
C
2 Hermite Interpolation by Minkowski Pythagorean HodographCurves

and Medial Axis Transform Approximation

Jiřı́ Kosinka

Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo

ZbyněkŠı́r∗
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Abstract

We describe and fully analyze an algorithm forC2 Hermite interpolation by Pythagorean hodograph curves of degree
9 in Minkowski spaceR2,1. We show that for any data there exists a four-parameter system of interpolants and we
identify the one which preserves symmetry and planarity of the input data and which has the optimal approximation
degree. The new algorithm is applied to an efficient approximation of segments of the medial axis transform of a
planar domain leading to rational parameterizations of theoffsets of the domain boundaries with a high order of
approximation.
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1. Introduction

Pythagorean hodograph (PH) curves form an important subclass of polynomial parametric curves. The distin-
guishing property is that their arc length function is piecewise polynomial and, in the planar case, they possess ra-
tional offset curves. Since their introduction by Farouki and Sakkalis [13], planar and spatial PH curves have been
thoroughly studied, see [9, 10] and the references cited therein.

Minkowski Pythagorean hodograph (MPH) curves were introduced by Choi et al. and Moon [6, 20]. The moti-
vation is to describe the segments of the medial axis transform (cf. [8, 21]) of a planar domain: if the medial axis
transform is a (collection of) MPH curves, then the boundarycurve of the associated planar domain is a piecewise
rational curve. As an important advantage, this property isshared by all offsets of the boundary.

PH and MPH curves possess certain similar aspects, which canbe understood via a unifying framework designed
in [7]. However, design algorithms for PH curves are much more numerous then those for MPH curves. We are
particularly interested in Hermite interpolation algorithms in three dimensional space.G1 Hermite interpolation using
PH cubics inR

3 [15] yields up to four interpolants. In the case ofC1 Hermite interpolation by spatial PH curves,
one obtains a two-parameter family of quintics [11, 22]. There exists a particular interpolant which is geometrically
invariant, preserves symmetry and planarity, and possesses approximation order 4.C2 Hermite interpolation using
PH curves of degree 9 inR3 gives a four-parameter family of interpolants [23]. The results are similar to theC1 case,
but now with approximation order 6.

In the case of MPH curves,G1 Hermite interpolation using cubics was studied in [17]. Provided that the data are
taken from a space-like curve without inflections, it yieldsup to four interpolants and one of them possesses approx-
imation order 4. It is known that PH and MPH cubics are equivalent to cubic helices in Euclidean and Minkowski
space, respectively, cf. [12, 16]. AC1/2 interpolation scheme using MPH quartics has been discussedin [19]. A
two-parameter family of MPH quintics interpolating givenC1 Hermite data was constructed in [18].
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In the present paper we analyze aC2 Hermite interpolation scheme for MPH nonics with the help ofthe unified
approach via Clifford algebras [7]. Using the so called PH representation map we show that for the construction of
MPH interpolants a sequence of linear and quadratic equations needs to be solved (similarly to the Euclidean case).
Using the Clifford algebra formalism, we explicitly construct a four-parameter family of interpolants. Moreover,
we identify the one that preserves certain symmetries and possesses the best approximation order. Higher order
continuities are required when dealing with medial axis. Itwas shown in [1, 2] that matching domain boundary with
C2 continuity is crucial for the approximation stability of medial axis computation.

The remainder of this paper is organized as follows. Section2 recalls some basic facts about Minkowski space, its
associated Clifford algebra, medial axis transform and Minkowski Pythagorean hodograph curves. TheC2 Hermite
interpolation algorithm is presented in Section 3. Since this algorithm yields a four-parameter system of interpolants,
Section 4 focuses on the identification of a particular interpolant which is most suitable for applications. Finally, the
paper is concluded with a discussion of applications of the presented algorithm and several examples in Section 5.

2. Preliminaries

In this section we recall basic facts about Minkowski space,Clifford algebra and Minkowski Pythagorean Hodo-
graph curves.

2.1. Minkowski space and Lorentz transforms

The three-dimensionalMinkowski spaceR2,1 is a three-dimensional real affine space equipped with the indefinite
inner product defined by the matrix

G = (Gi,j)i,j=1,2,3 = diag(1, 1,−1). (1)

The inner product of two vectorsu = (u1, u2, u3)
⊤, v = (v1, v2, v3)

⊤ is given by

〈u,v〉 = u⊤Gv = u1v1 + u2v2 − u3v3. (2)

As the quadratic form associated withG is not definite, the squared norm of a vector, which is defined by ||v||2 =
〈v,v〉 can be positive, negative or zero. A vectorv is said to bespace-likeif ||v||2 > 0, time-likeif ||v||2 < 0, and
light-like (or isotropic) if ||v||2 = 0. A unit vectorv ∈ R

2,1 satisfies||u||2 = ±1. By scaling, space-like vectorsu
can be normalized to satisfy||u||2 = 1, and time-like ones to satisfy||u||2 = −1. A plane in Minkowski space is
called space-, time- or light-like if the restriction of thequadratic form defined byG on this plane is positive definite,
indefinite non degenerate or degenerate, respectively.

A linear mappingL : R
2,1 → R

2,1 is called aLorentz transformif it preserves the Minkowski inner product,
i.e., 〈u,v〉 = 〈Lu, Lv〉 for all u,v ∈ R

2,1. Lorentz transforms form theLorentz groupL = O(2, 1). Any Lorentz
transform is described by a3 × 3 matrix L = (li,j)i,j=1,2,3. Its column vectorsl1, l2 andl3 satisfy〈li, lj〉 = Gi,j ,
i, j ∈ {1, 2, 3}, i.e., they form an orthonormal basis ofR

2,1 with respect to the inner product (2). The equation
〈l3, l3〉 = G3,3 = −1 implies l233 ≥ 1. The Lorentz transformL is said to beorthochronousif l33 ≥ 1. Obviously,
the determinant of any Lorentz transformL equals to±1. Thespecialones are characterized by det(L) = 1.

The Lorentz groupL consists of four components. The special orthochronous Lorentz transforms form the sub-
groupSO+(2, 1). The remaining three components areT1 ·SO+(2, 1), T2 ·SO+(2, 1) andT1 ·T2 ·SO+(2, 1), where
T1 = diag(1, 1,−1) andT2 = diag(1,−1, 1). Any special orthochronous Lorentz transformL ∈ SO+(2, 1) can be
represented asL = R(α1)H(β)R(α2), where

R(α) =





cosα − sinα 0
sin α cosα 0

0 0 1



 and H(β) =





1 0 0
0 coshβ sinhβ
0 sinhβ coshβ



 (3)

are a planar rotation with angleα, and ahyperbolic rotationwith angleβ, respectively.
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2.2. The Clifford algebraCℓ(2, 1)

Any real linear spaceV, which is equipped with a quadratic formQ, has an associatedClifford algebra, defined
as

Cℓ = T (V)/〈v ⊗ v − Q(v)1〉, (4)

i.e., as the quotient of the tensor algebra and its ideal forcing the equalityv ⊗ v = Q(v), see [7] for a more detailed
introduction. In particular we are interested in the Clifford algebraCℓ = Cℓ(2, 1), which corresponds to the Minkowski
spaceR2,1 i.e., to the three-dimensional real linear space with the indefinite quadratic form (2).

This Clifford algebra has real dimension8 and has the following basis elements: thescalaridentity element1, the
orthonormal basisvectorse1, e2, e3, thebivectorse1e2, e2e3, e3e1 and thepseudo-scalare1e2e3. Any element of
the Clifford algebra is a linear combination of these basis elements

A = a01 + a1e1 + a2e2 + a3e3 + a4e1e2 + a5e2e3 + a6e3e1 + a7e1e2e3. (5)

The rules governing the non-commutative multiplication· can be deduced from the basic relationse2
1 = e2

2 = 1 =
−e2

3 andei · ej = −ej · ei if i 6= j. For any elementA ∈ Cℓ we define itsconjugationĀ andClifford normas

Ā = a01− a1e1 − a2e2 − a3e3 − a4e1e2 − a5e2e3 − a6e3e1 + a7e1e2e3,
N(A) = A · Ā = (a2

0 − a2
1 − a2

2 + a2
3 + a2

4 − a2
5 − a2

6 + a2
7) + (2a0a7 − 2a1a5 − 2a2a6 − 2a3a4)e1e2e3.

(6)
The operation of conjugation satisfiesA · B = B̄ · Ā. The algebraCℓ has the natural grading

Cℓ0 = R1, Cℓ1 = Re1 + Re2 + Re3, Cℓ2 = Re1e2 + Re2e3 + Re3e1, Cℓ3 = Re1e2e3. (7)

A vectorv = (λ, µ, ν)⊤ of R
2,1 will be identified with the elementλe1 + µe2 + νe3 of Cℓ1. The set of scalars

combined with bivectors forms the subalgebra of even degreeelementsCℓ+ = Cℓ0 ⊕ Cℓ2.
We define the multiplicative groupSpin as the set of all unit elements ofCℓ+:

Spin := {A ∈ Cℓ+ : N(A) = ±1}.

This group has the actionT onCℓ defined by

T (A)(B) = A · B · Ā, (8)

and stabilizesCℓ1, i.e., if v ∈ Cℓ1 = R
2,1 then alsoT (A)(v) ∈ Cℓ1. In fact the resulting transformation

T (A) : R
2,1 → R

2,1

is a special Lorenz transform. More precisely, we have the natural exact sequence

1 → {±1}→Spin → SO(2, 1) → 1,

i.e., each element ofSO(2, 1) corresponds to two elements ofSpin differing only by the sign.
We define a commutative multiplication onCℓ+ ×Cℓ+ → Cℓ1 by

A ⋆ B =
1

2
(A · e1 · B̄ + B · e1 · Ā). (9)

Corresponding2nd powers will be denotedA2⋆. A direct computation shows thatA ⋆ B indeed belongs toCℓ1. Note
that forA ∈ Spin we haveA2⋆ = T (A)(e1). Since no confusion is likely to arise, we simply omit the multiplication
symbol· in the remainder of the paper.
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2.3. Medial axis transform
Let Br(s) denote the disc inR2 with radiusr centered ats. For a given planar domainΩ themedial axis transform

MAT(Ω) is given by
MAT(Ω) := {(s, r) ∈ Ω × R

+ : Br(s) is maximal in Ω} (10)

and themedial axisMA(Ω) is the projection ofMAT(Ω) to R
2, i.e., the set of centers of maximal discs. A disc inΩ

is maximal if and only if it touches the boundary in at least two points (counting with multiplicity). This leads to a
natural extension ofMAT(Ω) andMA(Ω) to non-closed shapes. For example for two curves theMAT would be the
set of all discs touching both of them andMA is their bisector. In the sequel we will use notionsMA andMAT in
this generalized sense.

If we have theMAT, the original domain boundary can be reconstructed as the envelope of corresponding discs.
In particular, for aC1 segmentp(t) = (x(t), y(t), r(t))⊤ ⊂ MAT we can compute the corresponding boundary from
the envelope formula (see [4])

(x̃(t), ỹ(t))⊤ = (x(t), y(t))⊤ − r(t)r′(t)

x′(t)2 + y′(t)2
(x′(t), y′(t))⊤ ± r(t)

√

x′(t)2 + y′(t)2 − r′(t)

x′(t)2 + y′(t)2
(−y′(t), x′(t))⊤.

(11)
The term

√

x′(t)2 + y′(t)2 − r′(t) can be interpreted as the Minkowski norm of the curve derivativep′, which leads
to consideringR2,1 as the natural ambient space forMAT.

2.4. Minkowski Pythagorean hodograph curves
Recall that a polynomial curve in Euclidean space is called aPythagorean hodograph(PH) curve (cf. [9]), if the

squared norm of its first derivative (or hodograph) is the square of another polynomial. Following [20],Minkowski
Pythagorean hodograph(MPH) curves are defined similarly, but with respect to the norm induced by the Minkowski
inner product. More precisely, a polynomial curvep ∈ R

2,1, p = (x, y, r)⊤ is called an MPH curve if

||p′||2 = x′2 + y′2 − r′
2

= σ2 (12)

for some polynomialσ.
As observed in [6, 20], if the medial axis transform of a planar domain is (a collection of) MPH curve(s), then

the coordinate functions of the corresponding boundary curves (i.e., the envelopes of the discs with centers(x, y) and
radiusr) are (piecewise) rational functions. Due to the definition of MPH curves, the tangent vectorp′(t) cannot be
time-like. Also, light-like tangent vectors correspond toroots of the polynomialσ in (12), see [21, Section 2.1] for
more details.

According to [20], the equation (12) holds if and only if there exist polynomialsu(t), v(t), p(t) andq(t) such that

x′(t) = u(t)2 − v(t)2 − p(t)2 + q(t)2,
y′(t) = −2(u(t)v(t) + p(t)q(t)),
r′(t) = 2(u(t)q(t) + v(t)p(t)),
σ(t) = u(t)2 + v(t)2 − p(t)2 − q(t)2.

(13)

This result can be reformulated using Clifford algebraCℓ(2, 1), see [7].

Lemma 1. A polynomial curvep(t) in R
2,1 is an MPH curve if and only if there exists a polynomial curveA(t) =

u(t) + v(t)e1e2 + p(t)e2e3 + q(t)e3e1 in the subalgebraCℓ+ such that

p′(t) = h(t) = A(t)e1Ā(t) = A(t)2⋆. (14)

Consequently, the construction of MPH curves is reduced to the construction of a suitable curveA(t) in the subalgebra
Cℓ+, which will be called thepreimagecurve.

We will use MPH curves of degree9. The MPH curves, their hodographh(t) = p′(t) and the preimageA(t) will
be expressed in the Bernstein-Bézier representation [14]

p(t) =

9
∑

i=0

piB
9
i (t), h(t) =

8
∑

i=0

hiB
8
i (t), A(t) =

4
∑

i=0

AiB
4
i (t), t ∈ [0, 1], (15)
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wherepi, hi (pure vectors) andAi ∈ Cℓ+ are the control points andBn
j (t) are the Bernstein polynomials. The relation

between the hodograph and the preimageh(t) = A(t)2⋆ can be expressed using the control points as

h0 = A2⋆
0 , h8 = A2⋆

4 , (16)

h1 = A0 ⋆ A1, h7 = A3 ⋆ A4, (17)

h2 = (4A2⋆
1 + 3A0 ⋆ A2)/7, h6 = (4A2⋆

3 + 3A2 ⋆ A4)/7, (18)

h3 = (A0 ⋆ A3 + 6A1 ⋆ A2)/7, h5 = (A1 ⋆ A4 + 6A2 ⋆ A3)/7, (19)

h4 = (18A2⋆
2 + A0 ⋆ A4 + 16A1 ⋆ A3)/35. (20)

The MPH curve is then obtained by integrating the hodograph and it possesses the control points

pj = p0 +
1

9

j−1
∑

i=0

hi, j = 1, . . . , 9. (21)

3. C
2 Hermite interpolation by Minkowski Pythagorean hodograph curves

In this section we first give solutions to certain equations in Cℓ(2, 1). Then we show that the interpolation problem
can be reduced to solving a sequence of these equations. Finally, we construct all interpolants to givenC2 data.

3.1. Elementary equations inCℓ(2, 1)

Lemma 2. Letv be a pure vector andA ∈ Cℓ+ such thatN(A) 6= 0. Then all solutions of the linear equation

X ⋆ A = v (22)

form the one-parameter family

Xτ =
(v + τe1e2e3)Ae1

N(A)
, τ ∈ R. (23)

PROOF. We can write

X ⋆ A =
1

2
(Xe1Ā + Ae1X̄ ) =

1

2
(Xe1Ā − Xe1Ā) = Xe1Ā − τe1e2e3. (24)

The last equality holds sinceXe1Ā contains only vector part, which changes sign under conjugation, and the pseu-
doscalar partτe1e2e3, which does not change sign under conjugation and thereforecancels out. Thus, (22) becomes

Xe1Ā = v + τe1e2e3 (25)

and multiplying it from right byAe1 leads to the result. �

Definition 1. The subgroup of elements ofSpin stabilizing the elemente1 will be denoted bySpin1:

Spin1 = {W ∈ Spin : We1W̄ = e1}.

Moreover, we have the commutative subgroup

Spin+
1 = {W ∈ Spin1 : N(W) = 1}.

The following result is proved in Lemma 1 of [18].

Lemma 3.

Spin+
1 = {± cosh(φ) − sinh(φ) e2e3, φ ∈ R} (26)

Spin1 = Spin+
1 ∪ {− sinh(φ) e1e2 ± cosh(φ) e3e1, φ ∈ R}. (27)
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For any space-like or light-like vectorv = (λ, µ, ν)⊤ define

α(v) :=
1

2
(λ + ||v||) and

√
v := − (v + ||v||e1)e3

2
√

|α(v)|
. (28)

A direct computation leads to

Lemma 4. For any space-like or light-like vectorv we have

√
ve1

√
v = sgn(α(v))e1.

Lemma 5. Letv be a space-like or light-like vector. All solutions of the equation

X 2⋆ = v (29)

are of the form
XW =

√
vW , for α(v) > 0 and

XW =
√

ve2e3W , for α(v) < 0,
(30)

whereW ∈ Spin1.

PROOF. Recall thatX 2⋆ := Xe1X̄ . By Lemma 4 we have that
√

v (resp.
√

ve2e3) is a solution of (29) since
e2e3e1e2e3 = −e1. Moreover, elements ofSpin1 are exactly the solutions of the equationWe1W̄ = e1, which
concludes the proof. �

Remark 1. The caseα(v) = 0 leads to a different one-parameter system of solutions and we exclude this case in
order to simplify the presentation. As we shall see later in Section 4.2, the caseα(v) = 0 does not occur if the data
are sampled from a space-likeC∞ curve with a sufficiently small step-size.

Lemma 6. The systems of solutions(23)and(30)are equivariant with respect to the action ofSpin+
1 in the following

special sense. Suppose that some datav, A enter equations(22) and (29) yielding the systems of solutionsXτ , XW .
Let for someV ∈ Spin+

1 the transformed datãv = VvV̄ and Ã = VAV give solutionsX̃τ , X̃W . Then for any
parameterτ ∈ R or W ∈ Spin1 we have

X̃τ = VXτV , X̃W = VXWV . (31)

PROOF. Note thatVvV̄ is a hyperbolic rotation ofv about thee1 axis and so||ṽ|| = ||v|| andα(ṽ) = α(v). Also,
VV̄ = 1 andN(Ã) = N(A). Moreover,V commutes withe1, e2e3 ande1e2e3 and we also havee3 = Ve3V . Using
these facts we can write

X̃τ =
(ṽ + τe1e2e3)Ãe1

N(Ã)
=

(VvV̄ + τe1e2e3)VAVe1

N(A)
= V (v + τe1e2e3)Ae1

N(A)
V = VXτV . (32)

Similarly we have

√
ṽ = − (VvV̄ + ||v||e1)e3

2
√

|α(v)|
= − (VvV̄ + ||v||Ve1V̄)Ve3V

2
√

|α(v)|
= V

√
vV . (33)

Since the choice of solution does not change in (30) andV commutes withW ande2e3, we obtain (31). �

3.2. System of solutions to theC2 Hermite interpolation problem

We construct a spatial MPH curvep(t) which matches givenC2 Hermite boundary data. More precisely, the
curve is to interpolate the end pointspb, pe, the first derivative vectors (velocities)vb, ve and the second derivative
vectors (accelerations)ab, ae.

In all we have18 scalar conditions. Three of them are satisfied by choosing the first control point of the curve
p0 = pb. The remaining15 conditions must be satisfied by determining the control points of the preimage. As
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the preimage has4 components, apparently the15 conditions could be satisfied by4 control points leading to the
preimage of degree3 and MPH curves of degree7. But our experiments showed that the resulting system of equations
is highly nonlinear and does not have solutions for all inputdata. Therefore we will use MPH interpolants of degree
9, for which the problem always has solutions forming a four-parameter family.

Two curvesp(t), p̃(t) share the same hodograph if and only if they differ only by a translation. Consequently, a
spatial MPH curvep(t) is fully determined by the preimageA(t) and by the location of its starting pointp(0).

Using curves of degree9, the interpolation conditions lead to the equations

h0 = vb, h8 = ve, 8(h1 − h0) = ab, 8(h8 − h7) = ae, (34)

1

9

8
∑

i=0

hi = (pe − pb). (35)

Substituting into (16)-(20), this last equation, after some simplifications, becomes

(12A2 + 10A1 + 5A0 + 5A4 + 10A3)
2⋆

=
2520(pe − pb) − 435(ve + vb) + 45

2 (ae − ab)
−(60A2⋆

1 − 60A0 ⋆ A3 − 60A1 ⋆ A4 + 60A2⋆
3 − 42A0 ⋆ A4 − 72A1 ⋆ A3).

(36)

The construction of MPH interpolants.

1. Compute the control pointsh0, h1, h7 andh8 from (34).
2. The control pointsA0, A4 can be computed using equations (16), which are of type (29) and therefore each of

A0, A4 depends on one free parameter,W0 ∈ Spin1 andW4 ∈ Spin1.
3. The control pointsA1, A3 can be computed from equations (17), which are of type (22). The control pointA1

depends on the parameterW0 via A0 and on a new parameterτ1. SimilarlyA3 depends on the parameterW4

viaA4 and on a new parameterτ3.
4. The control pointA2 can be computed from (36), which is essentially of type (29).This control point will

depend on all previous control points and therefore on all parametersW0, W4, τ1 andτ3 and on a new parame-
terW2 ∈ Spin1.

5. Compute control pointsh2, h3, h4, h5, h6 from equations (18)–(19), setp0 = pb and compute the remaining
control points ofp(t) using equation (21).

Summing up, we arrive successively at families of suitable preimagesAΦ(t), hodographshΦ(t) and PH curves
pΦ(t) depending on the parameter vectorΦ = [W0, τ1,W2, τ3,W4]. However, as in the cases ofC1 PH and MPH
andC2 PH Hermite interpolation [22, 23, 18], one of the parameterscan be chosen due to the nontrivial fibers of the
mappingpreimage → hodograph (13), which are in fact isomorphic to the groupSpin1 as shows the following

Lemma 7. Let hΦ, whereΦ = [W0, τ1,W2, τ3,W4], be the hodograph of a particular MPH interpolant to some
given input data and let̃Φ = [W0W , τ1,W2W , τ3,W4W ] for someW ∈ Spin1. Then

hΦ(t) = hΦ̃(t). (37)

PROOF. We claim that for all preimage control points we haveAi(Φ̃) = Ai(Φ)W . This is immediately clear for
i = 0, 4 due to the form of (30). The same relation holds fori = 1, 3 becauseA0 andA4 already enter suitably
modified (multiplied byW) into (23) forA1 andA3. Due to the equalityWe1/N(W) = e1W the elementW
will appear only as a factor at the end of the expression. Similarly in the computation ofA2 from formula (36), the
factorW cancels out on the right-hand side and remains as a multiple on the left-hand side. Summing up we obtain
AΦ(t)W = AΦ̃(t) yielding

hΦ̃(t) = Ai(Φ̃)e1Āi(Φ̃) = Ai(Φ)We1W̄Āi(Φ) = hΦ(t), (38)

as was to be shown. �

In particular, we can applyW = W−1
2 = N(W2)W̄2 in Lemma 7, which leads to the simplified parameter vector

Φ = [W̃0, τ1,1, τ3, W̃4]. For the remainder of the paper we will suppose this choice and omit the middle parameter.
The four remaining parameters describe the system of Hermite interpolants fully.
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4. Identifying a suitable interpolant

For practical purposes we need to identify one particular interpolant within the familyp[W0, τ1, τ3,W4] that is
suitable for applications. We use certain symmetry criteria and approximation order.

4.1. The parameterization and invariance of interpolants
For any givenC2 Hermite datap0, p1, v0, v1, a0 anda1 the system{p[W0,τ1,τ3,W4](t)} representsall MPH

interpolants. Therefore, it is invariant with respect to Lorentz transforms. More precisely, if we apply a Lorentz
transformL to the Hermite data, we obtain modified datap̃0 = L(p0), p̃1 = L(p1), ṽ0 = L(v0), ṽ1 = L(v1),
ã0 = L(a0) andã1 = L(a1) along with the modified interpolating MPH curvesp̃[W̄0,τ̄1,τ̄3,W̄4](t) satisfying

{p̄[W̄0,τ̄1,τ̄3,W̄4]} = L({p[W0,τ1,τ3,W4](t)}).
In general, however, the transformL does not preserve the parameterization of the interpolantsby the free parameters.
The relationsW̄0 = W0, τ̄1 = τ1, τ̄3 = τ3, W̄4 = W4 are not always satisfied. Therefore, we must fix the
parameterization of the family of interpolants byΦ using a canonical position of the data. In order to simplify our
presentation we impose the following restrictions:

• We assume that the sumt0+t1 of the given boundary derivatives is a space-like vector. Weneed this assumption
in order to define the standard position in a symmetric fashion. For instance, if the data are sampled from a
space-like curve with some step sizeh, then this assumption is always satisfied provided thath is sufficiently
small.

• We will only consider solutions given by the parameter vector Φ = [W0, τ1, τ3,W4] with W0,W4 ∈ Spin+
1 .

As we show below, this branch of interpolants contains the most suitable one.

General case can be still considered but would lead to a lengthy discussion of various cases without giving any
substantial practical advantage.

Definition 2. If t0 + t1 is a positive multiple ofe1 andp0 = 0, then the inputC2 Hermite data are said to be in a
standard position. We parameterize the MPH interpolants as follows. First, wetransform the input data to a standard
position applying a special orthochronous transform (see section 2.1). Then we construct the MPH interpolants
p[W0,τ1,τ3,W4](t). Finally, we transform the solutions back to the original position. From now on,p[W0,τ1,τ3,W4](t)
will denote the interpolant obtained in this way, i.e., the parameters[W0, τ1, τ3,W4] are no longer applied to the
original position of the data, but to the data transformed toa standard position.

Note, that there are many standard positions differing by a hyperbolic rotation about thee1 axis. The following lemma
ensures the correctness of the definition.

Lemma 8. The parameterizationp[W0,τ1,τ3,W4](t) is well defined, i.e., hyperbolic rotations preservinge1 do not
affect this labeling.

PROOF. Hyperbolic rotations about thee1 axis are represented withinCℓ by T (V), whereV ∈ Cℓ+, i.e., by simulta-
neous multiplication byV from the left and bȳV from the right. Suppose that we have some datap0, p1, v0, v1, a0

anda1 in a standard position and the interpolantp(t) is constructed using the parameter vector[W0, τ1, τ3,W4]. Let
us construct the interpolant̃p with the same parameter vector to the rotated dataT (V)(p0), T (V)(p1), T (V)(v0),
T (V)(v1), T (V)(a0) and T (V)(a1). Let Ai denote the original preimage control points andÃi preimage con-
trol points for the rotated data. Due to Lemma 6 we haveÃ0 = VA0V andÃ4 = VA4V . This in turn leads to
Ã1 = VA1V andÃ3 = VA3V . Now, since

(VAV) ⋆ (VBV) = V(A ⋆ B)V̄ (39)

the right-hand side of (36) is suitably modified and we getÃ3 = VA3V . Summing up we havẽA(t) = VA(t)V
leading top̃ = V(p)V̄ due to (39). Thus the interpolants are transformed in the same way the input data are. �

As we will see below, the solutionp[1,0,0,1](t) demonstrates the best asymptotic behavior. Its suitability for
applications is also confirmed by the following theorem. We state it without proof, which is purely technical.

Theorem 1. The interpolantp[1, 0, 0,1](t) is symmetric with respect to reversion of the data and preserves planarity
of planar data.
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4.2. Approximation order

We assume that a sufficiently smooth space-like curveC(T ) in Minkowski spaceR2,1 is given. It may be a branch
of the medial axis transform of a planar domain. In this situation, the curve is space-like, except for those end points,
which correspond to vertices (curvature maxima) of the boundary of the domain.

In order to approximate this curve by a nonic MPH spline, we sampleC2 Hermite boundary data from segments
T ∈ [t0, t0 +h] and apply the interpolation procedure. The following theorem analyzes the behavior of the error as the
step sizeh tends to zero. We also point out that the results on the approximation order of theMAT imply analogous
results for the Hausdorff distance of the associated planardomains, cf. Section 6.3 of [17].

Theorem 2. If the step-sizeh is sufficiently small, then the interpolantp[1, 0, 0,1](t) is well defined and has ap-
proximation order6. All other interpolants withτ1 = τ3 = 0 for arbitrary but constant values ofW0 andW4 have
approximation order1. Otherwise, the approximation order is equal to1

2 .

PROOF. We prove this theorem with the help of power series. Withoutloss of generality we setC(0) = (0, 0, 0)⊤

andC′(0) = (1, 0, 0)⊤, hence

C(T ) = (T +

∞
∑

i=2

xi

i!
T i,

∞
∑

i=2

yi

i!
T i,

∞
∑

i=2

ri

i!
T i)⊤, (40)

wherexi, yi andri are arbitrary but fixed coefficients,i = 2, 3, . . .. The Hermite interpolation procedure is applied to
the segmentc(t) = C(th), t ∈ [0, 1], where the step-sizeh specifies the length.

In order to prove the theorem, we evaluate the Taylor expansions with respect toh of all quantities occurring in
the interpolation algorithm, using a suitable computer algebra tool. Due to the space limitations and the complexity
of the expressions we present only the leading terms of certain quantities.

First we generate the Taylor expansions of the Hermite boundary data,

p0 =





0
0
0



 , v0 =





h
0
0



 , a0 =





x2h
2

y2h
2

r2h
2



 ,

p1 =





h + 1
2x2h

2 + . . .
1
2y2h

2 + 1
6y3h

3 + . . .
1
2r2h

2 + 1
6r3h

3 + . . .



 , v1 =





h + x2h
2 + . . .

y2h
2 + 1

2y3h
3 + . . .

r2h
2 + 1

2r3h
3 + . . .



 , a1 =





x2h
2 + x3h

3 + . . .
y2h

2 + y3h
3 + . . .

r2h
2 + r3h

3 + . . .



 .

In order to transform these data into a standard position, weapply a special orthochronous Lorentz transform with
the Taylor expansion

U =







1 − y2

2
−r2

2

8 h2 + . . . y2

2 h + y3−x2y2

4 h2 + . . . − r2

2 h − r3−x2r2

4 h2 + . . .

− y2

2 h − y3−x2y2

4 h2 + . . . 1 − y2

2

8 h2 + . . . 0

− r2

2 h − r3−x2r2

4 h2 + . . . − y2r2

4 h2 + . . . 1 +
r2

2

8 h2 + . . .






.

Then we compute the Taylor expansions of the control points of the preimage for the transformed dataU(pb),
U(pe), U(vb), U(ve), U(ab), U(ae). Using formula (34) we derive in Step 1 of the construction the expansions of
the control pointsh0, h1, h7 andh8.

The squared norms of the boundary derivatives are

||v0||2 = ||U(v0)||2 = h2, ||v1||2 = ||U(v1)||2 = h2 + 2x2h
3 + . . . ,

i.e., these vectors are space-like for sufficiently smallh. Moreover, the quantitiesα(t0) andα(t1) (see Lemma 5)
have the expansions

α(t0) = h +
1

16
(r2

2 − y2
2)h

3 + . . . , α(t1) = h + x2h
2 + . . . . (41)

They are therefore positive for sufficiently smallh.
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Then restricting ourselves to the caseW0 = cosh(θ0)−sinh(θ0) e2e3, W4 = cosh(θ4)−sinh(θ4) e2e3 and using
(30), we derive in Step 2 the expansions of the control pointsA0 andA4

A0 = sinh θ0

√
he1e2 + cosh θ0

√
he3e1 + O

(

h3/2
)

, (42)

A4 = sinh θ4

√
he1e2 + cosh θ4

√
he3e1 + O

(

h3/2
)

. (43)

Since||A0||2 = h + O(h2) and||A4||2 = h + O(h2), using formula (30) we derive in Step 3 the expansions of
the control pointsA1 andA3

A1 =
τ1 cosh θ0√

h
e1e2 +

τ1 sinh θ0√
h

e3e1 + O
(√

h
)

, (44)

A3 =
τ3 cosh θ4√

h
e1e2 +

τ3 sinh θ4√
h

e3e1 + O
(√

h
)

. (45)

At this stage we can already fix the free parametersτ1, τ3. Forh → 0 the curvec(t) converges to(0, 0, 0)⊤ on the
whole interval[0, 1]. Therefore, if the approximation error should converge to0, the curvepΦ(t) must converge to
(0, 0, 0)⊤ on the whole interval[0, 1], too. Hence, its hodograph must converge to(0, 0, 0)⊤ and the preimageAΦ(t)
must converge to0 on the interval[0, 1]. This implies that the control points of the preimage, in particularA1 andA3

have to converge to0, and thereforeτ1 andτ3 must vanish.
After settingτ1 = τ3 = 0 we derive in Step 4 the expansion of the control pointA2. First we need to check that

the right hand sideR of (36) is space-like and thatα(R) is positive ash goes to 0. Indeed,

||R||2 = 324(85 + 13 cosh(θ0 − θ4))
2h2 + O(h3), α(R) = (1530 + 234 cosh(θ0 − θ4))h + O(h2).

Then, using (30) we compute that

A2 = −5

4
(sinh θ0+sinh θ4)

√
he1e2+

√

170 + 26 cosh(θ0 − θ4) − 5(cosh θ0 + cos θ4)

4

√
he3e1+O

(

h3/2
)

. (46)

Finally, in Step 5, using (18)–(19), we get the expansions ofthe remaining control pointsh2, h3, h4, h5 andh6

of the hodograph. Using (21) we obtain the expansions of the control points ofpΦ(t) and ofpΦ(t) itself. Comparing
the expansion ofpΦ(t) with the expansion ofc we obtain

pΦ(t) − c(t) =











([X − 5Y − 9] t3 − 1
2 [3X − 19Y − 23] t4 +

9
∑

i=5

sit
i)h + O

(

h2
)

O
(

h2
)

O
(

h2
)











, (47)

where
X = cosh (θ0)

√

170 + 26 cosh (θ0 − θ4) andY = cosh (θ0 − θ4) . (48)

Therefore the approximation error converges to0 only asO(h) unless

X − 5Y − 9 = 0 and3X − 19Y − 23 = 0, (49)

which holds only forX = 14 andY = 1. This impliesθ0 = θ4 = 0 and thusW0 = W4 = 1.
After settingθ0 = θ4 = 0 the Taylor expansion ofpΦ(t) simplifies enormously and matches the Taylor expansion

of c(t) up toh5. �

5. Applications and examples

In this section we discuss applications of the interpolation algorithm designed in Section 3 and demonstrate them
on several examples.
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Figure 1: Interpolation of planar data. The best interpolant p[1,0,0,1](t) is depicted in bold.

5.1. C2 interpolation and curve conversion

We start with interpolating givenC2 Hermite boundary data by an MPH curve and a conversion of an analytic
space-like curve (considered as a segment ofMAT) into aC2 MPH spline.

Example 1.We apply theC2 Hermite interpolation algorithm to the data

pb = (0, 0, 0)⊤, pe = (1, 0, 0)⊤, vb = (1, 1, 0)⊤, ve = (2, 1, 0)⊤, ab = (1, 2, 0)⊤, ae = (1, 2, 0)⊤. (50)

Since these data are planar (they lie in a space-like plane),a natural question is to ask which interpolants preserve this
planarity. According to Theorem 1, the interpolantp[1,0,0,1](t) is planar. However, more interpolants can be planar.
We present the following result without proof: Letvb + ve be a space-like vector and the input data lie in a planeπ.
For space-like planesπ the four interpolantsp[W0,0,0,W4](t), W0,W4 ∈ {1,−1} are planar. Ifπ is time-like, then
we obtain 16 planar interpolantsp[W0,0,0,W4](t), W0,W4 ∈ {1,−1, e3e1,−e3e1} from the interpolation scheme.

The four planar interpolants to the data (50) are shown in Fig. 1, left. Note that since the input data lie in a
space-like plane, the four interpolants match the four planar interpolants given by theC2 PH interpolation scheme, cf.
Theorem 3.11 of [23]. Fig. 1, middle, illustrates the influence of the parametersW0,W4. It depicts several members
of the familyp[W0,0,0,W4](t). Finally, in Fig. 1, right, we show the 16 planar interpolants to a given data lying in a
time-like plane. In all three figures the best interpolantp[1,0,0,1](t) is depicted in bold and projections to auxiliary
planes are shown in gray.

Example 2.The interpolation algorithm can be used to convert any space-like analytic curve into aC2 MPH spline.
We start with a curvec(t) defined on[0, 1]. Using uniform subdivision, we split the unit interval into2n subdomains,
for each of which we compute the MPH interpolantp[1, 0, 0,1](t). We remark that using an adaptive subdivision
would reduce the number of interpolants required in order toachieve a sufficiently small approximation error.

The order of convergence is demonstrated by the following example, see Fig 2. Consider the curve segment

c(t) = (0.25t cos(8t + 0.7), 0.85 sinh(t), 1 − cosh(t − 0.5)/ cosh(0.5))⊤, t ∈ [0, 1]. (51)

The approximation error (based on point sampling estimation) along with its improvement in the first subinterval is
summarized in Table 1. Note that the ratios of subsequent errors converge to 64, as Theorem 2 predicts. Similar errors
with ratios converging to 64 were obtained for the approximation of the two envelope branches as well.

5.2. Medial axis approximation

Now we address the problem of approximating theMAT of a given planar domain by aC2 MPH spline. MAT
has a structure of a geometric graph; it consists of curve segments which are pieced together at the graph vertices [4].
We will now focus only on approximation of individual segments. A discussion of end points and bifurcation points
of theMAT will be the subject of a separate publication.
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Table 1: Numerical results obtained in Example 2 by uniform refinement.

segments error ratio segments error ratio segments error ratio

1 2.367 · 10−1 – 8 1.162 · 10−5 40.23 64 5.945 · 10−11 66.51
2 1.025 · 10−2 23.09 16 2.480 · 10−7 46.85 128 9.028 · 10−13 65.85
4 4.675 · 10−4 21.93 32 3.954 · 10−9 62.72 256 1.388 · 10−14 65.04

Figure 2: Approximating a space-like analytic curve (black) by a C2 MPH spline (red). Two steps of subdivision are depicted.
SeveralMAT circles are shown along with the corresponding envelopes.

An important advantage of using MPH curves forMAT approximation is the efficient offset computation including
inner offset trimming. In fact, only the parts of theMAT for which the corresponding disk radius (last coordinate of
theMAT) is smaller than the offset distance (or cutting tool radiusin practice) need to be removed, see Fig. 3, left.

In order to obtain suitableC2 data for Hermite interpolation from a planar domainΩ, we apply the following
elegant

Theorem 3. Let M ∈ MAT(Ω) correspond to a disc touching∂Ω at C andD, see Fig. 3, right. Consider the two
light conesLC , LD which are constructed over the osculating circles of∂Ω at C andD and which containM . Then
LC , LD intersect in the osculating Minkowski circle ofMAT(Ω) at M .

PROOF. It is known, that the intersection ofLC andLD is a second degree approximation toMAT(Ω) at M , cf.
Proposition 2 of [17]. It therefore suffices to show that the intersection of the cones is a Minkowski circle, i.e., a
planar curve of a constant Minkowski distance from a certaincenter.

The implicit equations ofLC andLD have identical quadratic terms. Thus their intersection decomposes into a
common conic section in the plane at infinity and another conic, which lies in the planeπ, whose equation is obtained
as the difference of the equations of the cones. This sectionis a Minkowski circle, because it is a planar section of a
light cone. Indeed, any light cone is a Minkowski sphere withzero diameter. More precisely, ifV is the vertex ofLC

andS ∈ π the point closest toV , then we have for any pointX of the section||X − S||2 = −||P − S||2 = const.
and the section is a Minkowski circle with centerS. If the plane is space-like, the osculating Minkowski circle is a
Euclidean ellipse. If the plane is time-like, we get a Euclidean hyperbola. The two cones never intersect in a Euclidean
parabola. They however may share a common light-like line, which can be understood as a Minkowski circle with
zero radius. �

Now we are ready to describe the algorithm for the medial axisapproximation. We do not want to enter into a
discussion on the topology of theMAT and therefore we restrict ourselves only to approximation of curve segments
of theMAT whose points correspond to maximal circles having precisely two contact points with∂Ω.

1. Sample a suitable sequence of pointsCi on∂Ω.
2. For eachCi find its correspondingDi sharing the same maximal disc.
3. For each pairCi, Di find the pointMi of MAT(Ω).
4. IntersectLCi

with LDi
and parameterize the resulting Minkowski circleci.

5. SampleC2 Hermite data fromci atMi and apply theC2 interpolation scheme to consecutive pointsMi, Mi+1.
6. Piece the resulting MPH curves together, obtaining an MPHspline approximation ofMAT(Ω).

12



C D
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LC
LD

Figure 3: Left: Inner offset trimming using theMAT. Right: Intersection of cones over osculating circles 3.

Table 2: Numerical results obtained in Example 3 for the boundary curveq(t).

segments error ratio segments error ratio segments error ratio

1 3.503 · 10−2 – 8 6.425 · 10−6 35.06 64 4.882 · 10−11 64.68
2 1.660 · 10−3 21.10 16 1.884 · 10−7 34.11 128 7.508 · 10−13 65.02
4 2.252 · 10−4 7.37 32 3.158 · 10−9 59.66 256 1.161 · 10−14 64.68

Steps 1–4 are simple geometric tasks that can be solved usingvarious algorithms, which we do not discuss in the
present paper. Step 5 is realized using the interpolantp[1,0,0,1](t) thoroughly discussed above.

Example 3. In this example we apply theC2 MPH approximation algorithm to the medial axis transform approx-
imation of a planar region bounded by two curve segments, seeFig. 4. The segments of the region boundary are
polynomial quarticsq(t), r(t) given by their Bézier control points

Q0 = (−1.7, 0.8)⊤, Q1 = (−0.5, 0.9)⊤, Q2 = (0, 0)⊤, Q3 = (0.5,−0.5)⊤, Q4 = (1, 0.5)⊤,
R0 = (−2, 0.4)⊤, R1 = (−1.7,−1.1)⊤, R2 = (−0.8,−1)⊤, R3 = (0.5,−0.5)⊤, R4 = (1.4, 0.2)⊤.

(52)

Following the steps of the algorithm, we first sample points from q(t). Then we compute the corresponding
points onr(t) andMAT using a suitable scheme for finding maximal inscribed discs.Next, we parameterize (using
Minkowski arc-length) the Minkowski circles given by the intersection of the light-cones described in Theorem 3.
These provide us withC2 data which we in turn use for constructing the MPH spline approximation of the original
domain’sMAT. Finally, using the envelope formula (11) we compute rational PH spline approximations of the
domain boundary.

The error obtained for the approximation ofq(t) is summarized in Table 2. Same order of error improvement
was achieved forr(t), too. Note that the error ratios tend to 64, suggesting that the proposed method possesses
approximation order 6 not only for the approximation ofMAT, but for the domain boundary as well. A detailed
analysis of the exact approximation order is a matter of future research.

6. Conclusion

We have fully solved the problem ofC2 Hermite interpolation by MPH nonics in the spaceR
2,1. The use of a

Clifford algebra formalism revealed that there is a structural analogy of this problem to the Euclidean case, technical
details remaining different due to the particularities of the Minkowski metric. We have identified one interpolant
particularly well suited for applications and used it for approximation of individual branches ofMAT. In the future
we plan to include this approach into an algorithm for approximation of the wholeMAT of closed domains and treat
stability and topological questions.
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Figure 4: Three steps of subdivision applied toMAT approximation. Associated domain boundary approximations are depicted in
red. TheMAT discs at sampled points are shown as well.
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[17] Kosinka, J. and Jüttler, B.,G1 Hermite Interpolation by Minkowski Pythagorean HodographCubics, Comp. Aided Geom. Design, 23 (2006),

401–418.
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[23] Šı́r, Z. and Jüttler, B.,C2 Hermite interpolation by spatial Pythagorean hodograph curves, Math. Comp., 76 (2007), 1373–1391.

14


