surfaces.

During the refinement, we test the isotopy before an inserting a new point
and before flipping an edge.

4 Implementation.

We implemented the algorithm described above in C++ using CGAL [1]. First
we compute the Delaunay triangulation of the weighted points. From this tri-
angulation we extract the mixed complex and triangulate it, as described in
Section 3.

We use filtering techniques [8] to increase the speed of the refinement algo-
rithm. Therefore we compute the exact location of a anchor points (the vertices
of the tetrahedral complex) and an interval containing the anchor point. We then
use interval arithmetic to test the isotopy and revert to exact computations when
the interval arithmetic is not exact.

We also implemented both algorithms described in the previous section. The
implementation of the

√
3-subdivision method is straightforward. Before we ap-

ply Chew’s algorithm we perform a preprocessing step in which we remove small
edges. This reduces the size of the final mesh considerably.

5 Examples and experiments.

We compare our algorithm to the algorithms described in [9] and [10]. There is
a comparison of the two algorithms in [10]. These tests are run on a Pentium
4 running at 2.54GHZ. To test our algorithm we used an AMD Athlon 1800+
which is actually a little slower. We tested our algorithm on various molecules,
computing only the coarse mesh, the coarse mesh and one

√
3-subdivision step

and the coarse mesh which subsequently improved using Chew’s algorithm. For
timings see Table 1.
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(a) DNA (b) Gramacidin A

Figure 7: Two larger molecules.

Note that both our algorithm and the marching algorithm [10] are significantly
faster than the dynamic skin algorithm [9]. However, we believe that [10] does
not come with topological guarantees.

Figure 8 shows the molecule pdb7tmn. In Figure 8(d) we enlarged a part of the
coarse mesh and applied the Sqrt-3 method in Figure 8(e). Note that the triangles
remain skinny. Figure 8(f) shows the result of applying Chew’s algorithm directly
to the coarse mesh. Because of small edges in the coarse mesh, there are also
small edges near parts with low curvature. When we remove small edges, viz.
Figure 8(g), before we apply Chew’s algorithm, we obtain Figure 8(h).

6 Conclusion and future work.

We present an algorithm that constructs a mesh that is isotopic to the skin surface
and discuss two methods to refine this mesh.

The algorithm we present is static in the sense that it generates a mesh for a
fixed set of input balls. The rigid foundation of the tetrahedral complex makes
us believe that it is also possible to maintain the coarse mesh while deforming the
input set. This is important for deforming molecules. Two deformation schemes
seem computationally interesting. From Lemma 14 we know that the anchor point
of a mixed cell µs

X ,X ′ only depends on the Delaunay cell δX∪X ′ , the Voronoi cell
νX∩X ′ and the shrink factor. Adding a constant to all weights does not change the
Delaunay and Voronoi diagram and hence does not change the simplicial complex.
Hence, the coarse mesh of the skin surface obtained by adding a constant to each
weight is another level-set of the tetrahedral complex. Another deformation is
obtained by varying the shrink factor. Again, the structure of the simplicial
complex remains unchanged, however the positions of the anchor points change.
It is sufficient to reposition the anchor points and then update or recompute the
coarse mesh.

We also believe that a similar algorithm can compute Connolly surfaces.
These surfaces are also used in molecular biology and are formed by a small probe
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(a) Shrink: .85 (b) Shrink: .5 (c) Shrink: .15

(d) Coarse mesh (e) Sqrt3-method (f) Chew applied to
the coarse mesh

(g) Small edges re-
moved

(h) Chew applied to
the enhanced mesh

Figure 8: pdb7tmn.
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sphere that carves away the space outside a union of balls. The disadvantage of
this type of surfaces is that they may not be tangent continuous.

References

[1] Computational Geometry Algorithms Library. http://www.cgal.org.

[2] D. Attali and J-D. Boissonnat. A linear bound on the complexity of the
Delaunay triangulation of points on polyhedral surfaces. In Proceedings of
the seventh ACM symposium on Solid modeling and applications, pages 139–
146. ACM Press, 2002.

[3] C. Bajaj, H.Y. Lee, R. Merkert, and V. Pascucci. Nurbs based b-rep models
for macromolecules and their properties. In Proceedings of the fourth ACM
symposium on Solid modeling and applications, pages 217–228. ACM Press,
1997.

[4] C.L. Bajaj, V. Pascucci, A. Shamir, R.J. Holt, and A.N. Netravali. Dynamic
maintenance and visualization of molecular surfaces. Discrete Appl. Math.,
127(1):23–51, 2003.

[5] J. Bloomenthal. Polygonization of implicit surfaces. Comput. Aided Geom.
Design, 5(4):341–355, 1988.

[6] J-D. Boissonnat, D. Cohen-Steiner, and G. Vegter. Isotopic implicit surface
meshing. In ACM Symposium on Theory of Computing (STOC), pages 301–
309, 2004.

[7] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cam-
bridge University Press, UK, 1998. Translated by Hervé Brönnimann.
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