Stretch-minimising Stream Surfaces

Michael Bartoň, Jiří Kosinka, Victor M. Calo

1Numerical Porous Media Center, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
2Computer Laboratory, University of Cambridge, United Kingdom

Abstract: We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. However, the divergence-free constraint gives rise to these ‘stretch-free’ curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object.

Keywords: Stream surface, divergence-free vector field, arc-length preservation, flow visualisation.

1 Introduction

We investigate a special class of stream surfaces generated by seed curves that minimise a certain arc-length energy. With flow simulations of viscous fluids in mind, consider a seed curve as a sequence of infinitely many liquid drops. We seek to answer the following question: Given a time-independent vector field in 3D, is there a curve that propagates in time without changing the distance between any two of its neighbouring drops? In other words, does a curve that moves in the vector field without shrinking or stretching any of its arcs exist?

It is well known Davis (1967) that divergence-free vector fields are volume preserving, i.e., the volume of any 3D object remains constant when propagated in time. In general, this is not true for lower-dimensional objects. Thus, a natural question arises: Are there lower-dimensional objects (surfaces, curves) that propagate in time in the same manner, i.e., preserving their lower-dimensional measures (area, length)? Or, stated differently, is there a region where the divergence-free vector field acts on an object more than in the volume preserving manner, namely by preserving its 1D or 2D measure? This paper investigates this question in the curve case.

Our motivation is straightforward: if a sufficiently elastic univariate object (an elastic rod or drops of another fluid) is put into the flow along a special curve, the deformation that acts on it is bending only; it contains no ‘stretching’ forces.

Problem formulation. Given a steady (time independent), divergence-free vector field \(\mathbf{v} \) in some domain \(\Omega \subset \mathbb{R}^3 \), i.e., \(\text{div} \, \mathbf{v}(\mathbf{p}) = 0, \forall \mathbf{p} \in \Omega \), find a stream surface such that the seed curve that defines it propagates in time along the surface so that its arc-length changes as little as possible.

We combine theoretical investigations and a practical algorithm for finding such stream surfaces. The main steps and contributions of our method are:

- We theoretically investigate families of seed curves based on certain stretch-minimising energies (Section 3).
- These candidate seed curves are used to generate initial stream surfaces (Section 4.1).
- The initial stream surfaces are globally optimised and ranked according to their stretch energies (Section 4.2).

Our implementation of the method is presented in Section 5. We have validated our theoretical results on several benchmark datasets and demonstrated the applicability of our method on numerous examples (Section 6 and the accompanying video). Possible extensions of our method are discussed in Section 7 and the paper is concluded in Section 8.

2 Related work

Stream surfaces, used as a tool for visualising characteristic features of vector fields, have been extensively studied in the visualisation literature; see Bauer and Peikert (2002); Martinez Esturo et al. (2013); Edmunds et al. (2012b); Schulze et al. (2014); Edmunds et al. (2012c), the survey paper McLoughlin et al. (2010) and the references cited therein. Classical methods Hultquist (1992) are usually based on trial-and-error approaches: the user inserts seed curves (typically straight lines), stream surfaces are computed, and, if they do not capture desired features well, the initial seed curves are modified, and the whole process is repeated. Since visualising vector fields by stream surfaces (compared to using streamlines) has become more popular McLoughlin et al. (2010), research into automatic stream surface seeding has recently become highly active Edmunds et al. (2012a, 2011). Our method fits in this modern family of automatic stream surface generating algorithms.

Divergence-free vector fields are used in many areas and applications such as incompressible fluid simulations Lentine et al. (2010),
3 Stretch-energy minimising curves

Let \(\mathbf{v}(p) \) be a steady differentiable vector field defined over a domain \(\Omega \subset \mathbb{R}^3 \) and assume that \(\mathbf{v} \) is divergence free, i.e., \(\text{div} \mathbf{v}(p) = \langle \nabla, \mathbf{v}(p) \rangle = 0, \forall p \in \Omega \). Let \(\mathbf{J} \) be the Jacobian matrix of \(\mathbf{v}(p) \), i.e., \(\mathbf{J}_{ij} = \frac{\partial v_i}{\partial p_j} \) with \(p = (p_1, p_2, p_3) \).

Consider a regular curve \(\gamma(s) \) parametrised by arc-length, \(s \in [s_0, s_1] \). We regard \(\gamma \) as a seed curve that gives rise to a stream surface \(\mathbf{S}(s, t) \) with normal \(\mathbf{n}(s, t) \), i.e., \(\langle \mathbf{v}(\mathbf{S}(s, t)), \mathbf{n}(s, t) \rangle = 0 \) for all \((s, t) \) in the surface domain \([s_0, s_1] \times [t_0, t_1] \) with \(0 \) in the interval \([t_0, t_1] \), and \(\mathbf{S}(s, 0) = \gamma(s) \); see Fig. 1. The partial derivatives of \(\mathbf{S} \) will be denoted \(\mathbf{S}_s, \mathbf{S}_{st} \), etc.

In general, curves which maintain their arc-length constant (i.e., equal to \(s_1 - s_0 \) independently of \(t \)) when deformed by \(\mathbf{v} \) may not exist. However, as we show below, it is possible to find curves which approximate this property to first or even second order. To make this concept precise, we formulate the following

Lemma 3.1. The Taylor expansion of the arc-length of \(\gamma \) with respect to \(\mathbf{v} \) at \(t=0 \) is given by

\[
\int_{s_0}^{s_1} ||\mathbf{S}_s(s, t)|| \, ds = (s_1 - s_0) + c_1 t + c_2 t^2 + \mathcal{O}(t^3)
\]

with

\[
c_1 = \int_{s_0}^{s_1} \langle \mathbf{S}_s, \mathbf{S}_{st} \rangle \, ds|_{t=0},
\]

\[
c_2 = \int_{s_0}^{s_1} \langle \mathbf{S}_{st}, \mathbf{S}_{stt} \rangle + \langle \mathbf{S}_s, \mathbf{S}_{sst} \rangle - \langle \mathbf{S}_s, \mathbf{S}_{st} \rangle^2 \, ds|_{t=0}.
\]

A straightforward proof can be found in Appendix A.

Our aim is to identify curve(s) \(\gamma \) in \(\Omega \) for which \(c_1 \) (and also \(c_2 \), if possible) vanishes. These will subsequently be used to identify stretch-minimising stream surfaces in an optimisation procedure.

3.1 First-order stretch energy

We have \(\mathbf{S}_t = \mathbf{v} \) and we denote \(\mathbf{u} := \dot{\gamma}(s) = \mathbf{S}_s(s, 0) \). Then

\[
\langle \mathbf{S}_s, \mathbf{S}_{st} \rangle|_{t=0} = \langle \mathbf{u}, \mathbf{u} \rangle|_{t=0} = 1.
\]

Differentiation with respect to \(t \) and requiring that the arc-length of \(\gamma \) stays constant up to first order yields (see Fig. 1)

\[
\langle \mathbf{S}_s, \mathbf{S}_{st} \rangle|_{t=0} = \mathbf{u}^\top \mathbf{J} \mathbf{u} = 0.
\]

where \(\mathbf{u}^\top \) denotes the transpose of \(\mathbf{u} \). This observation leads us to

Definition 3.1. The first-order stretch energy of \(\gamma \) is given by

\[
E_1(\gamma) = \frac{1}{s_1 - s_0} \int_{s_0}^{s_1} \langle \mathbf{S}_s, \mathbf{S}_{st} \rangle^2 \, ds|_{t=0}.
\]

A curve \(\gamma \) on which \(E_1(\gamma) \) vanishes will be called a first-order curve, and their collection denoted

\[
\Gamma_1 = \{ \gamma | \gamma \subset \Omega, E_1(\gamma) = 0 \}.
\]

Additionally, a vector \(\mathbf{d} \) such that \(\mathbf{d} \mathbf{J} \mathbf{d}^\top = 0 \), i.e., a self-conjugate vector associated with \(\mathbf{J} \), will be called a first-order vector.

Since \(E_1(\gamma) = 0 \) implies \(c_1 = 0 \), the first order energy is well defined. In other words, \(E_1 \) measures the change of the magnitude of \(\dot{\gamma} \) along \(\gamma \) for an infinitesimal increment of \(t \). \(E_1(\gamma) = 0 \) implies the deformation given by \(\mathbf{v} \) that acts on \(\gamma \) preserves, up to first order, the magnitude of its tangent vector \(\dot{\gamma} \) and hence is locally arc-length preserving.

In order to find seed curves that belong to \(\Gamma_1 \) with respect to \(\mathbf{v} \), we seek first-order vectors. To this end, we denote *stretch rate* \(\mathbf{J}^+ := (\mathbf{J} + \mathbf{J}^\top)/2 \) and *vorticity* \(\mathbf{J}^- := (\mathbf{J} - \mathbf{J}^\top)/2 \) as the symmetric and antisymmetric parts of the Jacobian matrix of \(\mathbf{v} \). A vector field \(\mathbf{v} \) for which \(\mathbf{J}^+ \) is regular will be called non-degenerate.
Figure 3: Initialisation of first-order curves. (a) A divergence-free vector field curves in a neighbourhood of \(p \) quadratic cone with apex at \(p \). Let \(\gamma_1 \) and \(\gamma_2 \) be non-degenerate in a neighbourhood of \(p \). Then all first-order vectors \(\mathbf{d} \) form a quadratic cone with apex at \(p \).

Proof. Since \(u^T \mathbf{J} u = 0 \) for any \(u \), we obtain the condition \(\mathbf{d}^T \mathbf{J}^T \mathbf{d} = 0 \). By definition, \(\text{div} \mathbf{v}(\mathbf{p}) = 0 \) is equivalent to \(\text{tr} \mathbf{J} = 0 \) at \(\mathbf{p} \) and thus \(\text{tr} \mathbf{J}^+ = 0 \). From the spectral theorem it follows that \(\mathbf{J}^+ \) has three real eigenvalues such that \(\lambda_1 + \lambda_2 + \lambda_3 = 0 \). This in turn implies that the signature of \(\mathbf{J}^+ \) is either \((+, +, -)\) or \((+, -, -)\) by non-degeneracy of \(\mathbf{v} \). Consequently, all solutions of \(\mathbf{d}^T \mathbf{J}^T = 0 \) form a quadratic cone.

Remark 1. In the special case (of measure zero) when \(\mathbf{J}^+ \) is singular, the space of first-order vectors \(\mathbf{d} \) at \(\mathbf{p} \) that solve \(\mathbf{d}^T \mathbf{J}^T = 0 \) is either given by two planes intersecting in a line incident with \(\mathbf{p} \) (the signature of \(\mathbf{J}^+ \) is \((+,-,0))\) or any vector is a first-order vector (the signature of \(\mathbf{J}^+ \) is \((0,0,0))\). Consequently, first-order vectors exist at any point \(\mathbf{p} \in \Omega \) for divergence-free vector fields.

From Lemma 3.2 and Remark 1 it follows that there exist infinitely many first-order curves \(\gamma \) passing through every point in \(\Omega \). They can be obtained by integrating first-order vectors \(\mathbf{d} \), which, however, form a multi-valued field. Thus, the set \(\Gamma_1 \) of these curves is too large to be practical. We therefore explore three conditions that select special classes of first-order curves from \(\Gamma_1 \):

1. minimise a certain second-order stretch energy;
2. restrict \(\Gamma_1 \) to curves on the boundary only, i.e., \(\gamma \subset \partial \Omega \);
3. constrain the variation of \(\mathbf{d} = \dot{\gamma} \) along \(\gamma \).

We now address each of these strategies in detail.

3.2 Second-order stretch energy

Similarly to the first-order stretch energy \(E_1 \), we now define its second-order counterpart. Differentiating (4) with respect to \(t \) gives

\[
\langle \mathbf{S}_{st}, \mathbf{S}_{st} \rangle|_{t=0} + \langle \mathbf{S}_s, \mathbf{S}_{stt} \rangle|_{t=0} = \mathbf{K} \mathbf{u}^T \mathbf{u} \equiv 0, \tag{6}
\]

where \(\mathbf{K} = \mathbf{J} \mathbf{J}^T + \mathbf{J}^2 \). This leads us to

Definition 3.2. The second-order stretch energy of \(\gamma \) is given by

\[
E_2(\gamma) = \frac{1}{s_1 - s_0} \int_{s_0}^{s_1} (\langle \mathbf{S}_{st}, \mathbf{S}_{st} \rangle + \langle \mathbf{S}_{sst}, \mathbf{S}_s \rangle)^2 \, ds|_{t=0}. \tag{7}
\]

Figure 4: Second-order curves. Left: At an interior point (red) of \(\Omega \), second-order vectors, generically and if they exist, correspond to the intersection of two quadratic cones. Right: Integrating second-order vectors gives \(\gamma \), an integral curve whose tangent vectors \(\dot{\gamma} \) solve (4) and (6). The stream surface emanating from \(\gamma \) for the same vector field as in Fig. 3 is shown.

A curve \(\gamma \) on which both \(E_1 \) and \(E_2 \) vanish will be called a second-order curve, and their collection denoted

\[
\Gamma_2 = \{ \gamma \mid \gamma \subset \Omega, E_1(\gamma) = E_2(\gamma) = 0 \}.
\]

Additionally, a first-order vector \(\mathbf{d} \) such that \(\mathbf{d} \mathbf{K} \mathbf{d}^T = 0 \) will be called a second-order vector.

Since \(E_1(\gamma) = E_2(\gamma) = 0 \) implies that \(c_1 = c_2 = 0 \) in Lemma 3.1, the second-order energy is well defined: second-order curves are characterised by the property that their deformation given by \(\mathbf{v} \) that acts on \(\gamma \) preserves the magnitude of the tangent vector up to second order at \(t = 0 \); cf. Lemma 3.1.

Whereas the existence of first-order vectors \(\mathbf{d} \) is guaranteed at every \(\mathbf{p} \) (see Fig. 2 and Lemma 3.2), a non-zero solution of (6) need not exist. The generic cases with respect to \(\mathbf{d} \mathbf{K} \mathbf{d}^T = 0 \) are categorised by the signature of \(\mathbf{K}^+ \): \((+, +, +)\) or \((-,-,-)\) yield no non-zero solution; \((+, +, -)\) or \((+, -, -)\) give, as in the first-order case, a quadratic cone. In the former case, there are no second-order vectors at \(\mathbf{p} \) and alternatives must be sought; see Sections 3.3 and 3.4. The latter case leads to the intersection of two quadratic cones. The situation is shown in Fig. 4, left. Up to four second-order vectors can be found by solving a quartic equation or, more geometrically, by reducing the problem via a cubic equation to the intersection of a quadratic cone with two planes; see Appendix B. Non-generic cases are, for the sake of brevity, not considered.
stantaneously moved by the vector field \(\dot{v} \) The first-order stretch energy \(\frac{\partial}{\partial t} E \) exist at most two first-order vectors \(d_1 \) and \(d_2 \) on the boundary \(\partial \Omega \). visualisation: boundary seed curves capture the behaviour of a given \(\Omega \). Our second strategy is to restrict the set \(\Gamma \) of \(\partial \Omega \) to curves. This is a reasonable restriction from the point of view of \(\partial \Omega \). Therefore, testing whether a real non-zero solution of the system given by (4) and (6) exists is a cheap closed-form operation. This allows us to quickly explore \(\Omega \) for regions where second-order vectors exist and, in the positive case, to integrate them to obtain curves in \(\Gamma \). An example of a second-order curve is shown in Fig. 4, right. Such curves then form input for our optimisation algorithm (Section 4.2).

If no second-order curves exist in \(\Omega \) or if the existing ones are not satisfactory for visualisation purposes, we employ our second strategy: boundary curves.

3.3 First-order boundary curves

Our second strategy is to restrict the set \(\Gamma_1 \) to curves on the boundary of \(\Omega \). This is a reasonable restriction from the point of view of visualisation: boundary seed curves capture the behaviour of a given flow as it enters/exits the domain; see Fig. 3. When the point \(p \) lies on the boundary \(\partial \Omega \) of \(\Omega \) and \(v \) is non-degenerate, we see that there exist at most two first-order vectors \(d_1 \) and \(d_2 \) in the tangent space of \(\partial \Omega \) at \(p \); see Fig. 2.

First-order boundary curves form a subset of \(\Gamma_1 \), which we denote

\[
\Gamma_1^0 = \{ \gamma | \gamma \subset \partial \Omega, E_1(\gamma) = 0 \}.
\] (8)

The first-order stretch energy \(E_1 \) was defined to measure the change of the magnitude of the unit tangent vector \(\dot{\gamma} \) of \(\gamma \), when being instantaneously moved by the vector field \(v \). Every curve in \(\Gamma_1^0 \) is a first-order curve, but is not, in general, a second-order curve. Nevertheless, \(E_2 \) can be used as a ranking criterion to determine good candidate seed curves among those in \(\Gamma_1^0 \); see Fig. 5.

Alternative ranking energies. In the case when the stretch energy is not the main objective, one may consider alternative components of a general ranking energy \(E \):

\[
E(\gamma) = w_1 E_{in} + w_2 E_{ortho} + w_3 E_{para} + w_4 E_{rigid} + E_2,
\] (9)

where

\[
\begin{align*}
E_{in}(\gamma) &= \frac{1}{s_1 - s_0} \int_{s_0}^{s_1} (1 - \langle S_t, m \rangle)^2 ds |_{t=0}, \\
E_{ortho}(\gamma) &= \frac{1}{s_1 - s_0} \int_{s_0}^{s_1} (S_t, S_s)^2 ds |_{t=0}, \\
E_{para}(\gamma) &= \frac{1}{s_1 - s_0} \int_{s_0}^{s_1} (S_{st}, S_{st})^2 ds |_{t=0}, \\
E_{rigid}(\gamma) &= \frac{1}{s_1 - s_0} \int_{s_0}^{s_1} \langle c + c \times \gamma(s), S_t \rangle^2 ds |_{t=0}.
\end{align*}
\] (10)

The particular components of \(E \) have the following meaning: \(E_{in} \) chooses curves that start moving to the interior part of \(\Omega \); \(m \) being the inward normal of \(\partial \Omega \); \(E_{ortho} \) selects curves that start moving orthogonally to the flow; i.e., the tangent vectors \(S_s = \dot{\gamma} \) are (in the least square sense) orthogonal as possible to the velocity vectors \(S_t = v \); similarly \(E_{para} \) finds curves that propagate in a parallel fashion; and \(E_{rigid} \) favours curves that move as rigidly as possible, \(\langle c, c \rangle \) being the instantaneous motion; see Pottmann and Wallner (2001); Bartoň et al. (2013).
4.1 Stretch minimising stream surfaces

Second-order curves, or first-order curves if the former ones do not exist, are good initial guesses for seed curves, called candidate seed curves, but only locally. Our goal is to find stream surfaces for which their generating seed curves propagate globally in a certain stretch-minimising manner. This is formalised in

Definition 4.1. The stretch energy of a stream surface S is given by

$$E_S = \frac{1}{\text{area}(S)} \int_{t_0}^{t_1} E_1(S(s, t)) \, dt.$$

(11)

A stream surface that minimises this energy will be called stretch minimising.

In other words, E_S measures the stretch given by the deformation of the seed curve of S through the field by accumulating the stretch energies of all its timelines. This energy is, as in the case with seed curves, used as a ranking criterion for stream surfaces.

4.2 Optimisation of stream surfaces

Candidate seed curves generate stream surfaces with relatively low stretch energy. However, their effect is still only local, whilst we are interested in minimising the stretch energy globally. This is achieved by employing an optimisation procedure; see Fig. 7 for a schematic overview.

Candidate curves are used for initialising an optimisation cycle, which works as follows; see Fig. 8. A candidate seed curve γ_0 at $t = 0$ is integrated to form its stream surface S_0, which is subsequently optimised seeking to minimise its stretch energy (11). The optimised surface S_0^{opt}, however, is not, in general, a stream surface any more. Therefore, each of its timelines is back-integrated to the initial time $t = 0$ to form a set of space curves S_1. These curves are used to compute an updated γ_1 by least square fitting, which is forward integrated to build S_1 and so on. The algorithm continues updating $S_i \leftarrow S_{i+1}$ until the surface stretch energy E_S stops being improved, or when the maximum number of iterations, set to ten if not stated otherwise, is reached. The particular steps of the algorithm are explained, including implementation details, in the next section.
Given a stream surface S, we want to reduce its stretch energy (11). We discretise S by sampling m points in the s-direction (seed curve) and n points in the t-direction (time), resulting in a quad mesh Q with $m \times n$ vertices $q_{i,j}$. Denoting the vertices of the optimised surface by $q_{i,j}^{opt}$ and setting $e_{i,j} := q_{i+1,j+1} - q_{i+1,j} + q_{i,j} - q_{i,j+1}$, the desired improvement is formulated as a non-linear least squares optimisation with the objective function

$$F(Q) = F_{\text{stretch}}(Q) + \mu_1 F_{\text{fair}}(Q) + \mu_2 F_{\text{prox}}(Q)$$

(12)

where F_{stretch} reflects the stretch minimising condition (cf. (11)), F_{fair} is a fairness term, and F_{prox} is a proximity term, a regulariser that forces the vertices of the optimised mesh not to deviate much from the input. The optimisation problem is solved using the Gauss-Newton method for all the examples in the paper and the accompanying video. Experimentally, the weights were set to $\mu_1 = 0.1$, $\mu_2 = 0.02$. This results in an optimised surface S^{opt}.

It might seem that F_{fair} and F_{prox} could lead to surfaces with substantial strain. We emphasise that F_{fair} and F_{prox} are regularisers and their presence is important as, e.g., $\mu_2 = 0$ allows the vertices of the mesh to move freely, resulting in a significant deviation from the initial position. Consider a single timeline discretised by m vertices, yielding $3m$ unknowns for the optimisation. The strain optimisation desires to distribute these vertices in 3D such that every two neighbours have the prescribed distance (the distance of uniformly sampled points on the initial seed curve), giving $m-1$ constraints. As there are many degrees of freedom left, one can seek preferable directions (vector fields associated to the vertices). Thus, $F_{\text{fair}} = 0$ and $F_{\text{prox}} = 0$ are not in contradiction with minimising F_{fair}, they rather select preferable directions from the large family of admissible F_{stretch}-reducing directions.
Improving seed curves Having obtained the optimised surface \(S^{opt} \), its timelines \(S^{opt}(s, t_j) = \gamma_j, j = 1, \ldots, n \) are back-integrated to the initial time instant \(t = 0 \), giving the set \(S_1 \) of space curves \(\gamma_j^{t=0} \); see Fig. 8(c). If \(S^{opt} \) was an exact stream surface, all \(\gamma_j^{t=0} \) would coincide. We improve the seed curve \(\gamma \) of \(S \) by replacing it by the least squares approximation Farin et al. (2002) of \(\gamma_j^{t=0}, j = 1, \ldots, n \). Note that we have the information about the correspondence in the \(s \)-direction, i.e., for a fixed \(i \), all the points \(q_{ij}, j = 1, \ldots, n \), need to correspond to a single point \(\gamma(s_i) \). This fact simplifies the problem to point-wise averaging. Having numerically back-integrated \(S^{opt} \) in a point-wise fashion resulting in \(\gamma_j^{t=0} \) the seed curve update is achieved by setting \(\gamma(s_i) = \frac{1}{n} \sum_j q_{ij}^{t=0} \). The algorithm repeatedly updates the seed curve and if the surface energy \(F(Q) \) is no longer being improved, the surface optimisation is terminated.

Curve and surface trimming So far, we have not discussed how to set the intervals \([s_0, s_1]\) and \([t_0, t_1]\). In practise, both of these have to be finite. In the \(s \) (seed curve) direction, the tangent vector field is integrated while admissible directions exist, or until the boundary is reached. In the \(t \) (time) direction, the integration is terminated if the timeline reaches the boundary, or, as shown in Fig. 9, when the maximum number of timesteps is reached.

6 Numerical results

To validate our theoretical results, the algorithm was tested on several benchmark datasets. The example in Fig. 11 is a direct numerical Navier-Stokes simulation by Camarri et al. (2005) that is publicly available International CFD Database. We used a uniformly resampled version, which has been provided by Tino Weinkauf and used in von Funck et al. (2008). The example is based on the last time instant of the unsteady flow.

Fig. 9 shows a time instant of Rayleigh-Bénard heat convection, where the fluid is heated at the bottom and cooled at the top of the boundary, resulting in a circularatory motion. This vector field is not incompressible. Nevertheless, as seen in Fig. 9(a), the second-order curves still exist in this field. Recall that the guarantee of existence of first-order curves applies to divergence-free vector fields only (Remark 1), while second-order curves are not guaranteed to exist.

The simulation of a flow coming from a Francis turbine is shown in Fig. 10. The original vector field is unsteady, so we again used only one time instant. Note that the best stretch-minimising stream surfaces are generated by seed curves that move in only one part of the turbine’s body, whilst the low ranked surfaces are those where the middle part of the body forces their timelines to split apart; see Fig. 10(g). This observation suggests that \(E_S \) could be used as an indicator of this type of splitting in a flow. However, we emphasise that large values of \(E_S \) do not guarantee surface splitting, they only indicate high stretch.

Fig. 12 shows a comparison between first- and the second-order curves when used as seed curves in the vector field from Fig. 9. As expected, second-order curves offer more favourable results and give rise to initial stream surfaces with nearly vanishing stretch energy \(E_S \).

Statistics concerning the number of sampled points and seed curves, resulting energies \(E_S \), and computation times are listed in Table 1 and the default parameters of the algorithm are shown in Table 2. The timings differ depending on concrete parameter settings, ranging from a few seconds to several minutes. The most expensive part is the exploration of families of first- and/or second-order curves, with computing the energy \(E_S \) in particular, which requires integration of all the candidate seed curves. The reported timings were obtained on a machine running Windows with a double-core CPU (2.67 GHz) and 24GB RAM. Currently, only a single-core CPU implementation is available. However, the algorithm is well suited for parallelisation (e.g., curve/surface energies can be computed independently) on the CPU or even GPU.

7 Discussion, limitations and future work

We now discuss extensions, limitations and avenues for future research.

Rigid body flow In our implementation, we have considered only generic cases, i.e., when \(\det(J) \neq 0 \) and \(\det(K) \neq 0 \). If a singular case was detected while integrating a seed curve, the integration was terminated. In the special case of rigid body flows, every curve is
Figure 10: Turbine data of Bauer and Peikert (2002). (a) One time instant of the unsteady vector flow generated by the Francis turbine is shown. (b) A total of 317 uniformly sampled points in the domain gave rise to 480 second-order seed curves. The vector field is forward and backward integrated and the curves are ranked and colour-coded according to the stretch energy E_S of the associated stream surfaces; see (11). (c) Regions with curves with low values of E_S are further explored with higher sampling density. (d) The best-ranked initial stream surface and (e) its optimised counterpart; $E_S = 6.32 \cdot 10^{-6}$. (f) The second best-ranked stream surface with $E_S = 9.28 \cdot 10^{-6}$. (g) An example of a stream surface with a high stretch energy that is split into two parts by the flow. Note that the length of the timelines grows significantly, resulting in exceeding $E_S = 9.28 \cdot 10^2$.

Figure 11: The ‘square cylinder’ of Camarri et al. (2005). (a) Incompressible flow moving from left to right in a box, encountering a rigid obstacle (yellow box). The best stretch-minimising surfaces for seed curves of different lengths are shown. The length is demanded to be at least 5% (b) and 10% (c) of the domain’s diameter.

stretch free and the problem becomes ill-posed. On the other hand, the singular cases can be easily detected.

Table 1: A summary of our results. In the ‘Seed curves’ columns, $\#p$ is the number of sampled points, $\#\gamma$ is the number of (first- or second-order) seed curves emanating from them, and E_{Si}^{ini} is the stretch energy (11) of the best candidate before optimisation. In the ‘Optimisation’ columns, $\#S$ is the number of surfaces processed and E_{Sopt} is the energy of the best optimised stream surface. The last column lists total computation times in seconds.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>$#p$</th>
<th>$#\gamma$</th>
<th>E_{Si}^{ini}</th>
<th>$#S$</th>
<th>E_{Sopt}</th>
<th>Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(a–c)</td>
<td>30</td>
<td>41</td>
<td>$6.04e^{-2}$</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>240</td>
<td>492</td>
<td>$3.17e^{-4}$</td>
<td>54</td>
<td>$6.32e^{-6}$</td>
<td>385</td>
</tr>
<tr>
<td>9</td>
<td>216</td>
<td>434</td>
<td>$1.24e^{-6}$</td>
<td>76</td>
<td>$2.44e^{-7}$</td>
<td>513</td>
</tr>
<tr>
<td>11(b)</td>
<td>216</td>
<td>239</td>
<td>$6.24e^{-4}$</td>
<td>32</td>
<td>$8.17e^{-6}$</td>
<td>147</td>
</tr>
<tr>
<td>11(c)</td>
<td>216</td>
<td>184</td>
<td>$9.51e^{-4}$</td>
<td>21</td>
<td>$1.04e^{-5}$</td>
<td>135</td>
</tr>
</tbody>
</table>

Unstructured grids All the vector fields tested in this paper were known at vertices of very fine structured grids (or analytically). This brings certain simplifications, e.g. when estimating the vector field outside the grid-points. Our implementation, if needed, could be easily extended to accommodate unstructured volumetric meshes as well.

Fields with non-vanishing divergence We have focused on divergence-free vector fields since this guarantees the existence of stretch minimising curves (of first order). Nevertheless, as shown in Fig. 9, such seed curves may exist even in general vector fields and explorations in this direction seem promising.

Unsteady vector flows For the sake of simplicity, only steady vector fields were considered. The generalisation to the unsteady case is
\[E_{\text{surf}} = 3.78 \times 10^{-4} \]

(a) The initial first-order curve is constrained to lie on \(\partial \Omega \) (top), whereas the second-order curve \(\gamma \) lies inside \(\Omega \) (bottom). (b–e) Visualisation of the stretch energy \(E_{\text{S}} \) along the stream surfaces is realised by spheres at uniformly sampled points along the seed curve. The spheres’ radii reflect the change of the magnitude of the tangent vectors of the time curves. The initial chain of drops consists of spheres of the same radii (green), whilst large spheres indicate shrinking (red) of the curve and smaller ones correspond to its stretching (blue). The total volume of the chain of drops (spheres) remains constant. Observe that second-order curves serve as perfect initial guesses for optimisation. All the spheres are of almost equal radii, which corresponds to \(E_{\text{S}} \) being close to zero, whilst the radius varies along the first order curve as is shown in the close-up of top (e). See also the accompanying video.

Table 2: Default parameters and thresholds of Algorithm 7 for a domain of unit diameter. In the ‘Curve tracing’ columns, \(\Delta s \) is the tracing stepsize, \(l_{\text{min}} \) is the minimum length of a candidate curve, and \#\(n_{\text{max}} \) is the maximum number of tracing steps, both for \(t \) and \(s \) directions. In the ‘Adaptive sampling’ columns, \#\(S \) is the number of subdivisions, \(\delta \) is the percentage of the new subdomain relative to the old one, and \(b \) is the percentage of the best candidate curves selected for the next iteration. In the last set of columns, the optimisation parameters include \(\mu_1, \mu_2 \) (see Eq. (12)), and \#\(m_{\text{max}} \), which is the maximum number of iterations.

<table>
<thead>
<tr>
<th>Curve tracing</th>
<th>Adaptive sampling</th>
<th>Optimisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta s)</td>
<td>(l_{\text{min}})</td>
<td>#(n_{\text{max}})</td>
</tr>
<tr>
<td>0.01</td>
<td>0.1</td>
<td>500</td>
</tr>
</tbody>
</table>
Therefore, in the case of Martinez Esturo et al. (2013), a similar initialisation is not provided.

8 Conclusion

Combining theoretical analysis and numerical techniques, we have attacked the difficult problem (with no known close-form solution) of finding curves that propagate in an arc-length preserving manner in divergence-free vector fields and thus give rise to stretch-minimising stream surfaces. Our method successfully solves this problem.

Our contributions are both theoretical and practical. On the one hand, we have proposed a theory of stretch-minimising curves and surfaces in divergence-free vector fields and have shown that stretch-minimising curves always exist. On the other hand, we have illustrated by several examples and the accompanying video that our theoretical results lead to immediate applications such as vector field exploration and visualisation.

Acknowledgements We would like to thank Maik Schulze for providing the Turbine Bauer and Peikert (2002) and the ‘Square cylinder’ von Funck et al. (2008) datasets, and Holger Theisel for his suggestions and comments. The second author was partially supported by EPSRC through Grant EP/H030115/1. Partial support for this research was provided by Numerical Porous Media Center.

Appendix A

We now prove Lemma 3.1. By definition, \(c_1 = C_1(0) \), where
\[
C_1(t) = \frac{1}{s_1} \int_{s_0}^{s_1} \|S_s(s, t)\| ds.
\]
We have that
\[
C_1(t) = \int_{s_0}^{s_1} \frac{1}{s_1} \|S_s(s, t)\| ds = \int_{s_0}^{s_1} \frac{\partial}{\partial t} \sqrt{\langle S_s, S_s \rangle} ds = \int_{s_0}^{s_1} \frac{(s, s_s)}{\sqrt{\langle S_s, S_s \rangle}} ds.
\]
Consequently, since \(\sqrt{\langle S_s, S_s \rangle} \mid_{t=0} = 1 \), we can conclude that \(c_1 = \int_{s_0}^{s_1} (s, s_s) ds \mid_{t=0} \). Proceeding similarly in the case of \(c_2 \), we have
\[
C_2(t) = \frac{1}{s_1} \int_{s_0}^{s_1} \|S_s(s, t)\| ds = \int_{s_0}^{s_1} \frac{\partial^2}{\partial t^2} \sqrt{\langle S_s, S_s \rangle} ds = \int_{s_0}^{s_1} \frac{(s, s_s) + (s, s_s) + (s, s_s)}{\sqrt{\langle S_s, S_s \rangle}} ds.
\]
Therefore,
\[
c_2 = C_2(0) = \int_{s_0}^{s_1} (s, s_s) + (s, s_s) - \langle s, s_s \rangle^2 ds \mid_{t=0}
\]
as claimed. \(\square \)

Appendix B

We now present a geometric approach to the problem of computing the intersection vectors of two quadratic cones given by \(dJd^\top = 0 \) and \(dKd^\top = 0 \) with apexes at \(p \). The two cones belong to a pencil of cones given by \(d(J + \lambda K)d^\top = 0 \) parametrised by \(\lambda \). We identify the singular quadric in this pencil by setting \(det(J + \lambda K) = 0 \), which, generically, leads to a cubic equation in \(\lambda \). Thus, there exists at least one real \(\lambda_0 \) which determines a singular quadric in the family. If the intersection of the two cones is real and non-trivial (i.e., not p

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure13.png}
\caption{Definition and computation of first-order interior curves. A first-order vector \(d \) at \(t = t_0 \) (yellow) is projected (green) onto the first-order cone at \(t_1 = t_0 + h \).}
\end{figure}

Appendix C

The integration procedure for first-order interior curves is shown in Fig. 13. Denote \(h \) the step-size (set to \(\text{diam}(\Omega)/10 \) by default). Given a point \(p(t_0) \in \Omega \) and an initial first-order vector \(d(t_0) \), the first-order vector at \(t_1 = t_0 + h \) is obtained by projecting \(d(t_0) \) translates to \(p(t_1) \) onto the quadratic cone given by \(dJ(t_1)d^\top = 0 \). The point \(p(t_1) \) is again obtained by the classical fourth order Runge-Kutta method.

References

NaSt3DP – A Parallel 3D Flow Solver.

International CFD Database. International CFD Database.

