C? Hermite Interpolation by Minkowski Pythagorean Hodogr&hirves
and Medial Axis Transform Approximation

Jifi Kosinka
Centre of Mathematics for Applications, University of Q. Box 1053, Blindern, 0316 Oslo

ZbynékSir*
Faculty of Mathematics and Physics, Charles University iag@e, Sokolovska 83, 186 75 Praha 8

Abstract

We describe and fully analyze an algorithm & Hermite interpolation by Pythagorean hodograph curvesgfee

9 in Minkowski spaceR?'!. We show that for any data there exists a four-parameteesysf interpolants and we
identify the one which preserves symmetry and planarithefibput data and which has the optimal approximation
degree. The new algorithm is applied to an efficient appraxiom of segments of the medial axis transform of a
planar domain leading to rational parameterizations ofaffigets of the domain boundaries with a high order of
approximation.
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1. Introduction

Pythagorean hodograph (PH) curves form an important ssdfpolynomial parametric curves. The distin-
guishing property is that their arc length function is pigse polynomial and, in the planar case, they possess ra-
tional offset curves. Since their introduction by Faroukdlé&Sakkalis [13], planar and spatial PH curves have been
thoroughly studied, see [9, 10] and the references citegithe

Minkowski Pythagorean hodograph (MPH) curves were intoediby Choi et al. and Moon [6, 20]. The moti-
vation is to describe the segments of the medial axis tramsfof. [8, 21]) of a planar domain: if the medial axis
transform is a (collection of) MPH curves, then the boundamywe of the associated planar domain is a piecewise
rational curve. As an important advantage, this propershared by all offsets of the boundary.

PH and MPH curves possess certain similar aspects, whicheanderstood via a unifying framework designed
in [7]. However, design algorithms for PH curves are muchenmmumerous then those for MPH curves. We are
particularly interested in Hermite interpolation algbrits in three dimensional spadg! Hermite interpolation using
PH cubics inR3 [15] yields up to four interpolants. In the case@t Hermite interpolation by spatial PH curves,
one obtains a two-parameter family of quintics [11, 22]. fEhexists a particular interpolant which is geometrically
invariant, preserves symmetry and planarity, and possegggroximation order 4C? Hermite interpolation using
PH curves of degree 9 iR?3 gives a four-parameter family of interpolants [23]. Theuttssare similar to th€'! case,
but now with approximation order 6.

In the case of MPH curves;' Hermite interpolation using cubics was studied in [17].\iled that the data are
taken from a space-like curve without inflections, it yielgisto four interpolants and one of them possesses approx-
imation order 4. It is known that PH and MPH cubics are eqgeato cubic helices in Euclidean and Minkowski
space, respectively, cf. [12, 16]. &'/2 interpolation scheme using MPH quartics has been discussd®]. A
two-parameter family of MPH quintics interpolating givet Hermite data was constructed in [18].
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In the present paper we analyz€'a Hermite interpolation scheme for MPH nonics with the helpha unified
approach via Clifford algebras [7]. Using the so called Ppresentation map we show that for the construction of
MPH interpolants a sequence of linear and quadratic equetieeds to be solved (similarly to the Euclidean case).
Using the Clifford algebra formalism, we explicitly constt a four-parameter family of interpolants. Moreover,
we identify the one that preserves certain symmetries aisdgsses the best approximation order. Higher order
continuities are required when dealing with medial axisvds shown in [1, 2] that matching domain boundary with
C? continuity is crucial for the approximation stability of giial axis computation.

The remainder of this paper is organized as follows. Se&i@talls some basic facts about Minkowski space, its
associated Clifford algebra, medial axis transform andKaimski Pythagorean hodograph curves. TieHermite
interpolation algorithm is presented in Section 3. Sinég afgorithm yields a four-parameter system of interpaant
Section 4 focuses on the identification of a particular jpiéaint which is most suitable for applications. Finallyg th
paper is concluded with a discussion of applications of tlesgnted algorithm and several examples in Section 5.

2. Preliminaries

In this section we recall basic facts about Minkowski sp&iiford algebra and Minkowski Pythagorean Hodo-
graph curves.

2.1. Minkowski space and Lorentz transforms

The three-dimensionMinkowski spac®?! is a three-dimensional real affine space equipped with thefinite
inner product defined by the matrix

G = (Gi,j)i,j:1,2,3 = diaq1, 1, —1). (1)
The inner product of two vectors = (u1, uz, u3) ", v = (v1,v2,v3) | is given by
(u, V> = UTGV = U1V1 + UV — U3V3. (2)

As the quadratic form associated withis not definite, the squared norm of a vector, which is definefy|> =
(v,v) can be positive, negative or zero. A vectois said to bespace-likef ||v||? > 0, time-likeif ||v||> < 0, and
light-like (or isotropic) if||v||*> = 0. A unit vectorv € R*! satisfieg|u||> = +1. By scaling, space-like vectots
can be normalized to satisfju||?> = 1, and time-like ones to satisfyu||> = —1. A plane in Minkowski space is
called space-, time- or light-like if the restriction of theadratic form defined b§ on this plane is positive definite,
indefinite non degenerate or degenerate, respectively.

A linear mappingL : R*»! — R%*! is called aLorentz transfornif it preserves the Minkowski inner product,
i.e., (u,v) = (Lu, Lv) for all u,v € R*!. Lorentz transforms form theorentz group. = O(2,1). Any Lorentz
transform is described by&x 3 matrix L = (I; ;); j=1,2,3. Its column vectord,, 1, andls satisfy (1;,1;) = G, ;,
i,j € {1,2,3}, i.e., they form an orthonormal basis BF:! with respect to the inner product (2). The equation
(13,13) = G3 3 = —1 impliesi3; > 1. The Lorentz transfornd is said to beorthochronousf /33 > 1. Obviously,
the determinant of any Lorentz transfofirequals tot-1. Thespecialones are characterized by e} = 1.

The Lorentz groupC consists of four components. The special orthochronousritartransforms form the sub-
groupS0O4(2,1). The remaining three components &fie SO (2,1), T»- SO, (2,1) andT; - T» - SO+ (2,1), where
T, = diag(1,1,—1) andT, = diag(1, —1,1). Any special orthochronous Lorentz transfofme SO, (2, 1) can be
represented ab = R(«;)H(8)R(az), where

cosa —sina 0 1 0 0
R(a)=| sina cosa 0 | and H(B)=| O coshf sinhf (3)
0 0 1 0 sinhf coshpj

are a planar rotation with angte and ahyperbolic rotationwith angleg, respectively.



2.2. The Clifford algebr&?(2, 1)

Any real linear spac&, which is equipped with a quadratic for@, has an associateclifford algebra defined
as
d=TV)/(vav-Q(V)l), (4)

i.e., as the quotient of the tensor algebra and its ideairfgrihe equalityy ® v = Q(v), see [7] for a more detailed
introduction. In particular we are interested in the Cliffalgebra’? = C/(2, 1), which corresponds to the Minkowski
spaceR?! i.e., to the three-dimensional real linear space with thlefimite quadratic form (2).

This Clifford algebra has real dimensi8rand has the following basis elements: Hualaridentity element, the
orthonormal basisectorses, ez, es, thebivectorse; es, eses, ese; and thepseudo-scalae;eses. Any element of
the Clifford algebra is a linear combination of these bakiments

A = aol +are1 + ases + aszes + ase1es + aseses + ageseq + arejeses. (5)

The rules governing the non-commutative multiplicatican be deduced from the basic relatiefis= e2 = 1 =

—e? ande; - e; = —e; - e; if i # j. For any elementl € ¢/ we define itonjugation4 andClifford normas
A = apl —a1e; — azez — aze3 — A4€1€2 — 5€2€3 — Age3e] + areiezes,
N(A) = A-A=(ad—a?—ad3+a3+aj—a?—aZ+a?)+ (2a0a7 — 2a1a5 — 2aza6 — 2a3a4)e;eze3.
The operation of conjugation satisfids B = B - A. The algebra&¥ has the natural grading ©
o = R1, ' = Re; + Rey + Res, C? = Rejes + Reses + Reseq, C® = Rejeqes. (7

A vectorv = (\, pu,v)" of R will be identified with the elemenke; + pes + ves of C/*. The set of scalars
combined with bivectors forms the subalgebra of even degjeraents¥™ = ¢/° & /2.
We define the multiplicative grougpin as the set of all unit elements @f":

Spin := {A € T : N(A) = £1}.
This group has the acticfi on ¢ defined by
T(A)(B)=A-B- A, (8)
and stabilizeg/', i.e., if v € /' = R>! then alsal'(A)(v) € C/*. In fact the resulting transformation
T(A) : R¥! — R%!
is a special Lorenz transform. More precisely, we have tlterabexact sequence
1 — {£1}—Spin — SO(2,1) — 1,

i.e., each element &fO(2, 1) corresponds to two elements$fin differing only by the sign.
We define a commutative multiplication 64" x ¢/ — /" by

1 _ _
AxB=7(A e -B+B e A). (9)

Correspondin@nd powers will be denoted®*. A direct computation shows that x B indeed belongs t6/'. Note
that for.A € Spin we haved?* = T'(A)(e;). Since no confusion is likely to arise, we simply omit the tiplication
symbol- in the remainder of the paper.



2.3. Medial axis transform
Let B,.(s) denote the disc ift? with radiusr centered a$. For a given planar domain themedial axis transform
MAT(Q) is given by
MAT(Q) := {(s,7) € Q x RT : B,.(s) is maximal in Q} (20)

and themedial axisMA () is the projection oMAT(2) to R?, i.e., the set of centers of maximal discs. A dis€n
is maximal if and only if it touches the boundary in at leasb fmoints (counting with multiplicity). This leads to a
natural extension dfIAT(Q2) andMA(Q2) to non-closed shapes. For example for two curveMBd" would be the
set of all discs touching both of them aidA is their bisector. In the sequel we will use notidvis\ andMAT in
this generalized sense.

If we have theM AT, the original domain boundary can be reconstructed as tare of corresponding discs.
In particular, for aC* segmenp(t) = (z(t),y(t),r(t))" C MAT we can compute the corresponding boundary from
the envelope formula (see [4])

T, TV +y' (1) — ' (1)

OO ),y (1) 7 ()7 +y/ (1)

707 + v (02 (—y/(t),2'(t) "
(11)
The termy/z’(t)2 + y/(t)2 — ’(t) can be interpreted as the Minkowski norm of the curve devigat’, which leads

to considering®?! as the natural ambient space fdAT.

(‘%(t)ag(t))-r = (m(ﬁ),y(t))—r -

2.4. Minkowski Pythagorean hodograph curves

Recall that a polynomial curve in Euclidean space is callegthagorean hodograp{iPH) curve (cf. [9]), if the
squared norm of its first derivative (or hodograph) is theasgwf another polynomial. Following [20§Jinkowski
Pythagorean hodograptMPH) curves are defined similarly, but with respect to theimduced by the Minkowski
inner product. More precisely, a polynomial cugvec R*!, p = (z,y,7)" is called an MPH curve if

| =a" +y° " =0 (12)

for some polynomiat.

As observed in [6, 20], if the medial axis transform of a pladamain is (a collection of) MPH curve(s), then
the coordinate functions of the corresponding boundaryesii.e., the envelopes of the discs with centers) and
radiusr) are (piecewise) rational functions. Due to the definitiblVi®H curves, the tangent vectpf(¢) cannot be
time-like. Also, light-like tangent vectors correspondtmts of the polynomiad in (12), see [21, Section 2.1] for
more details.

According to [20], the equation (12) holds if and only if teexist polynomials.(t), v(¢), p(t) andq(t) such that

(1) = u(t)® — v(t)* — p(t)* + q(t)*,

y'(t) = =2(u(t)o(t) + p(t)q(t)), (13)
r'(t) = 2(u(t)q(t) + v(t)p(1)),

o(t) = u(t)* +v(t)* — p(t)* — q(t)*.

This result can be reformulated using Clifford alge&fe2, 1), see [7].
Lemma 1. A polynomial curvep(t) in R%! is an MPH curve if and only if there exists a polynomial cudg) =
u(t) +v(t)ejes + p(t)ezes + q(t)ese; in the subalgebra?™ such that

p'(t) = h(t) = A(t)er A(t) = A(t)*". (14)

Consequently, the construction of MPH curves is reducdtaonstruction of a suitable curvét) in the subalgebra
¢r*, which will be called thepreimagecurve.

We will use MPH curves of degrée The MPH curves, their hodograpfft) = p’(t) and the preimagel(t) will
be expressed in the Bernstein-Bézier representation [14]

9 8 4
p(t) = > piB)(t), h(t) = > hBi(t), A(t) = > A;B}(t), t € [0,1], (15)
1=0 1=0 1=0
4



wherep;, h; (pure vectors) andl; € ¢/ are the control points and} (t) are the Bernstein polynomials. The relation
between the hodograph and the preimag® = A(t)?* can be expressed using the control points as

ho = A7, hg = A7, (16)
h; = Ag x A, hy = Az « Ay, (17)
hy = (4AT + 340 x A2) /7, hg = (4A3* + 342 % A4) /7, (18)
hs = (Ao * As + 6A; x A2)/7, hs = (A + Ay + 64y x A3)/7, (19)
hy = (1842* + Ay + Ay + 164, x As3)/35. (20)

The MPH curve is then obtained by integrating the hodograyhitgpossesses the control points

132 _
pj=Po+g ) hi j=1...9. (21)
1=0

3. C? Hermite interpolation by Minkowski Pythagorean hodograph curves

In this section we first give solutions to certain equation{2, 1). Then we show that the interpolation problem
can be reduced to solving a sequence of these equationlyFiveaconstruct all interpolants to giverf data.

3.1. Elementary equations @#(2,1)
Lemma 2. Letv be a pure vector andl € ¢/ such thatV(A) # 0. Then all solutions of the linear equation

XxA=v (22)

form the one-parameter family
(Vv + Tejeze3) Aey

Xy = N(.A) ’

T €R. (23)

PROOF We can write
1 _ _ 1 _ — _
XxA= §(Xe1.A + Ae1 X) = §(Xe1.A —Xe1 A) = Xe1 A — Tejezes. (24)

The last equality holds sinc&e; .4 contains only vector part, which changes sign under comijnigieand the pseu-
doscalar parte; eses, which does not change sign under conjugation and thereforeels out. Thus, (22) becomes

Xel A =v+Teezes (25)
and multiplying it from right by.Ae; leads to the result. O
Definition 1. The subgroup of elements Bpin stabilizing the elemer; will be denoted byspin; :
Spin; = {W € Spin : We; W = e; }.
Moreover, we have the commutative subgroup
Spin” = {W € Spin; : N(W) = 1}.
The following result is proved in Lemma 1 of [18].

Lemma 3.

Spin; {z cosh(¢) — sinh(¢) eses, ¢ € R} (26)
Spin; = Spin] U{—sinh(¢)e;es + cosh(¢)ese;, ¢ € R}. (27)
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For any space-like or light-like vecter = (A, u,v) " define

v+ [|v]le1)es

a(v) == Z(A+ V) and “;:(2wﬁﬁﬂ (28)
A direct computation leads to
Lemma 4. For any space-like or light-like vector we have
VverV/v = sgn(a(v))e;.
Lemma 5. Letv be a space-like or light-like vector. All solutions of theuatjon
X* =v (29)
are of the form
Xy = VW, for a(v) > 0 and
Xw = VveaesW, fora(v) <0, (30)

whereW € Spin,.

PROOF. Recall that¥?* := Xe; X. By Lemma 4 we have thay/v (resp. \/veses) is a solution of (29) since
esesejeze; = —ep. Moreover, elements dipin; are exactly the solutions of the equative; W = e;, which
concludes the proof. O

Remark 1. The casex(v) = 0 leads to a different one-parameter system of solutions andxglude this case in
order to simplify the presentation. As we shall see lateranti®n 4.2, the case(v) = 0 does not occur if the data
are sampled from a space-lik&* curve with a sufficiently small step-size.

Lemma 6. The systems of solutio(@3) and (30) are equivariant with respect to the action®fin; in the following
special sense. Suppose that some datd enter equation$22) and (29) yielding the systems of solutiods, Xy,.
Let for someV € Spin; the transformed data& = VvV and A = VAV give solutionsY,, X,y. Then for any
parameterr € R or W € Spin; we have

X, = VXV, Xy =VXW). (31)

PrROOF. Note thatVv) is a hyperbolic rotation o’ about thee, axis and sd|v|| = [|v|| anda(v) = a(v). Also,
VYV =1andN(A) = N(A). Moreover,) commutes withe;, eses ande; ece; and we also have; = Ves) . Using
these facts we can write

- (V+ Tejesez)de; (Vv + Tejese;)VAVe; (Vv + Tejezes) Aey

X, = = = =V V=VXV. 32
NA) N(A) N(A) 42
Similarly we have
o (VVV + ||v]le1)es _ VvV + |[v][Ve1V)VesV _ VA, (33)
2¢/|a(v)| 2/ la(v)]
Since the choice of solution does not change in (30))akdmmutes with/V andeses, we obtain (31). O

3.2. System of solutions to th& Hermite interpolation problem

We construct a spatial MPH curyg(t) which matches givelw? Hermite boundary data. More precisely, the
curve is to interpolate the end points, p., the first derivative vectors (velocities), v. and the second derivative
vectors (accelerations), a..

In all we havel8 scalar conditions. Three of them are satisfied by choosiaditst control point of the curve
Po = P». The remainingl5 conditions must be satisfied by determining the control {go@f the preimage. As
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the preimage ha$ components, apparently tHé conditions could be satisfied bycontrol points leading to the
preimage of degre®and MPH curves of degrée But our experiments showed that the resulting system cditsajs
is highly nonlinear and does not have solutions for all ingata. Therefore we will use MPH interpolants of degree
9, for which the problem always has solutions forming a foargmeter family.

Two curvesp(t), p(t) share the same hodograph if and only if they differ only byaagfation. Consequently, a
spatial MPH curvep(t) is fully determined by the preimagé(¢) and by the location of its starting poip{0).

Using curves of degre® the interpolation conditions lead to the equations

hg = vy, hg = v, 8(h; — hg) = a;, 8(hg — h7) = a., (34)
| 38
§ th = (pe - pb)' (35)
i=0

Substituting into (16)-(20), this last equation, after gosimplifications, becomes

(1245 + 10A; + 5A0 + 5A4 + 10A43)** =
2520(pe — Pv) — 435(ve + Vi) + L(a. — ay) (36)
*(60./4%* — 60./4() * Ag — 60./41 * A4 + 60./4%* — 42./4() * A4 — 72./41 * Ag)

The construction of MPH interpolants.

1. Compute the control poinis, h;, h; andhg from (34).

2. The control pointsd,, .44 can be computed using equations (16), which are of type (@9jtzerefore each of
Ay, A4 depends on one free parameléi; € Spin; andW, € Spin, .

3. The control pointsA;, A3 can be computed from equations (17), which are of type (282§ dontrol point4;
depends on the parametéi, via Ay and on a new parametey. Similarly A3 depends on the parametai,
via A4 and on a new parametey.

4. The control pointd, can be computed from (36), which is essentially of type (ZB)is control point will
depend on all previous control points and therefore on adipatersh,, Wy, 1 andrs and on a new parame-
terWs € Spin,.

5. Compute control points, hs, hy, h;, hg from equations (18)—(19), sety = p, and compute the remaining
control points ofp(¢) using equation (21).

Summing up, we arrive successively at families of suitab&rpagesAs (t), hodographdis (¢t) and PH curves
ps(t) depending on the parameter veclor= Wy, 71, Wa, 73, W,]. However, as in the cases 6f PH and MPH
andC? PH Hermite interpolation [22, 23, 18], one of the parametarsbe chosen due to the nontrivial fibers of the
mappingpreimage — hodograph (13), which are in fact isomorphic to the gro8pin, as shows the following

Lemma 7. Lethg, where® = Wy, 71, Wa, 73, Wy], be the hodograph of a particular MPH interpolant to some
given input data and leb = DVW, 71, WaW, 13, W, W] for someW € Spin, . Then

ha(t) = hg(1). (37)

PROOF We claim that for all preimage control points we hatg(®) = A;(®)W. This is immediately clear for

i = 0,4 due to the form of (30). The same relation holds for 1,3 because4, and.4, already enter suitably
modified (multiplied byW) into (23) for.4; and.4;. Due to the equalityVe,; /N (W) = eV the elementV
will appear only as a factor at the end of the expression. I8ityiin the computation ofd, from formula (36), the
factorV cancels out on the right-hand side and remains as a multipteeleft-hand side. Summing up we obtain
As(t)W = Ay (t) yielding

hi(t) = A;(P)er A (@) = A;(P)Wei  WA; (@) = ha(t), (38)

as was to be shown. O
In particular, we can apphyy = W5 ! = N(W,)W, in Lemma 7, which leads to the simplified parameter vector
P = [Wo, 7,1,73, W4]. For the remainder of the paper we will suppose this choickecmit the middle parameter.
The four remaining parameters describe the system of Heintérpolants fully.
7



4. ldentifying a suitable interpolant

For practical purposes we need to identify one particulsarpolant within the familyp[Wy, 71, 75, W4] that is
suitable for applications. We use certain symmetry catarid approximation order.

4.1. The parameterization and invariance of interpolants

For any givenC? Hermite datapg, p1, Vo, V1, ag anda; the system{pw,, =, w,) (1)} representall MPH
interpolants. Therefore, it is invariant with respect torémtz transforms. More precisely, if we apply a Lorentz
transformL to the Hermite data, we obtain modified d@ii@ = L(po), P1 = L(p1), Vo = L(vo), v1 = L(v1),
ay = L(ap) anda; = L(a;) along with the modified interpolating MPH curvgsy, -, -, w,(t) satisfying

{I_)[WQ,?1,77'3,W4]} = L({p[WO-,Tl 77'37W4] (t)})

In general, however, the transforfrdoes not preserve the parameterization of the interpadtsrttse free parameters.
The relationsVy = Wy, 71 = 71, 3 = 73, W4 = W, are not always satisfied. Therefore, we must fix the
parameterization of the family of interpolants fyusing a canonical position of the data. In order to simplify o
presentation we impose the following restrictions:

¢ We assume that the sug+t; of the given boundary derivatives is a space-like vectornééd this assumption
in order to define the standard position in a symmetric fashleor instance, if the data are sampled from a
space-like curve with some step sizgthen this assumption is always satisfied provided thiatsufficiently
small.

o We will only consider solutions given by the parameter vedio= [Wy, 71, 73, W] with Wy, Wy € Spin].
As we show below, this branch of interpolants contains thetraoitable one.

General case can be still considered but would lead to aHgrdjscussion of various cases without giving any
substantial practical advantage.

Definition 2. If to + t; is a positive multiple o&; andp, = 0, then the inputC? Hermite data are said to be in a
standard positionWe parameterize the MPH interpolants as follows. Firstirasform the input data to a standard
position applying a special orthochronous transform (seetisn 2.1). Then we construct the MPH interpolants
P{Wo,m,m, w4 (). Finally, we transform the solutions back to the originakgimn. From now onpiyy, -, 7, w,)(t)

will denote the interpolant obtained in this way, i.e., treameters)\V,, 71, 73, Wy| are no longer applied to the
original position of the data, but to the data transformedtstandard position.

Note, that there are many standard positions differing bypetbolic rotation about the, axis. The following lemma
ensures the correctness of the definition.

Lemma 8. The parameterizatiomy, -, -, w,)(t) is well defined, i.e., hyperbolic rotations preserviagdo not
affect this labeling.

PROOF. Hyperbolic rotations about the axis are represented withifi by 7(V), whereV € ¢/, i.e., by simulta-
neous multiplication by’ from the left and byV from the right. Suppose that we have some q&tap:, vo, v1, ag
anda; in a standard position and the interpolgit) is constructed using the parameter ve¢iy, 71, 73, Wy]. Let
us construct the interpolaft with the same parameter vector to the rotated d&8d)(po), 7(V)(p1), T(V)(vo),
T(V)(v1), T(V)(ap) andT(V)(a;). Let A; denote the original preimage control points add preimage con-
trol points for the rotated data. Due to Lemma 6 we hae= VA,V and A, = VA,V. This in turn leads to
A = VAV andA; = VA3V, Now, since
(VAV) x (VBY) = V(A * B)V (39)

the right-hand side of (36) is suitably modified and we ggt= V.AsV. Summing up we havel(t) = VA(t)V
leading top = V(p)V due to (39). Thus the interpolants are transformed in theesaay the input data are. [

As we will see below, the solutiop(; ,0,1(t) demonstrates the best asymptotic behavior. Its suitalidit
applications is also confirmed by the following theorem. \fégesit without proof, which is purely technical.
Theorem 1. The interpolan®p[1, 0,0, 1](¢) is symmetric with respect to reversion of the data and preseplanarity
of planar data.
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4.2. Approximation order

We assume that a sufficiently smooth space-like c@(€) in Minkowski spaceéR?! is given. It may be a branch
of the medial axis transform of a planar domain. In this giturg the curve is space-like, except for those end points,
which correspond to vertices (curvature maxima) of the loaumnof the domain.

In order to approximate this curve by a nonic MPH spline, wesla C? Hermite boundary data from segments
T € [to, to+h] and apply the interpolation procedure. The following tleeoranalyzes the behavior of the error as the
step sizeh tends to zero. We also point out that the results on the appedion order of theMI AT imply analogous
results for the Hausdorff distance of the associated pldoarains, cf. Section 6.3 of [17].

Theorem 2. If the step-size: is sufficiently small, then the interpolapf1, 0, 0,1](¢) is well defined and has ap-
proximation order6. All other interpolants withr; = 75 = 0 for arbitrary but constant values o/, and W, have
approximation orded . Otherwise, the approximation order is equal%to

PROOF. We prove this theorem with the help of power series. WitHoss of generality we seE(0) = (0,0,0) "
andC’(0) = (1,0,0) ", hence

wherez;, y; andr; are arbitrary but fixed coefficients= 2, 3, . ... The Hermite interpolation procedure is applied to
the segment(t) = C(th), t € [0, 1], where the step-sizke specifies the length.

In order to prove the theorem, we evaluate the Taylor expassiith respect té of all quantities occurring in
the interpolation algorithm, using a suitable computeehtg tool. Due to the space limitations and the complexity
of the expressions we present only the leading terms ofinagtentities.

First we generate the Taylor expansions of the Hermite bawyrdhta,

.N|H

Sy “

=2

0 h $2h2
Po = 0 N Vo = 0 5 ag — y2h2 N
0 0 roh?
h+%x2h2 h+axsh?+ ... xoh? + x3h® +
p1= | 2y2h?+ Lysh® + o vi= | R+ IyshP o |, ar= | yeh?+yshd+
%T2h2 + ?r h3 + roh? + §r3h3 +... roh? + r3h3 +

In order to transform these data into a standard positiorappdy a special orthochronous Lorentz transform with
the Taylor expansion

1_£gﬁm+“. Yh+ Bogaap? 4 —gph - maap?
_ 53— 2 Y2 12
U= —B2p  B=Tap2 1—2h+. .. 20
—2ph — =marzp? 4 —r2p? 4 1+ 2h% +

Then we compute the Taylor expansions of the control poihthe preimage for the transformed ddfdp;),
U(pe), U(vy), U(ve), U(ap), U(a.). Using formula (34) we derive in Step 1 of the construction éixpansions of
the control pointdy, h;, h; andhsg.

The squared norms of the boundary derivatives are

[Ivol* = [U)II* = 12, |[vall* = [[U(v)I]* = h* + 2a2h° +

i.e., these vectors are space-like for sufficiently sthalMoreover, the quantities(ty) anda(t;) (see Lemma 5)

have the expansions
1
afto) = h+E(}waﬁ+”w(mg:h+uﬁ+”” (41)

They are therefore positive for sufficiently small



Then restricting ourselves to the cadg = cosh(y) —sinh(6y) e2es, Wy = cosh(64) —sinh(6,) ezes and using
(30), we derive in Step 2 the expansions of the control podigtand.44

Ao sinh 6V heyes + cosh OpVhese + O (h3/2) , (42)

Ay

sinh 94\/Ee1e2 + cosh 94\/Ee3e1 + O (hg/z) . (43)

Since||Ao||> = h + O(h?) and||A4||? = h + O(h?), using formula (30) we derive in Step 3 the expansions of
the control points4; and.A;

_ 7icoshtp 71 sinh 6,

A = TeleQ + Te3e1 +0 (\/E) , (44)
_ 73coshf, T3 sinh 6,4

A3 = Teleg + 79331 + o (\/E) . (45)

At this stage we can already fix the free parametgrss. Forh — 0 the curvec(t) converges t@0, 0,0) " on the
whole interval[0, 1]. Therefore, if the approximation error should convergé,tthe curveps (t) must converge to
(0,0,0) " on the whole interval, 1], too. Hence, its hodograph must convergétd@, 0) " and the preimagels (1)
must converge t0 on the interval0, 1]. This implies that the control points of the preimage, irtigatar.A; and.As
have to converge t0, and therefore; andrs must vanish.

After settingr; = 73 = 0 we derive in Step 4 the expansion of the control polat First we need to check that
the right hand sidé of (36) is space-like and that(R) is positive ash goes to 0. Indeed,

||R]|* = 324(85 + 13 cosh(fy — 04))*h* + O(h*), a(R) = (1530 + 234 cosh(fy — 04))h + O(h?).

Then, using (30) we compute that

170 + 26 cosh(6y — 84) — 5(cosh 6y + cos 6
\/Ee1e2+\/ (6o i) ( o 1)

Ay — —Z(sinh Bo-+sinh 0,) Vheser+0 (h*?) . (46)

Finally, in Step 5, using (18)—(19), we get the expansiorthefremaining control pointss, hs, hy, h; andhg

of the hodograph. Using (21) we obtain the expansions ofdnéral points ofpg (¢) and ofpg (¢) itself. Comparing
the expansion opq () with the expansion of we obtain

9
(X —5Y = 9]#* — $[3X —19Y — 23]t1+ " st )h + O (h?)

pa(t) —c(t) = o (1) i=5 , (47)
O (h?)
where
X = cosh (6y) v/170 + 26 cosh (§y — 64) andY” = cosh (6p — 6,) . (48)

Therefore the approximation error converges tily asO(h) unless
X —-5Y —9=0and3X — 19Y — 23 =0, (49)

which holds only forX = 14 andY = 1. This impliesty, = 6, = 0 and thusV, = W, = 1.
After settingd, = 6, = 0 the Taylor expansion b4 (¢) simplifies enormously and matches the Taylor expansion
of c(t) up toh®. O

5. Applications and examples

In this section we discuss applications of the interpofaéityorithm designed in Section 3 and demonstrate them
on several examples.
10



Figure 1: Interpolation of planar data. The best interpofan o ,1)(t) is depicted in bold.

5.1. C? interpolation and curve conversion

We start with interpolating gived’? Hermite boundary data by an MPH curve and a conversion of atytn
space-like curve (considered as a segmeni AfT') into aC? MPH spline.

Example 1. We apply theC? Hermite interpolation algorithm to the data
Py =(0,0,0)7, pe = (1,0,0)7, vy = (1,1,0)", ve = (2,1,0)7, &, = (1,2,0) ", ac = (1,2,0)".  (50)

Since these data are planar (they lie in a space-like plamgtural question is to ask which interpolants preserge thi
planarity. According to Theorem 1, the interpolant , o,1)(t) is planar. However, more interpolants can be planar.
We present the following result without proof: Le§ + v. be a space-like vector and the input data lie in a plane
For space-like planes the four interpolant®py, 0,0,w.](t), Wo, Wi € {1, -1} are planar. Ifr is time-like, then
we obtain 16 planar interpolantsyy, o,0,w.,] (), Wo, W4 € {1, —1, eze1, —eze; } from the interpolation scheme.

The four planar interpolants to the data (50) are shown in Eideft. Note that since the input data lie in a
space-like plane, the four interpolants match the fourgramerpolants given by thé? PH interpolation scheme, cf.
Theorem 3.11 of [23]. Fig. 1, middle, illustrates the infloerof the parametend)y, W;. It depicts several members
of the family pyy, 0,0,w,(t). Finally, in Fig. 1, right, we show the 16 planar interpoatd a given data lying in a
time-like plane. In all three figures the best interpolppt, o,1)(¢) is depicted in bold and projections to auxiliary
planes are shown in gray.

Example 2. The interpolation algorithm can be used to convert any sfikeanalytic curve into 802 MPH spline.
We start with a curve(t) defined or0, 1]. Using uniform subdivision, we split the unit interval ir2d subdomains,
for each of which we compute the MPH interpolasit, 0, 0, 1](¢). We remark that using an adaptive subdivision
would reduce the number of interpolants required in ordactdeve a sufficiently small approximation error.

The order of convergence is demonstrated by the followiragrede, see Fig 2. Consider the curve segment

c(t) = (0.25t cos(8t + 0.7),0.85sinh(t), 1 — cosh(t — 0.5)/ cosh(0.5)) ", t € [0, 1]. (51)

The approximation error (based on point sampling estimatdong with its improvement in the first subinterval is
summarized in Table 1. Note that the ratios of subsequentsetonverge to 64, as Theorem 2 predicts. Similar errors
with ratios converging to 64 were obtained for the approxiameof the two envelope branches as well.

5.2. Medial axis approximation

Now we address the problem of approximating AT of a given planar domain by @ MPH spline. MAT
has a structure of a geometric graph; it consists of curvaeats which are pieced together at the graph vertices [4].
We will now focus only on approximation of individual segni&nA discussion of end points and bifurcation points
of the MAT will be the subject of a separate publication.
11



Table 1: Numerical results obtained in Example 2 by unifoefimement.

| segmentg error | ratio || segmentg error | ratio || segmentg error | ratio |
1 2.367-1071 - 8 1.162-107° | 40.23 64 5.945.10~11 | 66.51
2 1.025-10-% | 23.09 16 2.480-10~7 | 46.85 128 9.028-10~13 | 65.85

4 4.675-107% | 21.93 32 3.954-1079 | 62.72 256 1.388-1071* | 65.04

Figure 2: Approximating a space-like analytic curve (blabk a C? MPH spline (red). Two steps of subdivision are depicted.
SeveralM AT circles are shown along with the corresponding envelopes.

An important advantage of using MPH curvesK®AT approximation is the efficient offset computation incluglin
inner offset trimming. In fact, only the parts of théAT for which the corresponding disk radius (last coordinate of
the MAT) is smaller than the offset distance (or cutting tool radiusractice) need to be removed, see Fig. 3, left.

In order to obtain suitabl€? data for Hermite interpolation from a planar dom&inwe apply the following
elegant

Theorem 3. Let M € MAT(Q) correspond to a disc touchingf? at C' and D, see Fig. 3, right. Consider the two
light conesL¢, Lp which are constructed over the osculating circle®0fat C and D and which contain\/. Then
L¢, Lp intersect in the osculating Minkowski circle BFAT () at M.

PROOEF It is known, that the intersection dic and L, is a second degree approximationMAT(Q2) at M, cf.
Proposition 2 of [17]. It therefore suffices to show that th&eisection of the cones is a Minkowski circle, i.e., a
planar curve of a constant Minkowski distance from a certainter.

The implicit equations of. and L, have identical quadratic terms. Thus their intersecticcodgoses into a
common conic section in the plane at infinity and anothercaminich lies in the plane, whose equation is obtained
as the difference of the equations of the cones. This seistiaMinkowski circle, because it is a planar section of a
light cone. Indeed, any light cone is a Minkowski sphere witho diameter. More precisely, i is the vertex ofL«
andS € = the point closest t&, then we have for any point of the sectior| X — S||? = —||P — S||? = const.
and the section is a Minkowski circle with centgr If the plane is space-like, the osculating Minkowski @rid a
Euclidean ellipse. If the plane is time-like, we get a Euedid hyperbola. The two cones never intersect in a Euclidean
parabola. They however may share a common light-like lind@ckwcan be understood as a Minkowski circle with
zero radius. O

Now we are ready to describe the algorithm for the medial agjgroximation. We do not want to enter into a
discussion on the topology of tAd AT and therefore we restrict ourselves only to approximatfocuove segments
of the MAT whose points correspond to maximal circles having pregcisa contact points wittdS2.

1. Sample a suitable sequence of poifif®n of2.

For eaclC; find its correspondind@; sharing the same maximal disc.

For each pai€;, D; find the pointd/; of MAT(2).

IntersectL ¢, with L, and parameterize the resulting Minkowski cirele

SampleC? Hermite data frone; at M; and apply the>? interpolation scheme to consecutive poihfs, M; ;.
Piece the resulting MPH curves together, obtaining an Mplihe approximation oMAT(12).

12
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Figure 3: Left: Inner offset trimming using tRd AT. Right: Intersection of cones over osculating circles 3.

Table 2: Numerical results obtained in Example 3 for the lolauy curveq(t).

| segmentg error | ratio || segmentg error | ratio || segmentg error | ratio |
1 3.503-1072 - 8 6.425-107% | 35.06 64 4.882-10~11 | 64.68
2 1.660- 1073 | 21.10 16 1.884-1077 | 34.11 128 7.508-10~13 | 65.02
4 2.252-10~% | 7.37 32 3.158-1077 | 59.66 256 1.161-10™ | 64.68

Steps 1-4 are simple geometric tasks that can be solved waiifgs algorithms, which we do not discuss in the
present paper. Step 5 is realized using the interp@ang,o 11(¢) thoroughly discussed above.

Example 3.In this example we apply th€? MPH approximation algorithm to the medial axis transfornprayx-
imation of a planar region bounded by two curve segmentsFapet. The segments of the region boundary are
polynomial quarticgy(t), r(¢) given by their Bézier control points

Qo= (—1.7,0.8)", Q1 = (—0.5,0.9)", Q2 = (0,0) ", Q3 = (0.5,-0.5) T, Q4 = (1,0.5) T,

Ro=(-2,04)T, Ry = (~1.7,-1.1) ", Ry = (-0.8,—-1)T, R3 = (0.5,-0.5)", Ry = (1.4,0.2) . (52)

Following the steps of the algorithm, we first sample poimtsrfq(¢t). Then we compute the corresponding
points onr(¢) andMAT using a suitable scheme for finding maximal inscribed dibext, we parameterize (using
Minkowski arc-length) the Minkowski circles given by theténsection of the light-cones described in Theorem 3.
These provide us witl? data which we in turn use for constructing the MPH spline agjpnation of the original
domain'sMAT. Finally, using the envelope formula (11) we compute raldPH spline approximations of the
domain boundary.

The error obtained for the approximation@ft) is summarized in Table 2. Same order of error improvement
was achieved for(t), too. Note that the error ratios tend to 64, suggesting thatproposed method possesses
approximation order 6 not only for the approximationMfAT, but for the domain boundary as well. A detailed
analysis of the exact approximation order is a matter ofreutasearch.

6. Conclusion

We have fully solved the problem &f? Hermite interpolation by MPH nonics in the spaké!. The use of a
Clifford algebra formalism revealed that there is a strradtanalogy of this problem to the Euclidean case, technical
details remaining different due to the particularities lné tMinkowski metric. We have identified one interpolant
particularly well suited for applications and used it fopamximation of individual branches &fIAT. In the future
we plan to include this approach into an algorithm for appration of the wholeM AT of closed domains and treat
stability and topological questions.
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Figure 4: Three steps of subdivision appliedMIdAT approximation. Associated domain boundary approximatine depicted in
red. TheMAT discs at sampled points are shown as well.
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