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Abstract

Motivated by the necessity to perform adaptive refinement in geometric design and numer-
ical simulation, the construction of hierarchical splines from generating systems spanning
nested spaces has been recently studied in several publications. Linear independence can
be guaranteed with the help of the local linear independence of the spline basis at each
level. The present paper extends this framework in several ways. Firstly, we consider
spline functions that are defined on domain manifolds, while the existing constructions are
limited to domains that are open subsets of Rd. Secondly, we generalize the approach to
generating systems containing functions which are not necessarily non-negative. Thirdly,
we present a more general approach to guarantee linear independence and present a re-
finement algorithm that maintains this property. The three extensions of the framework
are then used in several relevant applications: doubly hierarchical B-splines, hierarchical
Zwart-Powell elements, and three different types of hierarchical subdivision splines.

Keywords: Multi-level spline space, hierarchical generating system, truncation, doubly
hierarchical B-splines, Zwart-Powell elements, hierarchical subdivision splines.

1. Introduction

The powerful framework of Isogeometric Analysis [6] facilitates the exchange of data
between various software tools used for geometric design (CAD systems) and for analysis
(numerical simulation). The use of B-splines and NURBS not only for modeling but also
for analysis offers advantages over traditional finite element functions, such as increased
smoothness, faster convergence, improved stability, and, most importantly, it eliminates
the need for model (re)meshing.

However, since multivariate spline representations are based on tensor-product con-
structions, they suffer from two major limitations: local refinement is not possible and
only trivial box-like topologies are supported. Various generalizations of tensor-product
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splines, such as T-splines, hierarchical splines, LR splines, and PHT splines, have been
introduced in order to facilitate local adaptivity.

T-splines [20, 30] are splines defined by local knot vectors. Hierarchical B-splines [35]
are obtained by combining selected B-splines from a sequence of nested spline spaces. LR
splines [14] are constructed by repeatedly splitting tensor-product B-splines, starting from
an initial set defined on a mesh of tensor-product topology. PHT splines [19] are based
on the full space of piece-wise polynomial functions on a given T-mesh, which is equipped
with a suitable basis.

In the context of this paper, we are particularly interested in truncated hierarchical
B-splines (THB-splines) [11, 12]. This spline basis provides various useful properties in the
mathematical framework of hierarchical splines, such as partition of unity, strong stability,
full approximation power, and efficient implementation [16, 34]. This approach has recently
been extended to more general hierarchies of spline spaces [39].

As the domains of tensor-product spline functions are boxes in parameter space, it
becomes more challenging to create suitable representations for domains of general manifold
topology. A typical solution consists in using multi-patch representations with reduced
smoothness across their interfaces [17, 31]. This may, however, lead to artifacts in numerical
solutions at the interfaces. Moreover, global high-order smoothness is advantageous for
solving higher-order problems, such as the biharmonic equation.

The framework of T-splines [32] includes extraordinary vertices (i.e., vertices where
other than four patches meet), which are essential for dealing with general topologies, but
the mathematical properties of the isogeometric functions in the vicinity of these points
are not well understood.

Typically, the presence of extraordinary vertices leads to a reduced order of smoothness,
approximation, and convergence rate [24]. Nevertheless, the use of subdivision functions
seems to be one of the most promising approaches [2, 5, 13, 15], mainly due to their support
for arbitrary manifold topology, built-in refinement relations, and the widespread use of
subdivision representations in applications, especially in Computer Graphics [8].

Using trimmed NURBS representations is a different approach, which is adopted by
CAD systems. When used in Isogeometric Analysis, these representations require special
treatment [29]. Alternatively it is possible to convert them to subdivision surfaces [33].

Among other results, the present paper describes an extension of the THB construction
to functions generated by subdivision algorithms, which are defined on domain manifolds
(see [26]). Subdivision algorithms create sequences of nested spaces and are therefore suited
for invoking the multi-resolution framework, e.g., when performing hierarchical editing [22].
This is in fact analogous to hierarchical B-spline refinement, which was originally formu-
lated by Forsey and Bartels [10]. Their construction was later augmented by introducing
a basis [18], thereby facilitating its application in adaptive surface reconstruction and Iso-
geometric Analysis. It is desirable to introduce a similar basis for hierarchical subdivision
splines, and we address this issue in our paper.

While preparing an earlier version of this manuscript [40], we became aware of the
recent papers [37, 38], which report on a parallel development of another group of authors.
These papers focus on numerical simulation with truncated hierarchical Catmull-Clark
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subdivision functions and provide sufficient conditions for linear independence of the cor-
responding basis functions.

In contrast, the present paper presents a generalized framework for the construction
of hierarchical spline spaces, which extends the existing results [11, 12, 34, 39] in several
ways. Firstly, we consider spline functions that are defined on domain manifolds, while
the existing constructions are limited to domains that are open subsets of Rd. Secondly,
we generalize the approach to generating systems (that span the nested spline spaces)
containing functions which are not required to take only non-negative values. Thirdly, we
present a less restrictive approach to guarantee linear independence than using local linear
independence, and we present a refinement algorithm that maintains this property. These
theoretical results are then used in five relevant applications: doubly hierarchical B-splines,
hierarchical Zwart-Powell elements, and three different types of hierarchical subdivision
splines.

The method for guaranteeing linear independence is based on catalogs containing sub-
domains with linearly independent restricted generating systems. In order to obtain these
catalogs we use techniques that were pioneered by Peters and Wu [27] when analyzing
linear independence for Catmull-Clark and Loop subdivision, which was done indepen-
dently from the investigation of hierarchical splines. We formulate these techniques in our
general framework, making them applicable to other hierarchical spline constructions as
well. These include doubly hierarchical B-splines, hierarchical Zwart-Powell elements, and
Butterfly subdivision splines.

The remainder of the paper is organized as follows. Section 2 extends the construction of
(truncated) hierarchical generating systems presented in [39] to spaces of functions defined
on domain manifolds and to generating systems containing functions that are not neces-
sarily non-negative. Section 3 derives an algorithm to perform adaptive refinement while
maintaining linear independence. Five different applications of the general framework are
presented in Section 4. These include doubly hierarchical B-splines and hierarchical Zwart-
Powell elements, but also three hierarchical subdivision splines: Catmull-Clark, Loop, and
Butterfly. Finally we conclude the paper.

2. Hierarchical generating systems

The framework of hierarchical generating systems was established in [39] for nested
spaces spanned by systems of non-negative functions in C(Ω), which are defined on an open
subset Ω ⊂ Rd. Local linear independence was used to certify their linear independence.
We extend this framework in three ways: Firstly, we use more general parameter domains
Ω, which can be d-dimensional manifolds. Secondly, we consider functions that possibly
have negative values. Thirdly, we ensure linear independence of the hierarchical generating
system by sufficient conditions that are substantially weaker than local linear independence.

2.1. Selecting functions from generating systems on manifolds

Recall that a d-dimensional manifold M (or d-manifold for short) is a topological space
that locally resembles the d-dimensional Euclidean space, i.e., each point has a neighbor-
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hood homeomorphic to the Euclidean space of dimension d. More precisely, each point of
the manifold has a neighborhood homeomorphic to an open ball in Rd.

Open subsets in Rd are d-manifolds. Curves and surfaces in R3 can be equipped with
a manifold structure, provided that they do not possess self-intersections or singularities.
The notion of manifolds also encompasses more abstract objects, some of which will be
described later in Section 4.

Given a d-manifold M, we consider real-valued functions f : M→ R with domain M.
Due to the topological structure of M it is possible to extend the notion of continuity to
functions on manifolds, and we consider only continuous functions in the remainder of this
paper. The support of f , denoted by supp f , is the closure of the set of all points in M
where f is non-zero.

A generating system G on a domain manifold M is a finite system of continuous func-
tions with domain M. In contrast to [39], we do not restrict ourselves to non-negative
functions. We express G as the column vector

G = [γi]i∈I ,

where the elements are indexed by a finite set I. The coefficients of the functions in

span(G) = RIG = {cG | c ∈ RI}

will be collected in row vectors c = [ci]
T
i∈I . Generating systems that satisfy

1G = 1,

with 1 = (1, . . . , 1) ∈ RI , are said to be normalized.
We consider an infinite sequence of generating systems with a refinement property.

More precisely, we consider generating systems G` = [γ`i ]i∈I` , ` = 0, 1, . . ., with index sets
I`, where the additional index ` is called the level. We assume that there exist matrices

R`+1 = [r`+1
ij ]i∈I`,j∈I`+1

such that the generating systems satisfy the refinement equation

G` = R`+1G`+1, γ`i =
∑
j∈I`+1

r`+1
ij γ`+1

j , i ∈ I`. (1)

Each function of G` is expressed as a linear combination of functions of level `+1. In order
to ensure the property of affine invariance, which is satisfied for normalized generating
systems, we assume that the columns of the matrices R`+1 sum to 1,∑

i∈I`
r`+1
ij = 1 ∀j ∈ I`+1. (CS1)

In contrast to [39], there are no restrictions on the signs of the matrix elements.
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Hierarchical generating systems can now be defined with the help of a subdomain hier-
archy that contains N levels, where N is a non-negative integer. The subdomain hierarchy
is a decreasing sequence [M`]`=0,...,N−1 of N open subsets of M satisfying

M = M0 ⊇M1 ⊇ · · · ⊇MN−1 ⊇MN = ∅, (2)

where the auxiliary set MN = ∅ is introduced to simplify the notation later on. The open
subsets M` are also d-submanifolds with respect to the topology inherited from M.

The differences between the domain manifold M and the subdomains M` define the
complementary hierarchy

D` = M \M`+1, ` = 0, . . . , N − 1,

satisfying
D0 ⊆ D1 ⊆ · · · ⊆ DN−1 = M.

Note that the difference subdomains are not necessarily manifolds themselves since they
may not be open.

The relation between supports and subdomains is used to split each index set I` into
three disjoint subsets,

A` = {i | supp γ`i 6⊆M`},
B` = {i | supp γ`i ⊆M` ∧ supp γ`i 6⊆M`+1},
C` = {i | supp γ`i ⊆M`+1}.

In order to define the hierarchical generating system, we select the functions γ`i with i ∈ B`
and collect them in vectors

Ĝ` = [γ`i ]i∈B` .

More precisely, Ĝ` collects all the functions, called selected functions, from G` whose sup-
port is contained in the closure of the level ` subdomain M` but not in M`+1.

The hierarchical generating system is obtained by concatenating all these vectors Ĝ`,

K =
[
Ĝ`
]
`=0,...,N−1 =

[
γ`i
]
i∈B`,`=0,...,N−1. (3)

By choosing the symbol K we refer to the inventor of this selection mechanism [18].

2.2. Nested hierarchical refinement

In order to be useful in practice, the adaptive refinement using hierarchical generating
systems should produce nested spaces. More precisely, if one starts from a given subdomain
sequence, then enlarging all subdomains should produce a hierarchical generating system,
which spans a space that contains the previous one. This also includes the case of adding a
new level of refinement since one may see this as enlarging a previously empty subdomain
at the finest level while keeping the remaining subdomains unchanged.
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In addition, it is desirable to obtain a generating system that forms a partition of unity
since this is an essential property for geometric modeling. The hierarchical generating
system K does not possess this property. We introduce an assumption on the domain
hierarchy that ensures nested refinement and allows us to invoke the truncation mechanism
[11] for restoring the normalization.

A function γ`i is said to refine to γ`+1
j if the corresponding entry r`+1

ij in the refinement

matrix R`+1 is non-zero. Note that the refinement matrix is not necessarily unique since
we do not assume linear independence of the generating systems. In the case of non-unique
refinement matrices, this notion refers to a certain fixed choice.

We assume that the domain hierarchy satisfies the condition of selected function repla-
cement: If the closure of the subdomain M`+1 contains the support of a function of level `,
then it also contains the supports of all the functions of the next level which this function
refines to,

∀i ∈ C` ∀j ∈ I`+1 : r`+1
ij 6= 0 ⇒ j ∈ B`+1 ∪ C`+1. (SFR)

Consequently, if a function of level ` is not selected for inclusion into the hierarchical
generating system, even though its support is contained in M`, then it can be represented
as a linear combination of functions that are selected at higher levels, thus it can be replaced
by them. Note that this assumption is always satisfied for non-negative generating systems
and refinement matrices with only non-negative entries, as considered in [39].

If SFR is satisfied for all levels, the hierarchical refinement creates nested hierarchical
spaces as described in the following result, which generalizes [35, Proposition 4] and [39,
Proposition 15]:

Proposition 1. Any subdomain hierarchy [M`
+]`=0,...,N−1 which consists of supersets of the

subdomains [M`]`=1,...,N−1 results in a hierarchical generating system that spans a superspace
of the previous one, provided that SFR is satisfied for both subdomain hierarchies.

Proof. Let [M`
+]`=0,...,N−1 denote the sequence of enlarged subdomains,

M = M0 = M0
+ and M` ⊆M`

+, ` = 1, . . . , N − 1,

A`+, B`+, C`+ the associated disjoint subsets of the index set I`, and Ĝ`
+ the corresponding

sub-vectors of selected functions. Moreover, let K+ denote the hierarchical generating
system which is defined by the sequence of the enlarged subdomains. We use mathematical
induction with respect to decreasing levels ` = N − 1, . . . , 0 to show that

γ`i ∈ span([Ĝk
+]k=`,...,N−1) for all i ∈ B` ∪ C`. (4)

Firstly we consider the highest level ` = N − 1 and use MN = MN
+ = ∅ and CN−1 = ∅ to

confirm (4) by noting that for all i ∈ BN−1∪CN−1 we obtain i ∈ BN−1+ since these functions

satisfy supp γN−1i ⊆MN−1 ⊆MN−1
+ .

Secondly, we suppose that (4) is satisfied for all levels ` + 1, . . . , N − 1 and consider
the next lower level `. We consider an index i ∈ B` ∪ C`. Eq. (4) is obviously satisfied if
i ∈ B`+. Otherwise we have

i ∈ (B` ∪ C`) \ B`+ ⊆ (B`+ ∪ C`+) \ B`+ = C`+,
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thus SFR implies j ∈ B`+1
+ ∪ C`+1

+ , and hence

γ`+1
j ∈ span([Ĝk

+]k=`+1,...,N−1)

by the induction hypothesis, if r`+1
ij 6= 0. Considering the representation of γ`i at level `+1,

γ`i =
∑
j

r`+1
ij γ`+1

j , (5)

and noting that
span([Ĝk

+]k=`+1,...,N−1) ⊆ span([Ĝk
+]k=`,...,N−1)

confirms (4) also in this situation. This completes the proof of (4) for all levels.
Finally we note that (4) applies to functions with i ∈ B`, i.e., to the selected functions

Ĝ` of all levels.

2.3. Truncation and preservation of coefficients

We use the three index sets A`, B`, C` to decompose the coefficient vectors of level `
into the sum of three vectors

c` = c`A + c`B + c`C, (6)

where the elements of the three vectors c`X = [c`X ,i]i∈I` are defined by

c`X ,i =

{
c`i if i ∈ X `

0 otherwise
X = A,B, C.

An analogous decomposition is performed for the refinement matrices,

R`+1 =
∑

X ,Y=A,B,C

R`+1
XY , (7)

where we obtain matrices R`+1
XY = [r`+1

XY,ij]i∈I`,j∈I`+1 with elements

r`+1
XY,ij =

{
r`+1
ij if i ∈ X ` and j ∈ Y`+1

0 otherwise
X ,Y = A,B, C.

SFR is equivalent to the fact that one among the nine matrices defined in (7) is simply the
null matrix, namely

R`+1
CA = [0]i∈I`,j∈I`+1 . (SFR’)

This assumption enables us to restore partition of unity by a truncation mechanism, which
combines the refinement with the elimination of contributions from selected functions of
higher levels. More precisely, the truncation of a coefficient vector of level `−1 with respect
to level ` is defined by

trunc`(c`−1) = c`−1(R`
AA +R`

BA).
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From this definition we obtain immediately

trunc`(c`−1)G` = f − c`−1(R`
AB +R`

BB +R`
CB +R`

AC +R`
BC +R`

CC)G
` (8)

if f = c`−1G`−1. We define the truncated hierarchical generating system

T = [τ `i ]i∈B`, `=0,...,N−1 (9)

by applying truncation repeatedly to the selected functions,

τ `i = truncN−1(· · · trunc`+1([δij]
T
j∈I`) · · · )GN−1, i ∈ B`, ` = 0, . . . , N − 1, (10)

where the Kronecker delta δij is used to define the characteristic coefficient vector [δij]
T
j∈I`

which corresponds to the selected function γ`i of level `. Note that the truncation does not
affect the values on difference subdomains of lower levels, i.e.,

τ `i |D` = γ`i |D` for i ∈ B`, ` = 0, . . . , N − 1. (11)

Consider a function that has representations on all difference subdomains

f |D` = (c`A + c`B)G`|D` , ` = 0, . . . , N − 1. (12)

We assume compatibility of the representations at different levels,

c`A = (c`−1A + c`−1B )(R`
AA +R`

BA), ` = 1, . . . , N − 1, (CRL)

and use it to define the hierarchical spline space with compatible representations

H = {f ∈ C(M) | ∃[c`]`=0,...,N−1 such that Eq. (12) and CRL are satisfied}.

It consists of functions f with the property that their restriction to each difference subdo-
main can be represented with respect to the associated generating system. In addition, we
require CRL, which is automatically satisfied for linearly independent generating systems.
Indeed, the decomposition of the coefficient vectors (6) and refinement matrices (7) gives
unique representations

c`A = (c`−1A + c`−1B + c`−1C )(R`
AA +R`

BA +R`
CA)

if the generating systems are linearly independent, while using SFR leads to CRL.
CRL is essential for proving the following characterization result, which generalizes

Theorem 2 of [34]:

Proposition 2 (Preservation of coefficients). Any function f ∈ H possesses a representa-
tion

f =
N−1∑
`=0

∑
i∈B`

c`iτ
`
i (13)

with respect to the truncated hierarchical generating system T that preserves the coefficients
[c`i ]i∈B` of the local representations (12) if SFR is satisfied.
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We prepare the proof by deriving an auxiliary result:

Lemma 3. Given a function f ∈ H with representations (12), we define a sequence of
coefficient vectors [d`]`=0,...,N−1 by

d` =

{
c0B, if ` = 0

trunc`(d`−1) + c`B, otherwise.
(14)

These vectors satisfy

d` = c`A + c`B for all ` = 0, . . . , N − 1. (15)

Proof of Lemma 3. We prove it by induction. The hypothesis is true for ` = 0 as A0 = ∅.
We assume that the assumption is satisfied for level `− 1. We thus obtain

trunc`(d`−1) = (c`−1A + c`−1B )(R`
AA +R`

BA) = c`A,

where the second equality is simply CRL. Using the recursion (14) immediately confirms
that (15) is valid for level ` as well.

Now we are ready to prove the preservation of coefficients:

Proof of Proposition 2. First we combine DN−1 = M with equations (12) and (15) to
obtain f = dN−1GN−1. Using (14) repeatedly leads to

f = dN−1GN−1 =
N−1∑
`=0

truncN−1(· · · trunc`+1(c`B) · · · )GN−1.

We note that truncation is a linear operator and obtain

truncN−1(· · · trunc`+1(c`B) · · · ) =
∑
i∈B`

c`i truncN−1(· · · trunc`+1([δij]
T
j∈I`) · · · )

since c`B =
∑

i∈B` c
`
i [δij]

T
j∈I` . The representation (13) can be established by combining

these two observations and comparing the result with the definition (10) of the truncated
hierarchical generating system.

We complete the analysis by showing that H = span(T ) = span(K).

Proposition 4. The hierarchical generating system K and the truncated hierarchical gen-
erating system T span the hierarchical spline space with compatible representations H if
SFR is satisfied.
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Proof. Proposition 2 implies that H ⊆ span(T ). Next, observe that span(T ) ⊆ span(K).
Indeed, each function τ `i in T is obtained from the corresponding function γ`i in K by
subtracting certain linear combinations of selected functions from higher levels, cf. (8) and
(10). We complete the proof by showing that span(K) ⊆ H:

Consider a selected function γ`i , i ∈ B`. Its restrictions γ`i |Dk possess representations
(12) with coefficients

ck =


[0]T

i∈Ik if k < `,

[δij]
T
j∈I` if k = `,

[δij]
T
j∈I`R

`+1 · · ·Rk if k > `.

This is obvious for k < ` since the restriction is then simply the null function. It is clearly
also true for k = ` since i ∈ B`. The representations for k > ` are obtained with the help
of the refinement equation (1).

CRL is satisfied for k ≤ ` with coefficient vectors ckA = 0 and ck−1A = ck−1B = 0. It is
also satisfied for k > ` since the refinement equation (1) gives ck = ck−1Rk, which implies

ckA = (ck−1A + ck−1B + ck−1C )(Rk
AA +Rk

BA +Rk
CA) = (ck−1A + ck−1B )(Rk

AA +Rk
BA)

according to SFR’. Consequently we have γ`i ∈ H for all i ∈ B` and for all levels `, and
thus span(K) ⊆ H.

Finally we identify assumptions that guarantee that the truncated hierarchical gener-
ating system is normalized.

Corollary 5. The truncated hierarchical generating system T forms a partition of unity if
all generating systems G` are normalized and CS1 is satisfied.

Proof. The assumptions of the corollary guarantee that 1 ∈ H has compatible represen-
tations at all levels, where all coefficients are equal to 1. The preservation of coefficients
(Proposition 2) implies that the truncated hierarchical generating system sums to 1.

3. Linear independence

It has been shown that local linear independence of the generating systems G` on Ω ⊂ Rd

is a sufficient condition for the linear independence of the hierarchical generating system
[11, 39]. This observation can be extended to functions defined on domain manifolds.
Local linear independence, however, is a relatively strong condition, which is not satisfied
in certain important applications, such as functions defined by subdivision algorithms. The
analysis of weaker sufficient conditions is therefore of interest.

3.1. Linear independence on subsets

We consider the restrictions of the generating systems to certain subsets. Given a subset
S ⊆M, we consider local representations of functions,

f |S = c`{S} G`{S}.
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The column vector
G`{S} = [γ`i |S]i∈I`, int(supp γ`i )∩S6=∅

is the sub-vector of G` which consists of the functions that take non-zero values on S,
restricted to S. The row vector c`{S}, which is a sub-vector of c`, contains the coefficients
of these functions.

We will also use the local refinement matrices R`+1{S}, which are the sub-matrices of
the full refinement matrix that express the relationship between the restricted generating
systems

G`{S} = R`+1{S} G`+1{S}.
We use the symbol #G`{S} to denote the dimension of the vector G`{S}. For later

use we formalize two simple facts about linear independence of functions on subsets.

Lemma 6. Let G` be linearly independent on a subset S of M and let S′ and S′′ be subsets
of M.

(i) G` is linearly independent on S ∪S′ if G` is linearly independent on S′.

(ii) G` is linearly independent on S′′ if S′′ ⊇ S and #G`{S′′} = #G`{S}.
The linear independence on S′′ is valid even if #G`{S′′} ≤ #G`{S}+ 1. However, we

will use the weaker form (ii) of the statement, as follows. We define the G`-closure

〈S〉` = M \
⋃
γ∈G`

γ|S=0

supp γ (16)

of a subset S ⊆ M as the largest subset 〈S〉` with the property that the vectors G`{S}
and G`{〈S〉`} are identical. According to part (ii) of Lemma 6, G` is linearly independent
on any subset S′′ satisfying

S ⊆ S′′ ⊆ 〈S〉` (17)

if it is linearly independent on S.
We present a simple observation, formulated as a lemma, which helps to analyze whether

G` is linearly independent on a chosen subdomain S. It summarizes some of the arguments
used in [27] to analyze linear independence of Catmull-Clark and Loop subdivision blending
functions.

Lemma 7. G` is linearly dependent on S if the matrix R{S}`+1 · · ·R{S}k does not have
full row rank for some k ≥ `. Otherwise, it is linearly independent on S if additionally Gk

is linearly independent on S.

Proof. Consider a linear combination of G`{S} representing the null function,

0 = c`{S}G`{S} = c`{S}R{S}`+1 · · ·R{S}kGk{S}. (18)

There exists a non-trivial vector c`{S} in kerR{S}`+1 · · ·R{S}k if this matrix does not
have full row rank. Otherwise one may conclude that c`{S} is the row null vector if Gk{S}
is linearly independent on S.
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3.2. Ensuring linear independence

Generalizing earlier results from [18] and [11], we formulate a sufficient condition for
linear independence of hierarchical generating systems:

Theorem 8. The functions in K or T form a basis for H if G` is linearly independent on
D` for all ` = 0, . . . , N − 1.

Proof. We need to show that

bK = 0 implies b = 0, (19)

where K is understood as a single vector, b is a row vector of coefficients and 0 is a row
null vector of the same dimension. We decompose and rearrange the left-hand side of (19)
according to the hierarchy of the generating systems,

b0Ĝ0 + . . . + bN−1ĜN−1 = 0. (20)

The vector b` collects the coefficients of functions in Ĝ`.
The functions in the first term in (20) are the only non-zero functions acting on the

difference subdomain D0. By assumption, Ĝ0 is linearly independent on D0. It follows that
b0 = 0. In the remaining sum only the functions in the first term b1Ĝ1 are non-zero on
the difference subdomain D1. Consequently the above argument can be used repeatedly,
eventually exhausting all the terms in (20). Moreover, since truncation does not change
the values of the functions on the corresponding difference subdomains (11), this proof
applies to the truncated hierarchical generating system T as well.

For each level ` we consider a catalog C`, which consists of (some) subdomains S ⊆M
with the property that the restricted generating system G`{S} is linearly independent.
For many concrete applications, the generating systems G` are known to be linearly inde-
pendent on certain subdomains. These subdomains form the initial catalogs. The catalogs
can also be enriched using Lemma 7. The construction of the catalogs will be exemplified
in the next section.

Once these catalogs are available, Lemma 6 and Theorem 8 lead to a refinement algo-
rithm that maintains linear independence of (truncated) hierarchical generating systems
created by adaptive refinement:

Algorithm (refinement guaranteeing linear independence: ARLI).
INPUT: Subdomain hierarchy [M`]`=0,...,N−1 and open subset R marked for refinement

MN
+ = ∅

FOR ` FROM N − 2 DOWNTO 0 DO

A`+1 = M`+1 ∪M`+2
+ ∪ (M` ∩R) (i)

d`+ =
⋃
{S ∈ C` | S ⊆M \ A`+1} (ii)

D`
+ =

〈
d`+
〉
`
∩ (M \ A`+1) (iii)

M`+1
+ = M \D`

+ (iv)
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END DO

M0
+ = M

RETURN: New subdomain hierarchy [M`
+]`=0,...,N−1

In step (i) of the algorithm we create a subset A`+1, which is then “enlarged” to M`+1
+

in the following way: We create a set D`
+ as the largest subset of M \ A`+1 where G` is

linearly independent. More precisely, in step (ii) we form a set d`+ as a union of subsets
from the catalog C`. According to Lemma 6, the functions G` are linearly independent
there. In step (iii) we take the G`-closure of the set created in step (ii) and intersect it
with M \ A`+1. Again, according to Lemma 6, the functions G` are linearly independent
there. Finally we define M`+1

+ in step (iv) as the complement of the newly created D`
+.

Note that since R is open, the set A`+1 is open as well. Moreover, the G`-closure of d`+
intersected with the closed set M\A`+1 in step (iii) creates the closed set D`

+. Consequently,
M`+1

+ is again open.

Theorem 9. The subdomain hierarchy [M`
+]`=0,...,N−1 generated by ARLI defines a lin-

early independent hierarchical generating system K+, which spans a superspace of the
space spanned by K, i.e., spanK ⊆ spanK+, if the generating system GN−1 is linearly
independent on M. Moreover, it increases the level of all points that have been marked for
refinement, except for points of the maximum level N − 1.

Proof. Firstly, let x be a point of level ` ≤ N − 1, i.e., x ∈M`, and suppose it is marked
for refinement: x ∈M` ∩R. According to step (i) of ARLI, we have x ∈ A`+1, hence step
(iii) gives x 6∈ D`

+. We thus conclude that x ∈ M`+1
+ . Note that the level of x ∈ MN−1

does not increase, as MN
+ = ∅.

Secondly, the new subdomains form a nested sequence of open sets, and the first sub-
domain remains unchanged,

M = M0
+ and M`+1

+ ⊇M`+2
+ , ` = 0, . . . , N − 2.

Indeed, M`+2
+ ⊆ A`+1 by (i) and A`+1 ⊆ M`+1

+ by (iii) and (iv). Note that the algorithm
terminates with ` = 0 and assigns M0

+ = M = M0. As observed before, the new subdomain
hierarchy consists of open sets.

Thirdly, combining (i) with (iii) and (iv) confirms M`+1 ⊆ A`+1 ⊆ M`+1
+ , thus we can

use Proposition 1 to conclude that spanK ⊆ spanK+.
Finally, to prove that the resulting hierarchical generating system K+ is linearly inde-

pendent, it suffices to observe that each generating system G` is linearly independent on
the new difference subdomain D`

+ = M\M`+1
+ , see Theorem 8. By construction we obtain

d`+ ⊆M \ A`+1, hence the new difference subdomain satisfies

d`+ ⊆ D`
+ ⊆ 〈d`+〉`

and the linear independence on the new difference subdomain is guaranteed by (17).

Examples of applying ARLI will be presented in the following section for various gen-
erating systems.
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4. Applications

We exemplify the extended framework of hierarchical generating systems by studying
five concrete applications. The first two applications (doubly hierarchical B-splines and
hierarchical Zwart-Powell elements) consider domain manifolds that are open subsets of Rd,
while the three remaining ones (hierarchical Catmull-Clark, Loop and Butterfly subdivision
splines) use domains that are meshes. The fifth application, the Butterfly scheme, relies
on generating systems formed by functions which are not exclusively non-negative.

In all cases, the hierarchical generating systems and truncated hierarchical generating
systems possess the properties which were discussed in Section 2, except for the partition
of unity property, which is generally only satisfied for the three latter applications (the sub-
division splines). Linear independence depends on the choice of the subdomain hierarchies
and will be discussed individually.

4.1. Doubly hierarchical B-splines

Doubly hierarchical B-splines are obtained as an instance of the hierarchy of hierarchies,
which was briefly discussed in [39, p. 555 and Example 20], motivated by the necessity to
perform adaptive refinement in the presence of ‘features’.

Domain and generating systems. The domain M is an open subset of Rd, and the sub-
domains M` form a nested sequence of subsets thereof. The generating systems G` are
hierarchical B-splines [11].

For each level ` we consider a sequence of generating systems [g`,k]k=0,...,n−1, which are
simply tensor-product B-splines of degree p = [pi]i=1,...,d spanning nested spaces, and an
associated subdomain hierarchy [m`,k]k=0,...,n−1. The hierarchical B-splines G` are defined
by using the selection mechanism. They are non-negative and linearly independent. These
generating systems span nested spaces

span(G`−1) ⊆ span(G`), ` = 1, . . . , N − 1,

if the hierarchies at all levels ` satisfy

m`−1,k ⊆ m`,k and span(g`−1,k) ⊆ span(g`,k), k = 0, . . . , n− 1,

according to the General Enlargement Theorem [39, Theorem 19]. The same result also
implies that the refinement matrices R`+1 relating the generating systems G` are non-
negative. SFR is thus automatically satisfied since the generating systems G` are linearly
independent and consist of non-negative functions.

The hierarchical generating system K that is defined by the subdomains M` and the
generating systems G` is called the system of doubly hierarchical B-splines1.

1Note that this is only one of several possibilities to construct generating systems from hierarchies of
hierarchical splines. Other possibilities are obtained when considering truncation for each of the individual
hierarchies, or for the overall hierarchy. We restrict ourselves to the simplest case.
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Linear independence. The linear independence of the doubly hierarchical B-splines K is
not automatically guaranteed since the generating systems G` do not possess the property
of local linear independence in general. We may use Theorem 8 and ARLI to construct
subdomain hierarchies that generate a linearly independent generating system K. The
catalogs C` contain all elements of the hierarchical grid defined by [m`,k]k=0,...,n−1 that

belong to the support of
∏d

i=1(pi + 1) B-splines in G` since this is the dimension of the
space of tensor-product polynomials of degree p, which is contained in span(G`). The
catalogs can be enriched with the help of Lemma 7, as shown in the following example.

Example. Consider bivariate doubly hierarchical B-splines of degree p = (2, 2) defined on
M = [0, 4]2. We construct them from hierarchical B-splines with two levels (n = 2) and
subdomains

m`,0 = M and m`,1 = [1, 3]× [2, 4],

which are identical for all levels ` = 0, . . . , N − 1.
We use generating systems g`,0 that consist of biquadratic tensor-product B-splines with

knots 2−`Z × 2−`Z, see Fig. 1. The generating systems g`,1 are tensor-product B-splines
with the same knots, but with a double knot at x = 2. A similar example was used,
without analyzing linear independence, in [39, Example 20]. The hierarchical generating
systems G` are linearly independent, and they are even locally linearly independent for
all levels ` ≥ 1, analogously to [1, Proposition 1]. Thus, the catalogs C` contain all open
subsets of M if ` ≥ 1.

However, G0 does not have the property of local linear independence since it contains
ten functions that take non-zero values on [1, 2]× [2, 3], while the dimension of the space of
biquadratic polynomials is only 9. By counting the functions that take non-zero values on
each of the 12 cells in M\m0,1 we conclude that these cells (and any open subset contained
in their union) can be included into the catalog C0. In addition we use Lemma 7 to include
the subsets [3

2
, 5
2
]× [ i

2
, i+1

2
] for i = 4, . . . , 7, see Fig. 2 (left). Moreover, one may use Lemma

6 to enlarge C0 further, see Fig. 2 (right).
We use these catalogs for ensuring linear independence by ARLI, see Fig. 3. Applying

ARLI to a subdomain hierarchy with two levels and M1 = ∅ (left) creates the subdomain
hierarchy [M`

+]`=0,1 with a linearly independent hierarchical generating system, see Fig. 3,
right.

4.2. Hierarchical Zwart-Powell elements

The Zwart-Powell (ZP) element was first introduced in [42], see also [7]. The construc-
tion of the hierarchical generating system was analyzed in [39], in particular focusing on its
linear dependencies. The question of completeness of the hierarchical generating system of
ZP elements was discussed recently in [23].

Domain and generating systems. We consider generating systems which consist of trans-
lates of the ZP element, a quadratic C1-smooth box spline defined on a type-2 (or criss-
cross) triangulation in R2. Such a triangulation is defined by horizontal, vertical and di-
agonal lines through points with integer coordinates, forming a triangulation with vertices
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Figure 1: The meshes for ` = 0, 1, 2 (from left to right) which are used to define the doubly hierarchical
B-splines in the example in Section 4.1.

Figure 2: Far left and left: Lemma 7 allows us to include [ 32 ,
5
2 ]× [ i2 ,

i+1
2 ] for i = 5, 6 into C0. Right and

far right: We use Lemma 6 to include [1, 3]× [j, j + 1] for j = 2, 3.

R M1
+

Figure 3: Ensuring linear independence of doubly hierarchical B-splines. Given a region R that is marked
for refinement (left, gray), the subdomain M1

+ is found by ARLI (right).

of valency 4 and 8. Uniform refinement of this grid leads to a sequence of triangulations
of levels ` = 0, 1, . . ., which are defined by the lines

x = 2−`Z, y = 2−`Z, x+ y = 2−`Z, x− y = 2−`Z.

The ZP element is a locally supported function with an octagonal support, which is ob-
tained as the convex hull of the cross formed by five squares, see Fig. 4 (left). The level `
translates are centered at the points of the scaled and shifted integer grid with vertices
2−`Z2 + 2−(`+1)(1, 1). We consider a domain which is a connected, bounded, and open
subset M ⊂ R2, and the finitely many translates of all levels taking non-zero values on it.

For each level, the system of translates is known to possess one linear dependency
relation (also called the chess-board pattern, see Fig. 4, right). The spaces spanned by the
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Figure 4: Left: The support of a ZP element defined on a criss-cross triangulation. The center point is
denoted by a black dot. The circles denote the functions defined on the finer triangulation with a non-zero
coefficient in the representation of the coarse function. Right: The coefficients in the chess-board pattern.

generating systems are nested since each level ` translate can be represented as a linear
combination of the 12 translates of the next finer level whose supports are contained in the
support of the coarser function, using non-negative coefficients, see Fig. 4 (left).

Linear independence is restored by omitting one (arbitrarily chosen) translate at each
level, see [36]. The remaining functions of each level ` form the generating system G`.

The (uniquely determined) refinement matrices represent each level ` translate as a
linear combination of translates of the next level. In most cases, these linear combinations
take the form shown in Fig. 4 (left). If one of the level ` + 1 translates is the omitted
one, however, then the linear combination involves all elements of G`+1 as the omitted
function is expressed with the help of the chess-board pattern. Consequently, SFR is not
automatically satisfied but requires a careful choice of the subdomain hierarchy.

Linear independence. We consider a nested sequence of subdomains [M`]`=0,...,N−1. SFR

is satisfied if the support of the omitted translate of level `+ 1 is not contained in M`+1

for all levels ` = 0, . . . , N − 2. In fact, the 12 functions (see Fig. 4, left) needed to
represent γ`i , where i ∈ C`, are then all present in G`+1 since their supports are contained
in supp γ`i ⊆M`+1.

This condition, however, does not yet suffice to guarantee linear independence of the
hierarchical generating system. The catalog C`, which is required to build suitable hier-
archies via ARLI, depends on the choice of the omitted translate. The generating system
G` is linearly independent on a connected subset S if this subset possesses a nonempty in-
tersection with the support of the omitted level ` translate, see [23, Lemma 5]. The catalog
C` consists of all sets S with this property.

Example. We consider a subdomain hierarchy with two levels (N = 2) and M1 = ∅, see
Fig. 5 (left). We define G` by omitting the level ` translate in the top left corner. For
` = 0 and ` = 1, the center of its support is shown in Fig. 5, left and right, respectively.

Let R be the region marked for refinement (shown in gray in Fig. 5, left). We use
ARLI to restore linear independence of the hierarchical generating system. The algorithm
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R M1
+

Figure 5: Applying ARLI to maintain linear independence of hierarchical ZP elements. Left: Initial
subdomain hierarchy with two levels (N = 2) and M1 = ∅. The region R (gray) is marked for refinement.
The support center of the omitted level 0 translate is visualized by a black dot. Right: Refined subdomain
hierarchy with two levels created by ARLI. The support center of the omitted level 1 translate is visualized
by a circle.

creates the new subdomain hierarchy M = M0
+ ⊇ M1

+, which is shown in Fig. 5 (right).
Note that M \R has two connected components, and the north-east one is not contained
in C0 since it does not intersect the support of the omitted function. Finally we confirm
that SFR is satisfied since the support of the omitted function from level 1 (denoted by a

circle) is not contained in M1
+.

4.3. Hierarchical Catmull–Clark subdivision

Catmull–Clark (CC) subdivision [3] (see also the monograph [26] and the references
therein) generalizes the construction of bicubic spline surfaces to control meshes of arbitrary
topology. It is one of the classical methods for surface design. This subdivision scheme
defines refinable generating systems on meshes, which are suitable for defining hierarchical
generating systems. Truncated hierarchical CC subdivision was studied recently in [37, 38]
and independently in [40].

Domain and generating systems. The domain M of CC subdivision splines is a two–
dimensional topological manifold M/∼, which is constructed by gluing together numerous
copies of the elementary cell � = [0, 1]2 across edges, see [26]. More precisely, one con-
siders a finite index set J , which defines #J copies � × J of the elementary cell, and a
symmetric, irreflexive set of edge indices E ⊂ J 2. For each edge index (i, j) ∈ E we have
an associated affine map αij : R2 → R2, which is one of the 32 isometries that map the
unit square � to one of its four neighboring squares of size 1. These affine maps identify
points on edges via

(x, i) ∼ (αij(x), j).

It is assumed that the identification is consistent (i.e., αij = α−1ji ) and that each point in
the interior of an edge is identified with exactly one point from another cell.

The number of points a vertex is identified with (i.e., the size of the equivalence class
generated by a vertex in M) is called the valence of the vertex. We assume that all valences
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are larger than 2. Vertices of valence other than four are said to be extraordinary vertices
(EVs). All cells are assumed to have at most one EV.

For each level ` = 0, . . . , N − 1 we define a subdivision of M into cells of level ` by
applying dyadic subdivision (which splits a square into four smaller squares of equal size)
` times to the initial cells J . The generating systems G` consist of CC blending functions
of level `. They are associated to the vertices of level `, and their support consists of the
cells in the two-ring neighborhood.

The blending functions satisfy the CC refinement equations taking the form (1), which
also relate the coefficients of representations of a function at different levels via

f = c`G` = c`R`+1︸ ︷︷ ︸
=c`+1

G`+1. (21)

The coefficients c`+1
i are weighted averages of coefficients c`j at neighboring vertices. The

weights (i.e., the elements of the refinement matrices) are derived from the subdivision
equations of bicubic B-splines, which are complemented by special rules in the vicinity of
extraordinary vertices, see [26]. The CC blending functions of level ` can be obtained as the
limit of the sequence of piecewise bilinear functions (which define the ‘control meshes’) that
interpolate the values cki at the vertices of level k, where these coefficients are determined
by the refinement equations (21).

Due to the choice of the weights, the CC blending functions of level ` are the non-
negative bicubic polynomials on all regular cells (i.e., cells without EVs) for all levels
k ≥ `. They are simply bicubic B-splines if associated with a vertex that is shared by
four regular cells, and consist of an infinite number of non-negative bicubic polynomial
segments otherwise.

According to the CC refinement relation, each blending function of level ` can be
represented as a non-negative linear combination of 1+6ν blending functions of level `+1,
where ν is the valence of the associated vertex, and the supports of the finer functions are
contained in the support of the original one. SFR is therefore satisfied for any choice of
subdomains M`.

Linear independence. The CC blending functions of level ` are known to be linearly inde-
pendent on all regular cells of the same level since their restrictions to cells of this type are
simply the 16 polynomial segments of bicubic tensor-product B-splines. This observation
is the starting point for ensuring linear independence.

We build the catalogs C`, which are required for executing ARLI, by analyzing the
linear independence of G` on cells of levels ` and ` + 1, using Lemmas 6 and 7. This
is similar to the approach taken in [27] for studying linear independence of CC blending
functions, and leads to the same results. In contrast to that earlier work, we do not use
eigenanalysis of the subdivision matrix; instead we work solely with the observations that
were formalized in Lemmas 6 and 7.

The results are summarized in Fig. 6, where we consider cells of level ` with one EV, and
three different types (depending on their relative location to the EV) of cells of level `+ 1.
The generating system G` is linearly independent on cells marked with X, and linearly
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A+

B+ C+

B+

valence ` `+ 1
ν A+ B+ C+

3 X × X X
4 (regular) X X X X

5 X X × ×
6 X X × ×
7 X X × ×
8 X X × ×
9 X X × ×
10 X X × ×
11 X X × ×
12 X X × ×

Figure 6: Linear independence of CC blending functions of level ` on cells of levels ` and `+ 1 for various
values of the valence ν. The case of regular cells is covered by ν = 4.

R M1
+

Figure 7: Left: A two-level subdomain hierarchy M = M0 ⊇ M1 = ∅, with a region R marked for
refinement (shaded in gray). Right: ARLI generates the subdomain M1

+ (shown as collection smaller
cells).

dependent otherwise. The constructions of Truncated Hierarchical (TH) CC splines in
[37, 38] consider cells of level ` (i.e., the second column of the table) only.

Example. Consider a two-level subdomain hierarchy (N = 2) with M1 = ∅ and the domain
M, a subset of which is shown in Fig. 7 (left). Notice the presence of EVs of valency 5 and
3. According to the table in Fig. 6, not every subset in the vicinity of the EVs is contained
in the catalog C0, and linear independence needs to be achieved by applying ARLI.

Let R be the region marked for refinement (gray-shaded area in Fig. 7, left). Applying
ARLI modifies R by enlarging it and defines a new subdomain hierarchy [M`

+]`=0,1, with
M1

+ as shown in Fig. 7 (right). In particular, the 3 cells of level 1 (two of type B+ and two
of type C+) are added to R as they are not contained in the closure of d0+.

4.4. Hierarchical Loop subdivision

Loop subdivision [21, 28] is another popular subdivision scheme for surface design. It
operates on triangular (instead of quadrangular) meshes. Since Loop subdivision generates
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refinable generating systems, defined on two-dimensional domain manifolds, it lends itself
to the construction of hierarchical generating systems.

Domain and generating systems. The domain M of Loop subdivision splines is a two–
dimensional topological manifold M/∼, which is constructed in an analogous fashion as in
the previous section. There are some subtle differences, however: The cells are copies of
an equilateral triangle 4 instead of the unit square. The affine maps associated with the
edges are one of the 18 isometries that map 4 to one of its three neighboring equilateral
triangles of the same size. Extraordinary vertices (EVs) have a valence other than six.

The generating systems G` consist of Loop blending functions, which are determined by
the refinement matrices. The elements of these matrices are derived from the subdivision
equations of the box spline N222 of type (2,2,2) on the type-1 triangulation, see [7], which
are again complemented by special rules in the vicinity of extraordinary vertices.

The Loop blending functions of level ` are non-negative quartic polynomials on all
regular cells (i.e., cells without EVs) of level k ≥ `. They are the box spline N222 if
associated with a vertex that is shared by six regular cells, and they consist of an infinite
number of non-negative quartic polynomial segments otherwise.

Each blending function of level ` can be represented as a non-negative linear combina-
tion of 1 + 3ν blending functions of level ` + 1, where ν is the valence of the associated
vertex, and the supports of the finer functions are contained in the support of the original
one. SFR is again satisfied for any choice of subdomains M`.

Linear independence. The Loop blending functions of level ` are known to be linearly
independent on all regular cells of the same level since their restrictions to cells of this
type are simply the polynomial segments of the box spline N222. This observation is the
starting point for ensuring linear independence.

Once again, we build the catalogs C`, which are required for executing ARLI, by analyz-
ing the linear independence of G` on cells of levels ` and `+1, using Lemmas 6 and 7. This
is similar to the approach taken in [27] for studying linear independence of Loop blending
functions, and leads to the same results. Similar to the CC case we work solely with the
observations that were formalized in Lemmas 6 and 7 instead of using eigenanalysis.

Fig. 8 summarizes our findings. We consider cells of level ` with one EV, and three
different types (depending on their relative location to the EV) of cells of level ` + 1.
The generating system G` is linearly independent on cells marked with X, and linearly
dependent otherwise.

Example. We use the catalog presented in Fig. 8 to perform adaptive refinement with the
help of ARLI. We consider a subdomain hierarchy with two levels M = M0 ⊇ M1 = ∅,
where M is a domain manifold consisting of triangular cells, see Fig. 9 (left). After selecting
a region R (left, gray) for refinement, the algorithm generates a new subdomain hierarchy
M = M0

+ ⊇M1
+ ⊇M2

+ = ∅, see Fig. 9 (center). We need to add 8 cells of level 1 to obtain
M1

+.
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A+

B+

C+ C+

valence ` `+ 1
ν A+ B+ C+

3 X X X X
4 X X X X
5 X X X X

6 (regular) X X X X
7 X X × ×
8 X X × ×
9 X X × ×
10 X X × ×
11 X X × ×
12 X X × ×

Figure 8: Linear independence of Loop blending functions of level ` on cells of levels ` and ` + 1 (types
A+, B+, C+) for various values of the valence ν. The case of regular cells is covered by ν = 6.

R M1
+ M1

+

Figure 9: Using ARLI to perform adaptive refinement while maintaining linear independence for Loop
(center) and Butterfly (right) blending functions. A region R, which is marked for refinement (left, gray),
is enlarged to M1

+ (center and right) by adding certain cells to ensure linear independence. In the case of
Butterfly subdivision, some cells (right, dark gray) which do not belong to C0 individually do not need to
be refined since their union with the other cells in M \M1

+ (shown in white) does.

4.5. Hierarchical Butterfly subdivision

Butterfly subdivision is an interpolatory algorithm for surface design based on trian-
gular meshes. More precisely, the limit surface interpolates the vertices of the given mesh.
We consider the modified Butterfly scheme (further referred to simply as the Butterfly
scheme), introduced in [41] as an improved version of the original scheme presented in [9].
A non-stationary variant of Butterfly subdivision has appeared recently [25].

Domain and generating systems. The domain M of Butterfly subdivision splines is a two–
dimensional topological manifold M/∼, which is constructed in an analogous fashion as in
the previous section. We consider four different types of cells A, B, C and R, see Fig. 10
(left). Extraordinary cells (type A) contain an EV. Regular cells of types B and C share
an edge or only a vertex with an extraordinary cell, respectively. The remaining regular
cells have type R. We restrict ourselves to domains where only these four types of cells are
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D+G+

F+I+

H+J+

L+ K+

L+

L+

C+
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G+

H+
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Figure 10: Types A, B, C, R of cells of level ` (left) and A+, . . . , L+ of level ` + 1 (right) for Butterfly
subdivision.

present. Consequently, the shortest paths connecting any two EVs contain at least three
edges.

The generating systemsG` consist of Butterfly blending functions, which are determined
by the refinement matrices. The refinement matrices preserve the coefficients that are
associated with existing vertices. Consequently, each Butterfly blending function of level `
takes the value 1 at the vertex it corresponds to, and the value 0 at all other vertices.

The support of Butterfly blending functions has a fractal structure. In order to define
the hierarchical generating system, one needs to decide whether the support of a But-
terfly blending functions is contained in a subdomain or not. We shall assume that the
subdomains M` consist of cells (triangles) of level `. Consequently, it suffices to identify
the triangles of level ` + 1 that contribute to the support of a level ` Butterfly blending
function, see Fig. 11 for an example. Analyzing the Butterfly refinement rules confirms
that SFR is satisfied.

Figure 11: Cells of level `+ 1 that contribute to the supports of two Butterfly blending functions of level
` in the vicinity of an EV of valency 8. The vertices that correspond to the blending functions are marked
by a black dot.

Linear independence. The Butterfly blending functions of level ` are linearly independent
on any subset of the vertex set of level `, due to the interpolatory nature of this subdivision
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valence ` `+ 1
ν A B C A+ B+ C+ D+ E+ F+ G+ H+ I+ J+

3 X X X × X X X X X X X X X
4 X X X × × X X X X X X X X
5 X X X × × X X X X X X X X

6 (regular) R : X K+: X L+: X
7 X X X × × X X X X X X × ×
8 X X × × × X X X × × × × ×
9 X X × × × × × X × × × × ×
10 X X × × × × × × × × × × ×
11 X × × × × × × × × × × × ×
12 X × × × × × × × × × × × ×

Figure 12: Linear independence of Butterfly blending functions of level ` on cells of levels ` (types A, B,
C, R) and `+ 1 (types A+ to L+) for various values of the valence ν. The case of regular cells is covered
by ν = 6.

scheme. Similar to the previous sections we use Lemmas 6 and 7 for generating the cata-
logs C`. More precisely, we analyze the linear independence of level ` Butterfly blending
functions on cells of levels ` and `+ 1.

Besides irregular cells (type A), there are three types B, C and R of regular ones, see
Fig. 10 (left). Splitting them into cells of level ` + 1 gives 12 different types A+, . . . , L+.
The two types K+ and L+ are created when splitting a cell of type R, see Fig. 10 (right).

We use Lemma 7 and the second part of Lemma 6 to prove that some of the cells are
contained in C`. More precisely, for a suitable k > `, we choose the set S to be the subset
of the level k vertex set that is contained in the cell under consideration. We then analyze
the row rank of the corresponding matrix in Lemma 7, whose entries are simply the values
of the subdivision blending functions of level ` at the vertices forming S. If this matrix is
of full row rank, then the second part of Lemma 6 allows us to conclude that G` is linearly
independent on the cell.

In addition, we rely on Lemma 7 for identifying cells where G` is linearly dependent.
In this case, the set S is the entire cell under consideration. The matrix entries are the
values of the subdivision blending functions at vertices from the level k vertex set for a
suitable k > ` within the cell and located on the two layers (with respect to the grid of
level k) surrounding it.

Our results are summarized in Table 12. The results for valences other than 7, 9 and
11 were obtained using symbolic computations. The results for the remaining high odd
valencies were obtained by numerical computations in MATLAB as the coefficients [41]
involved for these valences do not admit representations by radicals. This complicates the
symbolic manipulation of the resulting expressions considerably.

Example. We reconsider the example from Fig. 9 (left) and use the catalog presented in
Fig. 12 to perform adaptive refinement with the help of ARLI. We consider a subdomain
hierarchy with two levels M = M0 ⊇ M1 = ∅, where M is a domain manifold consisting
of triangular cells. After selecting a region R (left, gray) for refinement, the algorithm
generates a new subdomain hierarchy M = M0

+ ⊇M1
+ ⊇M2

+ = ∅, see Fig. 9 (right). We
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need to add 6 cells of level 1. Although some cells (right, dark gray) are not contained in
the catalog C0, they are not included in M1

+ since each Butterfly blending function acting
on them takes non-zero values on another white cell in M \M1

+ as well.

5. Conclusion

We have extended the construction of hierarchical generating systems and the use of
truncation to restore the partition of unity property, which were presented in [39] for gen-
erating systems containing non-negative functions defined on open subsets of Rd, to more
general generating systems defined on domain manifolds. We also proposed a refinement
algorithm that maintains linear independence based on catalogs containing subdomains
with linearly independent restricted generating systems.

Based on these abstract results, we studied doubly hierarchical B-splines and hierarchi-
cal Zwart-Powell elements as well as subdivision splines generated by the Catmull-Clark,
Loop and Butterfly subdivision schemes. In particular, we provided catalogs of subdo-
mains with linearly independent generating systems, which are required by our refinement
algorithm. For Catmull-Clark and Loop subdivision, these catalogs are covered by the re-
sults in [27], which we summarized and re-confirmed using our framework. In addition, we
were able to obtain similar catalogs also for other hierarchical constructions, which include
the modified Butterfly subdivision introduced in [41]. It should be noted that the result-
ing conditions for linearly independent (truncated) hierarchical generating systems based
on the Butterfly scheme are far more restrictive than those for Catmull-Clark and Loop
subdivision, due to the larger number of cells where the functions are linearly dependent.

Potential applications include adaptive subdivision surface fitting and numerical sim-
ulation using Isogeometric Analysis. Truncated hierarchical Catmull-Clark subdivision is
explored in the recent articles [37, 38]. Clearly, besides using Catmull-Clark subdivision
[2, 24], which operates on quadrangular meshes, subdivision schemes for triangular meshes
(such as Loop subdivision) are of great interest for analysis as well, cf. [4]. Moreover, we
feel that the use of interpolatory subdivision schemes in Isogeometric Analysis might be ap-
pealing to practitioners in the finite element community due to the simplicity of enforcing
Dirichlet boundary conditions.
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[23] D. Mokrǐs, B. Jüttler, and U. Zore. Completeness of generating systems for quadratic splines on
adaptively refined criss-cross triangulations. Comput. Aided Geom. Design, in press, 2016, doi:
10.1016/j.cagd.2016.03.005.

[24] T. Nguyen, K. Karciauskas, and J. Peters. A comparative study of several classical, discrete differential
and isogeometric methods for solving Poisson’s equation on the disk. Axioms, 3(2):280–299, 2014.

[25] P. Novara, L. Romani, and J. Yoon. Improving smoothness and accuracy of modified Butterfly
subdivision scheme. Appl. Math. Comp., 272(1):64–79, 2016.

[26] J. Peters and U. Reif. Subdivision Surfaces, volume 3 of Geometry and Computing. Springer, 2008.

[27] J. Peters and X. Wu. On the local linear independence of generalized subdivision functions. SIAM
J. Numer. Analysis, 44(6):2389–2407, 2006.

[28] M. Sabin. Subdivision surfaces. In G. Farin, J. Hoschek, and M.-S. Kim, editors, Handbook of
Computer Aided Geometric Design, chapter 12, pages 309–325. Elsevier, 2002.
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finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Engrg.,
88:126–156, 2011.

[31] M. A. Scott, D. C. Thomas, and E. J. Evans. Isogeometric spline forests. Comput. Meth. Appl. Mech.
Engrg., 269:222–264, 2014.

[32] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche. T-spline
simplification and local refinement. ACM Trans. Graphics, 23:276–283, 2004.

[33] J. Shen, J. Kosinka, M.A. Sabin, and N.A. Dodgson. Conversion of trimmed NURBS surfaces to
Catmull-Clark subdivision surfaces. Comput. Aided Geom. Design, 31(7–8), 2014.

[34] H. Speleers and C. Manni. Effortless quasi-interpolation in hierarchical spaces. Numerische Mathe-
matik, 132(1):155–184, 2016.
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