Advanced Computer Graphics: Non-Photorealistic Rendering

Introduction and Overview

Tobias Isenberg
What is NPR?

- Non-Photorealistic Rendering and Animation
- as opposed to Photorealistic Rendering
 - simulation of light interaction with surfaces
 - heuristics to achieve good results with as little effort as possible
 - dictate of the photographic camera
Photorealism in Artistic Depiction

Ralph Goings: *Hot Fudge Sundae Interior*, 1972 (oil on canvas)
Art or Traditional Depiction as Example

- 1st (photographic) camera: camera obscura ca. 1020
Art or Traditional Depiction as Example

• photographic camera
 – first permanent picture in 1826
 – now: video cameras and digital cameras
 – dominating today’s visual world
Art or Traditional Depiction as Example

- painting
 - up to 32 000 years old (French cave paintings)
 - up to quite recently dominated visual depiction
Art or Traditional Depiction as Example

- drawing and similar techniques
 - less visually vivid depiction, possibly with color
 - often used for illustration
 - abstraction and emphasis
Art or Traditional Depiction as Example

- drawing and similar techniques: modern examples
 - in medical illustration
Art or Traditional Depiction as Example

- drawing and similar techniques: modern examples
 - in technical illustration

courtesy of Kevin Hulsey
What is NPR?

- computer graphics inspired by non-photographic techniques, thus, non-photorealistic rendering

Saito & Takahashi (1990)
NPR as a Diverse Field

- inspired by traditional techniques
 - very realistic simulations of traditional media
 - heuristics to achieve similar effects, e.g., faster
 - traditional techniques taken to new levels (e.g., video)

- completely new methods
 - interactive techniques
 - non-realistic modeling
 - possibly many other

- application-oriented techniques
 - illustration in various domains (medical, technical, etc.)
 - visualization techniques (medical, technical, etc.)
 - support for other fields, e.g., sketch-based modeling
Different Sub-Fields of NPR

- pixel manipulation
 - halftoning and screening
 - image processing techniques
 - image mosaics
 - texture sampling and synthesis
Different Sub-Fields of NPR

- silhouettes and feature strokes
 - simple silhouette rendering
 - static feature lines
 - dynamic feature lines (suggestive contours etc.)
 - hidden line removal
 - “sparse line drawings”
Different Sub-Fields of NPR

• pen-and-ink rendering
 – black-and-white only
 – pen-and-ink style
 – dot primitives: stippling
 – line primitives: hatching
Different Sub-Fields of NPR

- simulation of natural material
 - pencil drawing on paper
 - wax crayons
 - wet paint on paper
 - oil painting
 - etc.
Different Sub-Fields of NPR

- stroke-based rendering
 - considering the stroke as the fundamental NPR primitive
 - abstraction through strokes
Different Sub-Fields of NPR

- lighting models and shading
 - cel shading
 - Gooch shading
 - line shading
Different Sub-Fields of NPR

- distortion techniques
 - image-space distortion
 - object-space distortion
 - understandable and intentional distortion
 - distortion for animation
Different Sub-Fields of NPR

- real-time rendering techniques
 - real-time heuristics for many previously mentioned areas
Different Sub-Fields of NPR

• interaction with or for NPR techniques
 – dedicated hardware simulating the traditional tools
 – dedicated hardware for novel interaction
 – general-purpose hardware
 – emotional interaction
Different Sub-Fields of NPR

- evaluation of NPR techniques
 - comparison with depictions created by people traditionally, asking people or statistics
 - impact of the created images
Different Sub-Fields of NPR

• application of NPR techniques
 – why is NPR important in practice
 – different application domains: entertainment, architecture, medicine, general illustration, visualization
Remainder of the Class: 1st Half

- lectures on a selected subset of areas:
 - black-and-white techniques (pen-and-ink)
 - stoke-based rendering
 - NPR and interaction
 - evaluation of NPR
 - applications of NPR
Remainder of the Class: 2nd Half

• student lectures on selected topics
 – topic: 2–3 high-quality scientific papers
 – papers from suggested list or own suggestion
 – about 25–30 minute lecture on the topic
 – about 5 minutes for questions
 – goal: overview of the topic plus some details on specifics
 – slides provided for all students

• gives overview of the rest of the field
Class Schedule

<table>
<thead>
<tr>
<th>1.1</th>
<th>introduction, black-and-white techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>black-and-white techniques continued, stroke-based rendering</td>
</tr>
<tr>
<td>1.3</td>
<td>stroke-based rendering continued, NPR interaction</td>
</tr>
<tr>
<td>1.4</td>
<td>NPR evaluation, NPR applications</td>
</tr>
<tr>
<td>2</td>
<td>student lectures (à 25–30 minutes plus 5 minutes discussion)</td>
</tr>
</tbody>
</table>

Next classes: (start on time)

- December 12, 2011 (Monday): 14:00 – 17:45
- December 13, 2011 (Tuesday): 09:00 – 14:15 (if necessary)
Assignment Overview

1. lecture on topic in 2nd half of the class
2. implementation of technique within chosen topic
3. summarizing research paper about topic and implementation (8–10 pages in IEEE VIS style)

- details about assignment topics on class web page: http://www.cs.rug.nl/~isenberg/advanced-graphics/
Assignment Procedure

- choose topic today or by end of this week (e-mail)
- questions about topic: Skype meetings possible
- send in slides 1 week prior to lecture for feedback (e-mail url of slide package)
- implementations due January 16
- appointments for demoing implementations on January 17 or 18
- papers due February 6 (start 3rd exam week)
- strict deadlines
Assignment Topics (Suggestions)

- specific simulation of natural material
- silhouette extraction and rendering
- view-dependent feature lines
- NPR lighting models
- NPR in (medical) illustrative visualization
- real-time techniques w/ GPU programming
- non-photorealistic modeling
- NPR and abstraction
- distortion for artistic applications & visualization
- application of NPR techniques in games
- self-chosen technique from NPAR/SIGGRAPH/VIS
Grading and Rules

• grading and rules:
 – 25% from presentation, 10% from participation, 25% from implementation, 40% from paper
 – for each part at least 50% of points necessary
 – at least 60% of total to pass the class
 – presence in lectures is mandatory
 – individual results only valid for current year
 – cheating: no points
 – sick during class: call/e-mail beforehand
Further Information: 2 Books on NPR

Questions?
Sources:

- lecture “Non-Photorealistic Computer Graphics” by Stefan Schlechtweg, Thomas Strothotte, Tobias Isenberg at the University of Magdeburg, Germany
- many images from numerous NPR papers
- otherwise as noted