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Abstract

We present a direct and local construction for polynomial G1 spline surfaces with a piece-wise Pythagorean normal (PN)
vector field. A key advantage of our method is that the constructed splines possess exact piece-wise rational offsets
without any need for reparametrisations, which in turn means that no trimming procedure in the parameter domain is
necessary. The spline surface consists of locally constructed triangular PN macro-elements, each of which is completely
local and capable of matching boundary data consisting of three points with associated normal vectors. The collection
of the macro-elements forms a G1-continuous spline surface. The designed method is demonstrated on several examples.
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1. Introduction

Curves and surfaces satisfying a certain Pythagorean
property of their tangent or normal vector fields have be-
come an intensive research topic in recent years. Inves-
tigating their properties and applications significantly in-
fluenced research in related theoretical as well as applied
disciplines, and nowadays one can find a large number of
papers and other contributions related to this interesting
concept [1, 2].

This paper is devoted to surfaces in 3-space whose
normal vectors satisfy the Pythagorean property, the so-
called PN surfaces. Rational PN surfaces were defined
in [3] as a surface counterpart of Pythagorean hodograph
(PH) curves [4]. It holds that PH curves in the plane and
PN surfaces in 3-space share some common properties, for
instance they both yield rational offsets. This property
is highly appreciated in technical practice since for gen-
eral free-form NURBS curves and surfaces an exact (piece-
wise) rational parametric representation of their offsets is
not available, and approximate techniques for computing
and interrogating their offsets are thus needed.

Nonetheless, when considering only the rationality of
offsets as a main feature of PH curves or PN surfaces
then other useful properties might be overlooked. In the
curve case, another very important practical application
is based on the fact that the parametric speed (or the
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length element), and thus also the arc length, of polyno-
mial PH curves is also polynomial. This is important, for
instance, when formulating efficient real time interpola-
tor algorithms for CNC machines. The area element and
the surface area are then the analogues in the surface case:
they are both polynomial for polynomial PN surfaces. This
feature is useful for instance in CNC painting. This shows
the prominent role of polynomial PH curves and PN sur-
faces within their rational families.

Despite the fact that both PH curves and PN surfaces
belong among hypersurfaces with a Pythagorean prop-
erty, one can find important differences between these two
classes. For instance, PH curves were first introduced as
planar polynomial shapes, including a compact formula
for their description based on Pythagorean polynomial
triples, whereas a description of rational PN surfaces us-
ing their duals was first revealed in [3]. This has clear
consequences for formulating interpolation/approximation
algorithms with these shapes. There exist many Hermite
interpolation results for polynomial PH curves [1, 2], but
there are not many algorithms for PN surface interpola-
tion. Moreover, only select few are direct PN surface algo-
rithms and the majority of those use rational PN surfaces.
A direct PN algorithm is a construction of the object to-
gether with its PN parametrisation (i.e., no reparametri-
sation is required).

In contrast, results of indirect PN algorithms are sur-
faces which become PN only after a suitable rational
reparametrisation, i.e., one does not obtain a polynomial
PN surface but a rational one. For instance, in [5] a
method for the construction of exact offsets of quadratic
triangular Bézier surface patches was designed. These
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patches are in fact PN surfaces but their PN parametrisa-
tions were obtained only via a certain reparametrisation.
A nice approach also based on reparametrisations was for-
mulated in [6], using surfaces with linear normals [7].

As for direct methods, a scheme with triangular
patches on parabolic Dupin cyclides was designed in [8],
interpolation of triangular data using the support function
was studied in [9], and using bicubic Coons patches in the
isotropic model for the construction of smooth PN surfaces
was investigated in [10].

The key advantage of direct PN interpolation tech-
niques is obvious: as no reparametrisation is required, one
does not need to apply trimming in parameter space. Nev-
ertheless, as in the case of indirect approaches, all above-
mentioned direct methods yield rational PN surfaces, and
thus cannot be used when polynomial parametrisations are
required. Only recently, the first method solving the Her-
mite problem directly, and thus yielding polynomial PN
parametrisations, was formulated in [11]. However, the
method is global and requires solving a global linear sys-
tem; the locality of e.g. the (rational) method presented
in [10] is lost.

In the present paper, based on reformulating the ap-
proaches taken in [6] and [11], we solve the challenging
problem of designing a PN Hermite interpolation method
which

• is local, i.e., a PN macro-element is computed only
from vertex and normal data of one triangle at a
time;

• is direct, i.e., it yields polynomial PN macro-
elements with no need for reparametrisations;

• yields globally G1-continuous PN spline surfaces.

We describe our algorithm in Section 3, present exam-
ples in Section 4, and conclude the paper in Section 5. But
before all that, we recall some preliminary notions and set
notation in the following section.

2. Preliminaries

In this section we recall some fundamental facts about
surfaces with rational offsets and rational curves on them.

2.1. PN surfaces and PSN curves

For the sake of completeness, we first recall the defini-
tion of PN surfaces.

Definition 2.1. Let X be a rational surface for which
there exists a parametrisation x(u, v) : R2 → R3 satisfying
the condition

‖xu × xv‖2 = σ2, (1)

where ‖·‖ denotes the Euclidean norm, σ(u, v) is a rational
function, and xu and xv are partial derivatives of x with
respect to u and v, respectively. Then X is called a surface

with a Pythagorean normal vector field (or a PN surface)
and condition (1) is referred to as PN condition or PN
property. A parametrisation satisfying the PN condition
is called a PN parametrisation. If every parametrisation
of X is PN, we call X a proper PN surface. If there exist
both PN and non-PN parametrisations of X then we speak
about a non-proper PN surface.

A distinguishing property of PN surfaces is that they
admit two-sided rational δ-offset surfaces

xδ = x± δ N

‖N‖
= x± δ xu × xv

σ
, (2)

where x(u, v) is a PN parametrisation of X and N(u, v) is
a normal vector (at regular points of X ).

Moreover, as it holds

xu ·xu xu ·xv
xu ·xv xv ·xv

= EG− F 2 = ‖xu × xv‖2 (3)

with E, F , G the coefficients of the first fundamental form,
and the squared area element has the form

dA2 = (EG− F 2) du2dv2, (4)

then PN surfaces are simultaneously surfaces with a ra-
tional area element in R3. In addition, all polynomial PN
surfaces (with polynomial area element) possess piece-wise
polynomial surface area

A(u, v) =

∫∫ √
EG− F 2 dudv =

∫∫
|σ|dudv.

Let X be a rational surface and C ⊂ X be a ratio-
nal curve on it given by the parametrisation c(t) =
x(u(t), v(t)) for some rational functions u(t) an v(t). The
normal vector field of the surface along C is expressed as

N(u(t), v(t)) = xu(u(t), v(t))× xv(u(t), v(t)). (5)

The δ-offset of the given surface along its curve is then
defined by

x(u(t), v(t))± δ N(u(t), v(t))

‖N(u(t), v(t))‖
. (6)

Of course, the curve (6) is not rational, in general. In-
deed, the formula gives a rational mapping if and only if
there exists a rational function σ(t) such that the following
(Pythagorean) condition is satisfied:

[xu(u(t), v(t))× xv(u(t), v(t))]
2

= σ2(u(t), v(t)). (7)

Then we say that the parametrisation x(u(t), v(t)) satisfy-
ing (7) admits Pythagorean surface normals with respect to
X , and is shortly called a PSN parametrisation. A curve
C ⊂ X admitting a PSN parametrisation is called a PSN
curve; see [12].

The PSN condition (7) can be satisfied for some curves
despite the fact that the PN condition (1) does not hold
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for the given surface parametrisation. On the other hand,
when the parametrisation x(u, v) of the surface X is PN,
then any parametrisation x(u(t), v(t)) of the curve C ⊂ X
is PSN. Nevertheless, we emphasise that not every rational
curve on a PN surface is PSN; this can happen when the
surface is a non-proper PN surface.

2.2. Polynomial PN triangles
Our goal is to construct a smooth piece-wise polyno-

mial PN surface interpolating given G1 data, i.e., points
and normals. We assume that the input data are organised
in a triangular manifold mesh (with or without boundary).
Before proceeding, we first reformulate the expressions in-
volved in the PN property for Bézier triangular patches.

With i = (i, j, k), |i| = i + j + k and i, j, k ≥ 0, a
triangular Bézier surface patch of degree n is defined as

x(u) =
∑
|i|=n

n!

i!j!k!
xiu

ivjwk (8)

with barycentric coordinates u = (u, v, w), u, v, w ≥ 0,
u + v + w = 1, and control points xi ∈ R3; see [13]. The
domain of the patch is a triangle 4 ⊂ R2.

The first directional derivatives with directions parallel
to the edges of 4 are

xu(u) = n
∑
|i|=n−1

∆uxiu
ivjwk,

xv(u) = n
∑
|i|=n−1

∆vxiu
ivjwk,

xw(u) = n
∑
|i|=n−1

∆wxiu
ivjwk,

(9)

where
∆uxi = xijk+1 − xij+1k,
∆vxi = xi+1jk − xijk+1,
∆wxi = xij+1k − xi+1jk,

(10)

and it holds that

xu(u) + xv(u) + xw(u) ≡ 0. (11)

A possible field of normal vectors can then be computed
as the cross product of any two directional derivatives, e.g.

N(u) = xu(u)× xv(u). (12)

If there exists a polynomial σ(u) such that

‖N(u)‖2 = σ(u)2 (13)

is satisfied, we arrive at a polynomial PN triangle. Analo-
gously, we can consider PSN curves on triangular surface
patches; cf. (7).

Remark 2.2. Note that the term ‘PN triangle’ exists
in the literature in a different sense from ours: curved
Point-Normal triangles, or often simply just PN trian-
gles, defined in [14]. These are cubic triangles matching
point and normal information at the vertices of an input
(flat) triangle, and globally form a G0 surface primarily
aimed for computer graphics applications. In our paper,
we use the term PN triangle solely in connection with the
Pythagorean-normal (PN) property.

3. Hermite interpolation with PN macro-elements

We now focus on the problem of turning a given trian-
gular manifold mesh with associated vertex normals into
a G1 PN surface spline. As our construction is local, we
consider only one triangle at a time.

Given three points p1,p2,p3 ∈ R3 and three corre-
sponding unit normal vectors n1,n2,n3 on the unit sphere
S2, we construct an interpolating triangular PN macro-
element. To achieve global G1 continuity while maintain-
ing locality of the method, each boundary curve of the
macro-element and also the surface normals along it must
depend only on two vertices and their normals.

This approach is an extension of the method presented
in [6] for surfaces with LN normals (LN surfaces). One of
the main and necessary modifications is the construction
of a suitable polynomial vector field with the Pythagorean
property. To this end, we build upon the results of [11].

Our method consists of three steps:

1. a polynomial vector field satisfying the PN property
and interpolating the directions n1,n2,n3 is con-
structed (Section 3.1);

2. three boundary PSN curves of the sought-after patch
joining p1,p2,p3 and respecting the normal field
constructed in Step 1 are determined (Section 3.2);

3. a polynomial PN macro-element respecting the nor-
mal field of Step 1 and the PSN boundary curves of
Step 2 is computed (Section 3.3).

Remark 3.1. In [6], the authors assume that the input
data are sampled from a (part of) smooth surface with
solely elliptic or hyperbolic points. The reason is that a
whole line of parabolic points may correspond to a singular
point of the normal vector field, which causes problems in
their method. This occurs when the surface normal along
a parabolic line is constant. In our approach, we allow
surfaces with all types of points but assume that the in-
put triangulation with normals respects parabolic points:
parabolic points can occur only at one vertex or along one
side of a triangle. Hence, the interiors of triangles corre-
spond to solely elliptic or hyperbolic points.

We now address each of the three steps of our method
in detail.

3.1. Polynomial PN normal vector fields

Consider n1,n2,n3 as points on the unit sphere S2. We
construct a spherical triangular patch having these points
as its vertices, and arcs of great circles connecting these
points as its boundaries. Then by omitting the least com-
mon denominator of such constructed parametrisation, we
obtain the sought-after polynomial PN normal vector field.

A great circular arc on S2 connecting ni,nj , i, j ∈
{1, 2, 3}, i 6= j, can be parametrised as follows:

a(t) =

∑2
i=0

(
2
i

)
aiαit

i(1− t)2−i∑2
i=0

(
2
i

)
αiti(1− t)2−i

, t ∈ [0, 1], (14)
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where

a0 = ni, a1 =
ni + nj

1 + ni · nj
, a2 = nj ,

α0 = α2 = 1, α1 =

√
1 + ni · nj

2
.

(15)

According to (15), we set

c002 = n1, c020 = n2, c200 = n3,
γ002 = γ020 = γ200 = 1,

c011 =
n1 + n2

1 + n1 · n2
, γ011 =

√
1 + n1 · n2

2
,

c101 =
n1 + n3

1 + n1 · n3
, γ101 =

√
1 + n1 · n3

2
,

c110 =
n2 + n3

1 + n2 · n3
, γ110 =

√
1 + n2 · n3

2
.

(16)

Next, employing the stereographic projection

π : S2 \ {w} → Pw : w · x = 0, x 7→ x− (x ·w)w

1− x ·w
(17)

with the centre w ∈ S2 we arrive at three circles in the
plane Pw, which determine the planar quadratic patch

p(u) =

∑
|i|=2

2!

i!j!k!
biβiu

ivjwk

∑
|i|=2

2!

i!j!k!
βiu

ivjwk
(18)

with

bi =
ci − (ci ·w)w

1− ci ·w
, βi = γi(1− ci ·w). (19)

Lifting (18) back onto the sphere using

π−1 : Pw → S2 \ {w}, x 7→ (x · x− 1)w + 2x

1 + x · x
, (20)

we arrive at a parametrised spherical patch, denoted by
n(u) in Fig. 1. Finally, considering only the numerator of
this parametrisation we get the sought-after quartic PN
normal vector field

N(u) =
∑
|i|=4

4!

i!j!k!
Niu

ivjwk, (21)

with control points

N004 = H002
002, N040 = H020

020, N400 = H200
200,

N013 = H002
011, N103 = H002

101, N130 = H020
110,

N031 = H011
020, N301 = H101

200, N310 = H110
200,

N022 = 1
3H002

020 + 2
3H011

011, N202 = 1
3H002

200 + 2
3H101

101,

N220 = 1
3H020

200 + 2
3H110

110, N112 = 1
3H002

110 + 2
3H011

101,

N121 = 1
3H020

101 + 2
3H011

110, N211 = 1
3H011

200 + 2
3H101

110,
(22)

n1
n3

n2

N(u)

n(u)

N004 N400

N040

w

Figure 1: A spherical patch n(u) (magenta) with corners at
n1,n2,n3 and boundaries as the great circular arcs connecting these
points. The corresponding polynomial patch N(u) with a polynomial
area element is shown in green.

where

Hi
j = γiγj (ci + cj −w+

w(ci · cj)− ci(w · cj)− cj(w · ci)) . (23)

We now show that this construction indeed leads to the
desired normal field.

Proposition 3.2. The constructed normal vector field
N(u) of (21) interpolates positive multiples of n1,n2,n3

and satisfies the PN property.

Proof. Our construction ensures that

N004 = N(0, 0, 1) = 2(1−w · n1)n1,
N040 = N(0, 1, 0) = 2(1−w · n2)n2,
N400 = N(1, 0, 0) = 2(1−w · n3)n3.

(24)

The PN property follows from the construction of N(u)
obtained as the numerator of n(u), which lives on S2 and
thus satisfies n(u) · n(u) ≡ 1.

Remark 3.3. The centre of the stereographic projection
w does not affect the shape of the patch on the unit sphere.
However, it has influence on its parametrisation and thus
the shape of the normal vector patch N(u). In all our
experiments the choice w = −(n1+n2+n3)/‖n1+n2+n3‖
worked well and is thus used as the default setting.

Turning back to Remark 3.1, if one of the triangle’s
edges corresponds to a parabolic line, the two normals
there may coincide (e.g. n1 = n2). In that case the spher-
ical patch n(u) degenerates to a great circular arc (given
e.g. by n2 and n3), and thus also the final normal vec-
tor field N(u) is geometrically degenerated into a curve
segment. Nevertheless, they are still parametrised as tri-
angular patches and therefore pose no problems in further
steps, as shown and discussed below.
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3.2. Polynomial PSN boundaries of the PN patch

We want to construct the PSN boundary curves of a
certain (lowest possible) degree d of the sought-after PN
macro-element with the normal vector field N(u) in the
form:

h1(t) =
∑d
i=0

(
d
i

)
hi,d−i,0t

i(1− t)d−i,

h2(t) =
∑d
i=0

(
d
i

)
hd−i,0,it

i(1− t)d−i,

h3(t) =
∑d
i=0

(
d
i

)
h0,i,d−it

i(1− t)d−i.

(25)

These boundary curves have to interpolate p1,p2,p3 and
respect N(u). The former condition is trivially satisfied
by setting

h00d = p1, h0d0 = p2, hd00 = p3. (26)

The latter condition for the edge corresponding to h1 can
be expressed as

h′1(t) ·N(t, 1− t, 0) ≡ 0 (27)

and similarly for the other two edges. Turning back to
(16) and defining

c1(t) =
∑2
i=0

(
2
i

)
γi,2−i,0ci,2−i,0t

i(1− t)2−i,

c2(t) =
∑2
i=0

(
2
i

)
γ2−i,0,ic2−i,0,it

i(1− t)2−i,

c3(t) =
∑2
i=0

(
2
i

)
γ0,i,2−ic0,i,2−it

i(1− t)2−i,

we observe that N(t, 1 − t, 0) || c1(t) for all t ∈ [0, 1] (see
Fig. 1) as both fields correspond to the same arc on S2
and agree in parameter. All combined, the orthogonality
conditions read

h′i(t) · ci(t) = 0, i = 1, 2, 3. (28)

The lowest degree d which ensures a solution of (28) exists
is four. Moreover, for d = 4, system (28) contains six
independent linear equations and nine variables and hence
it yields a 3-parametric solution.

For two points pi,pj and their normal vectors ni,nj ∈
S2, i, j ∈ {1, 2, 3}, i 6= j, we construct

h(t) =

4∑
i=0

(
4

i

)
git

i(1− t)4−i, (29)

with g0 = p1 and g4 = p2, and we arrive at the following
equations:

n1 · (g1 − p1) = 0,√
2(n1 + n2) · (g1 − p1) + 3χn1 · (g2 − g1) = 0,

3n1 ·
(√

2(g2 − g1) + χ(g3 − g2)
)

+

+n2 ·
(
3
√

2(g2 − g1) + χ(g1 − p1)
)

= 0,

3n2 ·
(√

2(g3 − g2) + χ(g2 − g1)
)

+

+n1 ·
(
3
√

2(g3 − g2)− χ(g3 − p2)
)

= 0,√
2(n1 + n2) · (p2 − g3) + 3χn1 · (g3 − g2) = 0,

n2 · (g3 − p2) = 0,
(30)

n1

n3

n2
p1

p3

p2

h3(t)

h2(t)

h1(t)

Figure 2: The uniquely determined boundary curves (magenta) hav-
ing minimal squared lengths of their respective control polygons.

where χ =
√

n1 · n2 + 1. The free parameters are then
chosen to minimise a suitable objective function with a
unique minimum. We follow the approach taken in [6] and
minimise the squared length of the control polygon, i.e.,

3∑
i=0

‖gi − gi+1‖2 → min; (31)

see Fig. 2. This procedure is applied to all three boundary
edges.

Lemma 3.4. Let n1 and n2 be linearly independent. Then
the linear system (30) with the constraint (31) has a so-
lution and the boundary curve h(t) of (29) is determined
uniquely.

Proof. Consider two linearly independent unit normal vec-
tors n1 and n2. The Lagrangian multiplier technique leads
to a 15 × 15 linear system. The determinant of its coeffi-
cient matrix is equal to

82944χ−6+ χ4
− ‖n1 × n2‖6

(
2χ2

+ + 2
√

2χ+ + 1
)
, (32)

where χ± =
√

n1 · n2 ± 1. The function 2x+2
√

2
√
x+1 is

positive for all x ∈ R+ and the expressions n1 ·n2± 1 and
‖n1 × n2‖ are equal to zero if and only if n1 = ±n2.

Remark 3.5. When parabolic points p1 and p2 (sampled
from the same parabolic line) are vertices of the input
triangle and n1 = n2, then it holds

n1 · (p1 − p2) = 0.

Therefore, the boundary curve of the resulting patch is the
straight line-segment between p1 and p2. Thus, as long as
the input triangulation respects parabolic lines (as detailed
in Remark 3.1), our method produces correct results.
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n2 n3

n1

n0

N1

N0

N2
N3

w

N(2)
N(3)

N(1)

Figure 3: The normal vector field of the constructed PN macro-
element consisting of three micro-triangles.

3.3. Polynomial PN macro-elements

Our goal is to construct a polynomial triangular PN
patch of degree n (defined in (8)) which interpolates
boundary curves hi(t), see Lemma 3.4, and its associated
tangent space is orthogonal to N(u) given in (21).

We first elevate the degree of hi(t) from 4 to n and set

xi,n−i,0 = hi,n−i,0
xn−i,0,i = hn−i,0,i
x0,i,n−i = h0,i,n−i

, i = 0, ..., n. (33)

Next, consider the directional derivatives in (9). Then
normal field condition can be translated to the language
of linear equations in the coefficients of x in the following
way:

xu(u) ·N(u) = 0 and xv(u) ·N(u) = 0. (34)

Of course, any two of the three directional derivatives can
be considered due to (11).

Unfortunately, (34) does not, in general, yield a solu-
tion, therefore we employ the approach taken in [6] based
on macro-elements. We split the triangle into three micro-
triangles and obtain a macro-element. That is, we con-
struct three PN patches x(i)(u) forming a G1 continu-
ous macro-element interpolating the prescribed triangular
Hermite data, as shown in Fig. 4.

n1

n3

n2
p1

p3

p2

x(3)

x(2)

x(1)

Figure 4: A polynomial PN macro-element composed of three micro-
triangles x(i), i = 1, 2, 3.

Given the three input normals n1,n2,n3, we set

n0 = (n1 + n2 + n3)/‖n1 + n2 + n3‖

and define

n
(1)
1 = n2, n

(1)
2 = n3, n

(1)
3 = n0,

n
(2)
1 = n3, n

(2)
2 = n1, n

(2)
3 = n0,

n
(3)
1 = n1, n

(3)
2 = n2, n

(3)
3 = n0.

(35)

Step 1 (Section 3.1) is then applied to each of the resulting
micro-triangles; see Fig. 3. It yields n(i) and N(i) for i =
1, 2, 3.

Next, we employ Step 2 (Section 3.2) to model the three
boundary PSN curves of the macro-triangle; see Fig. 2.
The interpolation conditions then read

x(i)(0, t, 1− t) = hi(t), i = 1, 2, 3, (36)

one per micro-patch, or equivalently

x
(1)
0,j,n−j = hi,n−i,0

x
(2)
0,j,n−j = hn−i,0,i

x
(3)
0,j,n−j = h0,i,n−i

, i = 1, 2, 3; j = 0, ..., n. (37)

Moreover, the micro-triangles have to meet with C0 con-
tinuity along their pair-wise shared micro-edges:

x(i)(t, 1− t, 0) = x(i+1)(t, 0, 1− t), i = 1, 2, 3, (38)

where the index i is treated cyclically, which leads to the
following conditions for control points:

x
(i)
j,n−j,0 = x

(i+1)
j,0,n−j . (39)

As the micro-patch normal vector fields form a continuous
normal field macro-element, the macro-element composed
of x(i) is G1 continuous.
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Algorithm 1 Polynomial PN G1 spline construction

Input: A triangular manifold mesh M respecting
parabolic lines in the sense of Remark 3.1 with normals
defined at vertices.

Step 1: For each triangle in M, construct PN micro-
triangle vector fields N(i)(u), i = 1, 2, 3, given in (21)
and interpolating the normals defined in (35).

Step 2: For each edge inM, compute the unique boundary
PSN quartic h(t) interpolating its end-points via (29).
This is achieved by solving the PSN condition (28) and
minimising the squared length (31) of the control poly-
gon of h(t). Elevate the degree of h(t) to 9.

Step 3: For each triangle inM, construct micro-elements
x(i)(u), i = 1, 2, 3, of degree 9 satisfying (36) (computed
in Step 2), the continuity condition (39), and respecting
the PN normal vector fields constructed in Step 1 by
solving (40). A unique solution can be chosen by min-
imising the bending energy of the whole macro-element.

Output: A polynomial PN spline of degree 9 with global
G1 continuity interpolating the vertices and normals
of M.

Finally, we gather the system of linear equations for
the free coefficients of x(i) that ensures the PN condition
(cf. (34))

x
(i)
u (u) ·N(i)(u) = 0

x
(i)
v (u) ·N(i)(u) = 0

, i = 1, 2, 3. (40)

According to our computational experiments, the resulting
system is solvable for data in general position. In particu-
lar, we obtain a 3-parametric solution for polynomial PN
macro elements of degree 9. A suitable solution can be
chosen by, for instance, minimising the bending energy of
the whole macro-element, yielding a unique solution; see
Fig. 4.

A potential drawback of the relatively high degree of
the macro-patch is outweighed by the fact that the ob-
tained parametrisations are polynomial and directly PN,
without any need for rational reparametrisations. Con-
sequently, the rational offsets (see (2)) of the PN macro-
elements are readily available, as shown in Fig 5. This
concludes Step 3 for a single triangle.

Given an input triangulation, Step 1 is applied to each
triangle, then Step 2 to each edge, and finally Step 3 is
again applied to every triangle. The method is summarised
in Algorithm 1.

We now show that not only a single PN macro-triangle
is G1 continuous as discussed above, but also the whole
spline of macro-triangles constructed from an input trian-
gulation is G1 as well; see Fig. 6.

Lemma 3.6. The constructed PN spline is globally G1

continuous.

Figure 5: A polynomial PN macro element (yellow) and its rational
two-sided offsets (magenta and cyan).

Figure 6: Two neighbouring PN macro-elements. Top: Differently
coloured macro-elements. Bottom: A shaded surface indicating that
the two macro-elements, and thus six micro-triangles, meet smoothly.

Proof. First, by construction it follows that the boundary
edge between two neighbouring normal (micro-)patches is
shared, ensuring C0 continuity. Second, the boundary
edges of the normal patches are uniquely determined and
also shared by neighbouring normal field (micro-)patches,
meaning that the normal field is globally G0, which in turn
implies that the PN spline is G1 continuous over the whole
input triangulation.
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Figure 7: PN G1 splines approximating parts of quadrics. From left to right: A hyperbolic paraboloid, an elliptic paraboloid, and an ellipsoid.
Each of the surfaces has been triangulated. The interpolated normals of the underlying surfaces are shown in black.

Figure 8: A PN G1 spline constructed from a hyperboloid of one sheet. From left to right: Macro-patches and input points and normals.
A rendering of the PN spline surface using Phong shading. Reflection lines on the spline surface are continuous (but not smooth), indicating
that the PN spline surface is G1 continuous.

Remark 3.7. Our method yields polynomial PN
parametrisations such that

x(i)
u (u)× x(i)

v (u) = f (i)(u) N(i)(u), (41)

where f (i)(u) are extra factors suitably relating the degrees
of N(i)(u) and x(i)x(u). A non-constant factor f (i)(u)
indicates the existence of a curve on the surface x(i)(u)
where the normal field vanishes. This is analogous to
what happens for non-primitive PH curves which can have
cusps. However, the situation in the surface case is more
complicated and all existing methods, including those of
[11, 6], also result in parametrisations with non-constant
extra factors. Finding surfaces without these extra factors
is still an open problem and a challenging avenue for future
research.

In our experience, these extra factors do not cause
problems provided that the input mesh respects parabolic
lines and the normals of each triangle are sufficiently close
to being perpendicular to its plane. This condition can be
achieved by sampling an input surface more densely when
required.

4. Examples

In this section, we demonstrate the functionality of
the presented method on several examples, both with
and without boundary, and of different topologies. Tri-
angulated data with normals were sampled from various
quadrics: a hyperbolic paraboloid, an elliptic paraboloid,
and an ellipsoid, and these were then turned into polyno-
mial PN G1 splines shown in Fig. 7 using Algorithm 1.

Another example is shown in Fig. 8, where the input
surface is a hyperboloid of one sheet. We also include ren-
derings using shading and reflection lines to demonstrate
the smoothness of the final result.

All the above examples contained no parabolic points
on the input surfaces. The fact that our algorithm han-
dles correctly also surfaces with parabolic lines (as long as
they are respected in the triangulation; see Remark 3.1)
is demonstrated in Fig. 9, where the input torus con-
tains two circles of parabolic points. Observe that each
of the light green and light blue macro-elements contains
two parabolic points as their vertices. Consequently, each
micro-triangle containing such two parabolic vertices is a
developable surface patch with a straight line-segment for
one of its boundary edges, cf. Remark 3.5.
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Figure 9: A torus approximated by a polynomial PN G1 spline. The
input surface contains two circles of parabolic points. Our algorithm
handles that correctly as the triangular mesh respects those parabolic
loci.

Figure 10: A surface of revolution (bottom right) with a line of
parabolic points (black) generated by a cubic curve (red) with an
inflection point has been approximated by a polynomial PN G1 spline
(left). The surface contains an elliptic (top half) and a hyperbolic
(bottom half) region separated by a line of parabolic points with a
non-constant surface normal field along it.

Yet another example with a parabolic line and hyper-
bolic and elliptic regions is shown in Fig. 10. In this case,
the surface normal along the parabolic line is not con-
stant.

5. Conclusion

We have presented a method for interpolating G1 Her-
mite data, i.e., points and normals, organised in a triangu-
lar mesh of arbitrary manifold topology by a polynomial
Pythagorean normal (PN) G1 spline. Ours is the first such
method that is purely local (each macro-elements depends
only on data of a single triangle), is direct (the resulting
parametrisations are PN and thus do not require any ratio-
nal reparametrisation), and produces globally G1 splines.

Our method handles parabolic points, which are known
to cause issues in similar constructions, as long as the input
triangulation respects, i.e., does not cross but is aligned
with, parabolic curves on the input surface. This includes

the special case when the surface normal is constant along
a parabolic line.

To further improve the method, we plan to investi-
gate possibilities for lowering the degree of the resulting
patches.

Acknowledgements

Michal Bizzarri, Miroslav Lávička, and Jan Vršek were
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patches. Computer-Aided Design, 40:197–209, 2008.
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