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Abstract: Sparse features have been successfully used in shape retrieval, by encoding feature descriptors into global
shape signatures. We investigate how sparse features based on saliency models affect retrieval and provide recommen-
dations on good saliency models for shape retrieval. Our results show that randomly selecting points on the surface
produces better retrieval performance than using any of the evaluated salient keypoint detection, including ground-truth.
We discuss the reasons for and implications of this unexpected result.
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1 Introduction

Large-scale shape retrieval typically consists of three steps:
detection of local features, encoding of these features into a
global descriptor, and comparison of shapes with a distance
metric. This paper evaluates the influence of the first step
on shape retrieval performance.

Shape saliency is a measure of perceived importance of
points on a 3D surface. There is recent interest in shape
analysis for computational models of saliency [2, 3, 6, 7].
However, there is no study on how features detected by
these saliency models perform on shape retrieval. This pa-
per evaluates selected saliency models. For each method,
we compute surface feature points by extracting local max-
ima from a saliency map. The global descriptor of a 3D
shape is then a distribution of quantized salient features.
We investigate how well features based on selected saliency
models perform on shape retrieval benchmarks. Our results
show that randomly selecting points on the surface produces
better retrieval performance than using any of the eval-
uated saliency-based features. This surprising result also
holds for ground-truth salient points obtained in a previous
user study [1] on the SHREC’07 Watertight Models Track
(SHREC07) [8].

We provide a fair comparison of salient features by fix-
ing other variables such as feature descriptors, descrip-
tors distance metrics, and encoding method. We evalu-
ate retrieval performance on three benchmarks: SHREC07
[8], SHREC’15 Non-Rigid Shape Retrieval track [9], and
SHREC’15 Range scan shape retrieval [10]. Figure 1 illus-
trates how saliency, keypoint detection and retrieval perfor-
mance varies by saliency method on a “human” shape.

Our main contribution is the evaluation of six selected
saliency models for shape retrieval.

2 Related Work

This section reviews state-of-the art in saliency detection,
salient keypoint extraction, and local feature encoding for
shape retrieval.

2.1 Saliency models

A wide range of 3D saliency models have been proposed in
recent years, often inspired by analogous techniques in 2D
saliency detection [2, 5, 6]. Several of these models com-
pute a multi-scale representation of a mesh and observe
how a local vertex property such as curvature changes at
different scales [6]. Song et al. [2] propose using spectral
properties of the log-Laplacian spectrum of a mesh at multi-
ple scales. Both approaches require topological information
and thus cannot support other shape representations such
as point clouds. To address saliency detection on large point
sets, Shtrom et al. [3] combine point distinctiveness at two
scales with point association, a function that assigns higher
saliency to regions near foci of attention. Point distinctive-
ness is computed by comparing points using the χ2 distance
between their Fast Point Feature Histograms (FPFH) [11].
Tasse et al. [5] achieve better fine-scale saliency detection
and computation performance by segmenting point clouds
into patches, and computing a patch saliency based on its
descriptor distinctiveness and spatial distribution. FPFH
have been successfully used in several saliency models [3, 5].
Authors et al. [4] show that applying PCA to these de-
scriptors produces saliency maps that compare well with
the state of the art.
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AP = 0.79 AP = 0.90 AP = 0.77 AP = 0.78 AP = 0.73 AP = 0.65
Ground-truth [1] RK (random) MK [2] LK [3] PK [4] CK [5]

Figure 1: Saliency maps and corresponding keypoints per saliency model on a shape in Dataset A (SHREC07). The re-
trieval performance of this shape is measured with Average Precision (AP). Higher AP means better retrieval performance.
AP takes values between 0 and 1.

2.2 Salient keypoint detection

3D feature points can be detected by extracting local max-
ima of a map over a 3D shape [5, 12]. Dutagaci et al. [12]
use this approach to compute interest points based on mesh
saliency [6]. They also propose a benchmark that compares
other feature detection algorithms such as local maxima of
the Heat Kernel Signature (HKS) [13] to ground-truth in-
terest points. Their benchmark shows that HKS-based key-
point detection has a higher false negative error rate and
smaller false positive rate compared to all other tested meth-
ods. Tasse et al. [5] show, on the same benchmark, that
using local maxima of their cluster-based point set saliency
achieves better balance between false positive and false neg-
ative error rates. Chen et al. [1] extract consistent feature
points on meshes in SHREC07, by taking the local maxima
of ground-truth saliency aggregated from multiple partic-
ipants. Based on this data, they propose a probabilistic
model for extracting feature points from any mesh. Salti et
al. [14] move away from saliency-based approach and cast
the keypoint detection as a binary classification problem, to
learn keypoints that are distinctive, according to a specific
descriptor.

2.3 Feature encoding

Encoding of local features is a popular technique borrowed
from image and video retrieval [15]. Local features, sparse
or dense, are extracted from the whole dataset and each fea-
ture is represented by a multi-dimensional descriptor. En-
coding local features of an input shape typically consists of
evaluating the distribution of quantised features to form a
global descriptor. Tabia et al. [16] use Histogram Encoding
[15], based on counting quantized features, to encode their
covariance descriptors. Bronstein et al. [17] use a more de-
scriptive method, Soft Quantisation [18], that consists of
summing softly-quantised features to encode sparse HKS-

based features.

Fisher Vectors retain more information about shape fea-
tures by recording the statistics of differences between local
features and clusters of the descriptor space [19]. Savelonas
et al. [20] present shape retrieval based on Fisher encoding
of novel local descriptors derived from FPFH. We use Fisher
Vectors to encode local features.

After encoding, global descriptors are typically compared
using their normalized scalar product (cosine of angle) [16].

3 Experimental setup

3.1 Datasets

We use three datasets to evaluate retrieval performance,
each targeting a different type of shape retrieval.

Dataset A: SHREC’07 Watertight Models [8] The
dataset consists of 20 classes, each containing 20 different
watertight 3D meshes. Figure 2 illustrates a few models in
the dataset and their classes. It is a generic dataset, due
to the diverse number of classes and the variety of objects
within a class. We use this dataset, instead of others such
as the Princeton Shape Benchmark, because ground-truth
salient points are available for it. Chen et al. [1] present a
user study that asks users to select points, on shapes from
this dataset, that are likely to be selected by other users.
From the collected user input, they identify ground-truth
keypoints. We use these to evaluate shape retrieval based
on human-perceived saliency.

Dataset B: SHREC’15 Non-Rigid Shape Retrie-
val [9] The benchmark objective is checking shape re-
trieval invariance to non-rigid shape transformations. The
dataset contains 1200 watertight triangle meshes, obtained
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Figure 1: The database that has been used, divided into classes.

3 Participants

Each participant was asked to submit up to 3 runs of his/her algorithm, in the form of 400 × 400
dissimilarity matrices; each run could be for example the result of a different setting of parameters
or the use of a different similarity metric. We remind that the entry (i, j) of a dissimilarity matrix
represent the distance between models i and j.

This track saw 5 groups of participants:

1. Ceyhun Burak Akgül, Francis Schmitt, Bülent Sankur and Yücel Yemez, who sent 3 matrices;

2. Mohamed Chaouch and Anne Verroust-Blondet with 2 matrices;

3. Thibault Napoléon, Tomasz Adamek, Francis Schmitt and Noel E. O’Connor with 3 matrices;

4. Petros Daras and Athanasios Mademlis sent 1 matrix;

5. Tony Tung and Francis Schmitt with 3 matrices.

For details on the algorithms and the different runs proposed by the participants, the reader is
referred to their papers, included at the end of this report.

4 Performance measures

As observed in section 2, each query has its own set of 20 relevant items. We evaluated all the methods
using the standard measures briefly described below.
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Figure 2: Dataset A: Examples of watertight models, di-
vided into classes [8].

by deforming 60 models from 50 classes. Examples of non-
rigid models are shown in Figure 3.

Dataset C: SHREC’15 Range Scans Shape Retrieval
[10] The aim of this benchmark is testing shape retrieval
robustness to partial queries. The dataset is divided into
two: target models and query range scans. The target set
contains 1200 complete 3D models from 60 classes. The
query set consists of 180 range images acquired from 3 to 4
range scans of 60 models. Figure 4 shows examples of these
3D scans.

We now discuss other factors studied in our analysis such
as local descriptors and saliency models.

3.2 Local descriptors

Local descriptors help describe the local neighbourhood or
support area N of a point. N (p) is the set of neighbours q of
p with ‖p− q‖ < r, where r is the radius of the neighbour-
hood often referred to as support radius. To support any
surface representation, we focus on point-based descriptors.
Few previous works report their choice of r for such de-
scriptors. Rusu et al. [21] compute FPFH using r = 0.5cm
on point sets with average radius R = 3cm; thus they set
r = R/6. Shtrom et al. [3] use r = R/10 when computing
FPFH for the purpose of detecting high-level saliency. We
also set r = R/10, where R is the underlying shape radius.

We test four local descriptors: Point Feature Histogram
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Abstract
Non-rigid 3D shape retrieval has become a research hotpot in communities of computer graphics, computer vi-
sion, pattern recognition, etc. In this paper, we present the results of the SHREC’15 Track: Non-rigid 3D Shape
Retrieval. The aim of this track is to provide a fair and effective platform to evaluate and compare the perfor-
mance of current non-rigid 3D shape retrieval methods developed by different research groups around the world.
The database utilized in this track consists of 1200 3D watertight triangle meshes which are equally classified into
50 categories. All models in the same category are generated from an original 3D mesh by implementing vari-
ous pose transformations. The retrieval performance of a method is evaluated using 6 commonly-used measures
(i.e., PR-plot, NN, FT, ST, E-measure and DCG.). Totally, there are 37 submissions and 11 groups taking part in
this track. Evaluation results and comparison analyses described in this paper not only show the bright future in
researches of non-rigid 3D shape retrieval but also point out several promising research directions in this topic.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval

1. Introduction

With the rapid development of computer hardware and soft-
ware, 3D models have become widely-used in our daily
lives. Since the number of 3D models is increasing rapid-
ly, the focus of researchers’ interests has been shifted from
“how to design and create 3D models” to “how to quick-
ly and accurately find 3D models we want”. Until now, large
numbers of papers on content-based 3D object retrieval have
been published. In the last few years, the topic of non-rigid
3D shape retrieval has attracted more and more researchers
around the world. Possible reasons are twofold. First, non-
rigid 3D objects are commonly-seen in our surroundings.
For example, the same type of models shown in Figure 1

† http://www.icst.pku.edu.cn/zlian/shrec15-non-rigid/
‡ Track organizers. E-mail: lianzhouhui@pku.edu.cn

Figure 1: Examples of non-rigid 3D models. Note that the
rightmost two models have different topological structures
against other objects in the same class.
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Figure 3: Dataset B: Examples of non-rigid models [9].

Figure 4: Dataset C: Example of range scans in the query
set [10].

(PFH) [11], Fast Point Feature Histogram (FPFH) [11],
Spin Images [22] and SHOT [23]. We use a PCL imple-
mentation [24] of all four descriptors.

PFH generalizes the mean curvature around a point us-
ing a multi-dimensional histogram of angular variations be-
tween all pairs of oriented points in a local neighbourhood
[11]. FPFH is a faster version of PFH that averages his-
tograms of angular variations between a point and its neigh-
bourhood [11]. Spin Images bin 2D projections of nearby
points in a cylindrical coordinate system defined by the ori-
ented point of interest [22]. SHOT uses a set of local his-
tograms over 3D volumes defined by a voxelization of the
support area [23].

Shape retrieval has better performance when PFH is used
as the local descriptor, compared to the alternatives as dis-
cussed in Section 5.1. Thus, we use PFH in experiments
where we need a single robust local descriptor.

3.3 Saliency models

We test shape retrieval based on local features extracted
with keypoint detectors based on six selected saliency mod-
els. Four of these saliency models were discussed in Sec-
tion 2.1, and selected based on availability of code and data.
They are:

1. Spectral mesh saliency (MK) [2]

2. Large point set saliency (LK) [3]
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3. Cluster-based point set saliency (CK) [5]

4. PCA-based saliency (PK) [4]

We include in our evaluation 2 baseline models:

5. Random keypoints (RK): We are also interested in how
points sampled uniformly at random on a shape af-
fect retrieval performance. Some retrieval systems use
dense random points rather than sparse features [25, 16]
for shape representation, at the expense of a higher
computational cost. We want to know how this ap-
proach compares with using salient features. We de-
fine a random scalar field on the shape, referred to as
Random Saliency. We detect keypoints based on lo-
cal maxima of the random saliency map, as previously
discussed. The number of points detected depends on
the shape sampling. An alternative to this is extract-
ing a fixed number of random surface points per shape.
This alternative random keypoint detector is explored
in Section 5.3.

6. Ground-truth keypoints (GK): To see how these key-
point detectors compare to ground-truth when used
for shape retrieval, we also evaluate retrieval per-
formance based on ground-truth points collected on
Dataset A [1].

Local keypoints are each represented by a descriptor. We
then use Fisher Vectors (FV), previously mentioned in Sec-
tion 2.3, to encode local descriptors on a given shape into a
global descriptor. FV encode means and variances between
a set of local descriptors and clusters of the space containing
all local shape descriptors [19].

3.4 Evaluation metrics

Given a set of 3D models assigned to classes, a shape re-
trieved based on a query is relevant if both target and query
belong to the same class. This interpretation of relevance
is standard in shape retrieval benchmarks [8, 9, 10]. These
benchmarks also use the following standard metrics to evalu-
ate retrieval performance: Precision-Recall (PR) curve, Av-
erage precision (AP), First Tier (FT), Second Tier (ST),
and Discounted Cumulative Gain (DCG).

To compute the performance of retrieval on a dataset,
we proceed as follows: for each shape in the query set (or
the dataset if there is no query set), we generate a list of
all models in the target set, ranked from the most similar
to the least similar. The ranked lists are used to compute
the above metrics for each query. Each metric is then av-
eraged over all queries to produce overall scores. Finally,
we use the Wilcoxon rank-sum test [26], a non-parametric
alternative to the two-samples t-test, at a 0.05 significance
level to report statistically significant differences between
AP performances of competing methods.

A performance metric that is often used in benchmarks is
Nearest Neighbour. We did not observe any statistically sig-
nificant difference in Nearest Neighbour performance across

Table 1: Dataset A: Performance per keypoint detector.
Parameters: descriptor=PFH, r = 0.1R, K = 100.

FT ST DCG AP
RK 0.63± 0.03 0.73± 0.03 0.84± 0.02 0.70± 0.03
MeshDOG 0.58 ± 0.03 0.70 ± 0.03 0.82 ± 0.02 0.65 ± 0.03
ISS 0.58 ± 0.03 0.69 ± 0.03 0.82 ± 0.02 0.65 ± 0.03
GK 0.55 ± 0.03 0.68 ± 0.03 0.80 ± 0.02 0.62 ± 0.03
LK 0.53 ± 0.03 0.66 ± 0.03 0.80 ± 0.02 0.61 ± 0.03
PK 0.50 ± 0.03 0.62 ± 0.03 0.77 ± 0.02 0.57 ± 0.03
MK 0.48 ± 0.03 0.62 ± 0.03 0.76 ± 0.02 0.55 ± 0.03
CK 0.47 ± 0.03 0.59 ± 0.03 0.75 ± 0.02 0.54 ± 0.03

Table 2: Dataset B: Performance per keypoint detector. Pa-
rameters: descriptor=PFH, r = 0.1R, K = 100.

FT ST DCG AP
RK 0.86± 0.01 0.91± 0.01 0.96± 0.00 0.90± 0.01
MeshDOG 0.84 ± 0.01 0.91 ± 0.01 0.96 ± 0.00 0.89 ± 0.01
ISS 0.84 ± 0.01 0.90 ± 0.01 0.96 ± 0.00 0.88 ± 0.01
MK 0.83 ± 0.01 0.90 ± 0.01 0.95 ± 0.00 0.88 ± 0.01
LK 0.80 ± 0.01 0.86 ± 0.01 0.94 ± 0.01 0.85 ± 0.01
PK 0.78 ± 0.01 0.85 ± 0.01 0.94 ± 0.01 0.83 ± 0.01
CK 0.69 ± 0.01 0.78 ± 0.01 0.91 ± 0.01 0.75 ± 0.01

Table 3: Dataset C: Performance per keypoint detector.
Parameters: descriptor=PFH, r = 0.1R, K = 100.

FT ST DCG AP
RK 0.05± 0.01 0.10± 0.03 0.35± 0.02 0.06± 0.01
MeshDOG 0.04 ± 0.02 0.07 ± 0.02 0.34 ± 0.02 0.05 ± 0.02
CK 0.04 ± 0.01 0.08 ± 0.02 0.34 ± 0.01 0.05 ± 0.01
ISS 0.04 ± 0.01 0.08 ± 0.02 0.34 ± 0.01 0.05 ± 0.01
LK 0.03 ± 0.01 0.06 ± 0.01 0.34 ± 0.01 0.05 ± 0.01
MK 0.03 ± 0.01 0.07 ± 0.02 0.33 ± 0.01 0.04 ± 0.01
PK 0.02 ± 0.01 0.06 ± 0.02 0.32 ± 0.01 0.04 ± 0.01

the evaluated methods, contrary to the other five metrics
described above. Thus, we do not report its performance
results.

4 Evaluation of salient keypoints

We present PR curves of retrieval systems based on 6 salient
keypoint detectors in Figure 5. Note that we use PFH as
local descriptors and cluster size K = 100 to partition the
set of all descriptors. We use FV as the encoding method,
and compare the generated global shape descriptors with
the cosine angle. We do not include GK in our evaluation
on datasets B and C, because these datasets do not have
ground-truth saliency data.

4.1 Comparison of selected saliency-based
keypoint detectors

Dataset A Table 1 presents more details on retrieval per-
formance by keypoint detector on Dataset A. RK is sig-
nificantly better than all other methods on each perfor-
mance metric. There is no statistically significant difference
between GK and LK, implying that on this dataset, LK
is as good as ground-truth when used for shape retrieval.
There is also no significant difference between the worst-
performing models PK, MK and CK. The top performance
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of RK is not surprising since it generates on average 250
points per shape, while GK only produces an average of
33 points per shape. A large number of random surface
points provides more coverage of the surface and thus cap-
tures more information about shape. Surprisingly we see in
Figure 7 (bottom) that even when we choose only n = 30
random points per shape, we still get better average per-
formance than using GK. The difference however is not sta-
tistically significant. Choosing n = 50 random points per
shape produces a significantly better retrieval performance,
meaning that we are getting better results with 50 ran-
domly selected points than with 33 carefully selected salient
points. An in-depth analysis of the effect of saliency and
random sampling size is presented in Section 5.3. RK has
comparable performance to the state-of-the-art in shape re-
trieval [16], which is based on dense random features repre-
sented by covariance descriptors, with performance metrics
FT = 0.623, ST = 0.737 and DCG = 0.864.

Dataset B Table 2 shows retrieval performance on
Dataset B. All pair-wise differences between keypoint de-
tectors are significant, with the exception of LK and PK.
RK remains the top-performing saliency model for retrieval.
MK now has second place. This is explained by the fact
that MK saliency model is based on spectral properties,
which makes it more robust to non-rigid transformations,
compared to other methods. CK is the worst performing
method, since its saliency model relies on spatial distribu-
tion of FPFH and thus is not robust to large deformations.
Lian et al. [9] evaluate recent retrieval systems on dataset
B. RK is outperformed by methods, featured in their bench-
mark, that are based on isometry-invariant descriptors, or
volumetric feature representations.

Dataset C Table 3 shows performance per keypoint de-
tectors. Performance metrics on this dataset are low, and
there are no statistically significant pair-wise differences be-
tween keypoint detectors. The low performance suggests
that encoding 3D local features is not an adequate method
for describing range scans. This is supported by an evalua-
tion of recent retrieval methods on dataset C, which shows
similar poor performance for methods using 3D features,
and significantly better results for methods based on 2D
rendered views [10].

Summary RK provides the best retrieval performance,
out of the evaluated keypoint detectors, on datasets of whole
models. It outperforms ground-truth salient points (GK).
Furthermore, using a small number of random keypoints
(as small as n = 30) still outperforms salient features on a
generic dataset. This shows that sparse salient features are
not appropriate for shape representation. Rather than using
RK, which generates a large number of random keypoints
and is thus expensive (see Section 6), we recommend using
a small random sampling size, such as n = 50, per shape.
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Figure 5: Precision recall curves for retrieval performance
based on selected keypoint detectors.
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4.2 Comparison against other state-of-the-
art keypoint detectors

Thus far, we have focused on keypoint detectors that are
based on local maxima of saliency algorithms. There is
a large body of work on interest point detection beyond
the ones we have evaluated above. Tombari et al. [27]
present a qualitative evaluation of major keypoint detectors
in the literature, in terms of repeatability, distinctiveness
and computational efficiency. Repeatability is the ability
to find the same keypoints on different instances of a given
shape. Their evaluation reports that Intrinsic Shape Signa-
tures detector (ISS) [28] is highly efficient and provides a
good trade-off between absolute and relative repeatability,
making it a good choice for shape retrieval. Note that ISS
is fixed-scale, and thus detects keypoints at a specific scale,
provided via a support radius parameter. The authors then
show that for object recognition, the adaptive-scale detector
MeshDOG [29] produces the best results. In this section, we
compare ISS and MeshDOG against GK and RK.

ISS [28] computes saliency of a point based on the eigen-
values of the scatter matrix of points within a support ra-
dius. Saliency is the magnitude of the smallest eigenvalue.
Keypoint detection is based on this saliency value (to in-
clude points with large variations against each direction),
and the ratio between the second and third eigenvalues
(to avoid points with a similar spread along principal di-
rections). On the other hand, MeshDOG is based on a
scale-space representation of a mesh, built by applying the
Difference-of-Gaussians (DoG) operator on a scalar function
defined over the mesh. Points are ranked by their saliency
values, thresholded to keep the number of detected points
below a fixed percentage of the number of vertices in the
shape, and retained only if they exhibit corner characteris-
tics.

We use the same parameters for both detectors as
Tombari et al. [27], including the selection of mean curva-
ture as the scalar function in MeshDOG. They evaluate ISS
at scales {6m, 10m, 12m, 18m}, where m is the mesh resolu-
tion computed by taking the average edge length. However,
we noticed that on our datasets, ISS at scale m generates
more keypoints than detection at higher scales, including
6m, and achieves better performance. This is illustrated in
Figure 6. Thus, in the results reported below, ISS is com-
puted at scale m.

Table 1 shows retrieval performance on Dataset A, when
using ISS or MeshDOG keypoint detectors against RK and
GK. For more details on the number of keypoints detected
per method, we refer the reader to Appendix C. The results
show that the adaptive-scale MeshDOG not only produces
more keypoints than ISS and GK, but it is also produces sig-
nificantly better retrieval performance. However, RK out-
performs MeshDOG. This supports the argument that more
keypoints provide more coverage of the surface, which leads
to better retrieval.

AP = 0.70 AP = 0.65 AP = 0.77
ISS (scale m) ISS (scale 6m) MeshDOG

Figure 6: Keypoints on a shape in Dataset A, based on ISS
and MeshDOG detectors.

5 Evaluation of parameter choices

We investigate the impact of various design choices on shape
retrieval performance. We do this analysis on Datasets A, B
and C unless specified otherwise. We pay closer attention to
our results on Dataset A since it is the most diverse collec-
tion out of the three datasets, in terms of number of classes
and variability within classes. The default design choices
are RK as the keypoint detector, PFH as local descriptors,
and cluster size K = 100. Changes in these default design
choices are specified explicitly in each section.

5.1 Choice of local descriptors

In addition to PFH we evaluate 3 other feature descriptors:
FPFH [11], SHOT [23] and Spin Images [22]. Results are
summarized in Figure 7 (top) and Table 4. PFH is signif-
icantly better than other descriptors. It is more robust to
sampling compared to SHOT and Spin Images, and cap-
tures more information than FPFH as it is 4 times larger.
These results are based on the RK feature detector. Fur-
ther experiments in Appendix A use alternative detectors
and support the claim that PFH is a better descriptor.

Table 4 also includes performance when using a global de-
scriptor, as opposed to a Bag of features approach, with no
dependency on keypoint detection. We obtain such global
descriptor by computing a single PFH descriptor with an
infinite support radius, which means that all points are in-
cluded in the histogram of angular variations. We denote
the global descriptor by GPFH. Results show the global de-
scriptor is outperformed by encoding local descriptors. This
indicates that local information is important for retrieval.

5.2 Number of clusters

By default we set the cluster size K = 100, after exploring a
range of values for K. Figure 7 (middle) shows retrieval per-
formance for different K. There is no statistically significant
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Table 4: Dataset A: Effect of local feature descriptors and
PFH-based global descriptor GPFH on retrieval. Parame-
ters: detector=RK, r = 0.1R, K = 100.

FT ST DCG AP
PFH 0.63± 0.03 0.73± 0.03 0.84± 0.02 0.70± 0.03
GPFH 0.58 ± 0.03 0.71 ± 0.03 0.84 ± 0.02 0.66 ± 0.03
FPFH 0.57 ± 0.03 0.68 ± 0.03 0.81 ± 0.02 0.64 ± 0.03
SHOT 0.54 ± 0.03 0.68 ± 0.03 0.80 ± 0.02 0.62 ± 0.03
SPIN 0.53 ± 0.03 0.65 ± 0.03 0.78 ± 0.02 0.60 ± 0.03

difference in performance for various values of K. Cluster
size has little effect on FV, since the encoding retains some
information about the original shape feature descriptors.

5.3 Number of random points

Section 4 shows that RK keypoint detector produces better
retrieval. RK selects random points on the surface by ex-
tracting keypoints from a random saliency map. The num-
ber of random points depends on the shape sampling. We
investigate the effect of choosing a specific number of ran-
dom points per shape. We denote this number by n. Local
features are n surface points randomly selected with uni-
form distribution, and shifted using Lloyds relaxation [30]
to provide a better coverage of the whole surface. Figure 7
(bottom) shows retrieval performance for varying n. There
is no statistically significant difference between using |RK|
or choosing n random points per shape, for n ≥ 50. This
implies that selecting a small fixed number of points at ran-
dom is good enough. To assess whether ground-truth salient
points have any useful effect we tried restricting the random
point selection to areas that are not close to a ground-truth
salient point. This does reduce average retrieval perfor-
mance, but not significantly. This suggests that the dis-
tribution of non-salient features on the surface is important
for shape retrieval. We discuss this in more depth in Sec-
tion 7.

5.4 Support radius r

The support radius is used to indicate the scale of local
neighbourhood, and it is a key parameter in computing lo-
cal descriptor. The above experiments use a fixed r = 0.1R.
In this section, we investigate the influence of r on retrieval,
by looking at values ranging from 0.05R to 0.5R. Tables 5
and 6 show retrieval results for different values of r com-
bined with RK30 (random keypoint detector with n = 30).
We do not report results on Dataset C since they were not
statistically significant. Results show that for Dataset A
there is no performance improvement for r ≥ 0.2. As for
Dataset B, performance increases with the support radius,
until r = 0.2 and decreases for larger r. This shows that
support radius does indeed affect retrieval, and when chosen
too small or too large, it can decrease retrieval performance.
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Figure 7: Performance on Dataset A for various design
choices. The PR curves show that PFH is a better feature
descriptor (top), cluster size does not have an impact on
retrieval (middle), and retrieval performance increases with
larger number of random features (bottom). n = |GK| is the
number of ground-truth salient points. We also investigate
the effect of only choosing non-salient random points.
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Table 5: Dataset A: Performance based on support radius
r = tR. Parameters: detector=RK30, descriptor=PFH,
K = 100.

FT ST DCG AP
t=0.05 0.41 ± 0.03 0.57 ± 0.03 0.71 ± 0.02 0.48 ± 0.03
t=0.1 0.57 ± 0.03 0.72 ± 0.03 0.83 ± 0.02 0.65 ± 0.03
t=0.2 0.62 ± 0.03 0.75 ± 0.03 0.85 ± 0.02 0.70 ± 0.03
t=0.3 0.64± 0.03 0.77± 0.03 0.86± 0.02 0.71± 0.03
t=0.4 0.62 ± 0.03 0.77 ± 0.03 0.86 ± 0.02 0.71 ± 0.03
t=0.5 0.61 ± 0.03 0.75 ± 0.03 0.85 ± 0.02 0.69 ± 0.03

Table 6: Dataset B: Performance based on support radius
r = tR. Parameters: detector=RK30, descriptor=PFH,
K = 100.

FT ST DCG AP
t=0.05 0.52 ± 0.01 0.64 ± 0.01 0.81 ± 0.01 0.57 ± 0.02
t=0.1 0.78 ± 0.01 0.88 ± 0.01 0.95 ± 0.00 0.84 ± 0.01
t=0.2 0.79± 0.01 0.88± 0.01 0.95± 0.00 0.85± 0.01
t=0.3 0.72 ± 0.01 0.82 ± 0.01 0.92 ± 0.01 0.78 ± 0.01
t=0.4 0.66 ± 0.01 0.76 ± 0.01 0.89 ± 0.01 0.72 ± 0.01
t=0.5 0.61 ± 0.01 0.72 ± 0.01 0.87 ± 0.01 0.67 ± 0.01

5.5 Performance per shape class

Finally, we study how retrieval performance varies with
the shape class. Table 7 shows AP for each of the 20
classes in Dataset A, and for three keypoint selection meth-
ods: n = 1000 random points, n = 1000 non-salient ran-
dom points, and ground-truth salient features. “Armadillo”
and “plier” have perfect retrieval performance, while other
classes such as “spring” and “bearing” have poor perfor-
mance (below 30%). Note that classes with poor AP typi-
cally consist of tube-like features. We argue that local fea-
tures on such shape classes do not contain enough informa-
tion to differentiate them from one another, which leads to
poor retrieval performance.

6 Computational cost

Table 8 shows computation time spent on training a re-
trieval system (computing descriptors and encodings) and
testing it (computing similarities between pairs of shapes in
the database). We record computation times for retrieval
based on every keypoint detector. Results show that al-
though RK produces similar or better retrieval performance
than other evaluated methods, retrieval computation is at
least 2 times more costly than the alternatives. On the
other hand, choosing n = 50 random points produces simi-
lar retrieval performance, with half the computational cost
of RK.

7 Discussion

Our most surprising result is that random points outperform
real salient points for shape retrieval on a generic dataset
(Section 4 and 5.3). Even when the random points are re-
stricted to non-salient regions they still outperform salient

Table 7: Dataset A: AP per shape class, using n =
1000 random points, n = 1000 random points in non-
salient regions, and ground-truth keypoints GK. Parame-
ters: descriptor=PFH, r = 0.1R, K = 100.

n = 1000 n = 1000 (non-salient) GK
armadillo 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
plier 1.00 ± 0.01 1.00 ± 0.00 0.87 ± 0.08
ant 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.01
teddy 0.99 ± 0.01 0.98 ± 0.02 0.95 ± 0.04
fish 0.95 ± 0.03 0.95 ± 0.03 0.64 ± 0.05
glasses 0.93 ± 0.03 0.89 ± 0.05 0.91 ± 0.06
mechanic 0.91 ± 0.09 0.90 ± 0.09 0.77 ± 0.12
buste 0.89 ± 0.05 0.80 ± 0.06 0.80 ± 0.06
airplane 0.87 ± 0.04 0.84 ± 0.05 0.84 ± 0.03
hand 0.86 ± 0.07 0.79 ± 0.07 0.68 ± 0.07
human 0.82 ± 0.08 0.80 ± 0.09 0.55 ± 0.05
four leg 0.70 ± 0.08 0.70 ± 0.07 0.41 ± 0.05
chair 0.68 ± 0.07 0.62 ± 0.08 0.57 ± 0.07
table 0.53 ± 0.11 0.52 ± 0.11 0.51 ± 0.10
cup 0.53 ± 0.08 0.53 ± 0.08 0.44 ± 0.08
bird 0.47 ± 0.05 0.46 ± 0.05 0.32 ± 0.05
octopus 0.46 ± 0.04 0.44 ± 0.05 0.49 ± 0.05
vase 0.34 ± 0.05 0.35 ± 0.04 0.26 ± 0.03
bearing 0.27 ± 0.03 0.27 ± 0.04 0.25 ± 0.03
spring 0.22 ± 0.06 0.21 ± 0.06 0.24 ± 0.07
Average 0.72 ± 0.03 0.70 ± 0.03 0.62 ± 0.03

Table 8: Dataset A: Computational cost. These include
computation of local descriptors, clustering, encoding and
retrieval. RK50 refers to choosing n = 50 random points
per shape.

Timing (secs) AvgNumKeypoints
RK 306 248 ± 11
MeshDOG 302 236 ± 12
ISS 178 106 ± 7
LK 167 69 ± 4
CK 152 56 ± 4
PK 148 53 ± 3
RK50 145 50 ± 0
GK 121 32 ± 1
MK 127 29 ± 2

points (Section 5.3), implying that the distribution of non-
salient features is important in recognizing 3D shapes. We
provide possible explanations for these results.

The Bag of features approach loses spatial information.
The approach encodes the distribution of local features, but
does not include where these features are spatially located.
This may be desirable for deformation invariance. How-
ever, there are several methods for dealing with this, using
for instance diffusion distances [17]. Adding spatial infor-
mation in the encoding may better differentiate between
shapes with similar local features but different relative po-
sitions of these features. Further work should investigate
how a spatially-sensitive approach will affect retrieval per-
formance given salient points.

Salient points are often symmetric, in other words they
are symmetric to another keypoint with an identical local
neighbourhood. Examples of symmetric keypoints are hu-
man eyes, airplane wings, and table legs. Chen et al. [1]
show that salient point sets selected by people are highly
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symmetric (76% of all selected points). Thus, GK contains
less information than we think, since it generates lists of du-
plicate features that may be redundant. Random points, on
the other hand, are not symmetric and thus capture more
useful information for retrieval.

Moreover, although salient features may contain some
class-differentiating information, the global shape plays a
more important role in 3D recognition than a few interest-
ing points. However, we see in Section 5.1 that a global
descriptor that looks at the shape as whole with no focus
on local regions underperforms compared to local features
encoding. This indicates that encoding local surface patches
provides a better global description of a shape. Salient fea-
tures may be more useful for specific tasks such as shape
correspondence [31], where two shapes typically have a com-
mon class, and the problem is matching corresponding local
neighbourhoods.

Saliency computes the relative importance of points in
a shape. Thus saliency-based keypoints are not inherently
class-specific. Our series of experiments examine how much
salient points are representative of shape classes. Our re-
sults show that random points outperform keypoints, sug-
gesting that the latter are not important in discriminating
between shapes from different classes. Rather it may be
more effective to compute class-specific features, and given
a shape encode how it matches these representative features.
This shape representation could not only tell us how simi-
lar two shapes are, but also help us better understand the
similarity. This may be possible by extracting meaningful
combinations of common features between the two shapes
and matching these combinations to known classes. An in-
vestigation of such class-specific features for retrieval is an
interesting direction for future work.

8 Conclusion

We evaluated keypoint detectors on their performance in
shape retrieval based on selected saliency models. Using a
random saliency model, RK, leads to better retrieval perfor-
mance compared to other saliency models including ground-
truth, although more computationally expensive. For a low
computational cost, with similarly good retrieval perfor-
mance, we recommend selecting a small fixed number of
random points per shape.
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Table 9: Dataset A: Effect of GK-based local descriptors on
retrieval. Parameters: detector=GK, r = 0.1R, K = 100.

FT ST DCG AP
PFH 0.55± 0.03 0.68± 0.03 0.80± 0.02 0.62± 0.03
FPFH 0.51 ± 0.03 0.63 ± 0.03 0.77 ± 0.02 0.57 ± 0.03
SHOT 0.44 ± 0.03 0.58 ± 0.03 0.72 ± 0.02 0.51 ± 0.03
SPIN 0.44 ± 0.03 0.56 ± 0.03 0.72 ± 0.02 0.50 ± 0.03

Table 10: Dataset A: Effect of LK-based local descriptors on
retrieval. Parameters: detector=LK, r = 0.1R, K = 100.

FT ST DCG AP
PFH 0.53± 0.03 0.66± 0.03 0.80± 0.02 0.61± 0.03
FPFH 0.51 ± 0.03 0.63 ± 0.03 0.78 ± 0.02 0.57 ± 0.03
SHOT 0.46 ± 0.03 0.60 ± 0.03 0.75 ± 0.02 0.53 ± 0.03
SPIN 0.45 ± 0.03 0.57 ± 0.03 0.73 ± 0.02 0.52 ± 0.03

A Local feature descriptors

We show in Section 5.1 that combining RK feature detec-
tor with the PFH local descriptor produces better results
than alternative descriptors. To show that PFH is indeed
the better descriptor, we carry out a similar experiment us-
ing other keypoint detectors. We focus on LK and GK.
Tables 9 and 10 both show that PFH performs better than
other descriptors (FPFH, SHOT and SPIN) with different
detectors. This supports our choice of PFH as the default
local descriptor.

B Number of random points

Section 5.3 discusses the influence of the number of ran-
dom points on shape retrieval, using results on Dataset
A as a test case. It shows that using as few as n = 50
random points per shape outperforms human-selected key-
points (GK) on this dataset. Although there is no ground-
truth keypoint data available for Dataset B and C, we can
still analyze the effect of keypoint sampling size on these
datasets. Tables 11 and 12 show retrieval performance
for various sampling sizes, on Datasets A and B. Results
show that for these 2 datasets consisting of whole models,
retrieval performance increases with the random sampling
size, up to n = 50 where performance stops improving sig-
nificantly. There is no significant difference in performance
on Dataset C (not reported), due to the poor performance
of Bag of features for partial shape retrieval.

C Number of salient points

Finally we report the number of salient points generated by
the evaluated saliency-based keypoint detection algorithms,
ISS and MeshDOG. For each dataset, we also include the
retrieval system that performs best on it thus far, according
to the literature [16, 9, 10]. Tables 13– 15 present this data
along with DCG and AP performance. These results sup-
port the argument that for the detectors evaluated in this
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Table 11: Dataset A: Effect of random sampling size on
retrieval. Parameters: descriptor=PFH, r = 0.1R, K =
100.

FT ST DCG AP
GK 0.55 ± 0.03 0.68 ± 0.03 0.80 ± 0.02 0.62 ± 0.03
RK 0.63 ± 0.03 0.73 ± 0.03 0.84 ± 0.02 0.70 ± 0.03
n=20 0.51 ± 0.03 0.66 ± 0.03 0.79 ± 0.02 0.58 ± 0.03
n=30 0.57 ± 0.03 0.72 ± 0.03 0.83 ± 0.02 0.65 ± 0.03
n=50 0.62 ± 0.03 0.76 ± 0.03 0.85 ± 0.02 0.70 ± 0.03
n=100 0.64 ± 0.03 0.77± 0.03 0.86± 0.02 0.72± 0.03
n=300 0.64± 0.03 0.76 ± 0.03 0.86 ± 0.02 0.72 ± 0.03
n=500 0.64 ± 0.03 0.76 ± 0.03 0.85 ± 0.02 0.72 ± 0.03

Table 12: Dataset B: Effect of random sampling size on
retrieval. Parameters: descriptor=PFH, r = 0.1R, K =
100.

FT ST DCG AP
RK 0.86 ± 0.01 0.91 ± 0.01 0.96 ± 0.00 0.90 ± 0.01
n=20 0.66 ± 0.01 0.78 ± 0.01 0.90 ± 0.01 0.73 ± 0.01
n=30 0.78 ± 0.01 0.88 ± 0.01 0.95 ± 0.00 0.84 ± 0.01
n=50 0.85 ± 0.01 0.92 ± 0.01 0.97 ± 0.00 0.90 ± 0.01
n=100 0.88± 0.01 0.93± 0.01 0.97± 0.00 0.92± 0.01
n=300 0.87 ± 0.01 0.92 ± 0.01 0.96 ± 0.00 0.91 ± 0.01
n=500 0.87 ± 0.01 0.92 ± 0.01 0.96 ± 0.00 0.91 ± 0.01

paper, large number of local features and better coverage of
the surface lead to better retrieval performance.
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