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a b s t r a c t

This paper describes a method for adding surface details to existing CAD models. Our approach is based
on truncated powers, which allows us to align the added details with curved knot lines on the surface.
Additionally, (truncated) powers give us precise control over the continuity of the perturbed surface
across the (curved) knot lines. Our representation is compatible with current CAD/CAM practise and
standards, and we showcase it on several examples.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The automotive and aircraft industries are finding a prob-
em in defining surfaces which are smooth enough when these
urfaces have features which do not fit the rectangular struc-
ure of traditional NURBS surfaces. Individual NURBS patches
re trimmed and (topologically) stitched together to form the
o-called B-rep, i.e., the boundary representation of the desired
odel. Nevertheless, the individual B-rep faces locally maintain

heir tensor-product structure and adding detail not aligned with
he existing knot line directions remains an issue.

We address this issue by the means of truncated powers,
.e., powers of functions defined implicitly and truncated to their
on-negative region(s). This offers several advantages. First, it
llows us to align the introduced detail along curved knot lines
n the base surface (B-rep face). These knot lines are given by
he zero-contours of the introduced implicit functions. Secondly,
e have full control over the continuity of the perturbed surface
cross the curved knot lines, which is governed by the implicit
unctions and the powers they are raised to. Thirdly, as we are
dding detail to an existing B-rep, the underlying representation
an be based on (trimmed) NURBS, which is our focus, but also
n other representations such as T-splines.
The rest of the paper is organised as follows. We start by

eviewing related work in Section 2, which is followed by Sec-
ion 3 introducing key notions. The main method is described in
ection 4. Several examples are presented in Section 5 and the
aper is concluded in Section 6.

✩ This paper has been recommended for acceptance by Jianmin Zhang.
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E-mail addresses: malcolm.sabin@btinternet.com (M.A. Sabin),
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2. Related work

2.1. Bézier’s System

In his book on his Unisurf system [1] (translated by Forrest
into English [2, Section 4.2.5]), Bézier describes a technique for
taking a bicubic patch spanning the entire side of a car, and trim-
ming it to the relevant piece by applying a bicubic reparametri-
sation in which the required curved edges are isoparametric in
the higher degree (up to bi-27) representation of the same 3D
surface.

This meant that Unisurf had to be capable of holding surfaces
of degree bi-27. This was misinterpreted by the CAD vendors who
implemented this as ‘you can define surfaces up to bi-27’, which
Bézier himself never did. Professional CAD systems now place no
limitation on degree.

2.2. Hayes surfaces

In [3,4] the idea was introduced that while a rectangular grid
of knot lines was retained, with a set of u-knots (values of u) and
set of v-knots, the individual knot values could vary with the
ther parameter.
Although the original reports deal only with bicubic splines, it

s clear that the idea is completely applicable to any degree and
o NURBS (Non-Uniform Rational B-Spline surfaces) [5] in their
ull generality.

This was presented at a conference where the proceedings
ere issued in the new hot medium of microfiche, which made
he conference proceedings almost inaccessible [3]. There appear
o be only 7 libraries worldwide (mostly in the UK) holding it.

uckily, the main ideas were recalled in [4].

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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.3. Trimmed NURBS

When the flow of shape in a surface varies significantly within
panel intended to be smooth for styling purposes, the current
ccepted approach is to use trimmed NURBS: a piecewise surface
here the parametrisations do not match across piece bound-
ries. This links into downstream production processes such as
achining of dies or additive manufacture and (with some diffi-
ulty) into analysis of the elastic properties of the panel and of
he airflow around the panel. The format for passing the pieces
o these downstream processes is usually IGES or STEP.

The automotive industry depends strongly on this approach.
nfortunately, achieving continuity of even position across the
iece boundaries has been regarded as intractable. The auto in-
ustry has a standard often called Class-A surface [6] which
pecifies that pieces must meet with 0.1 mm, with a variation of
urface normal direction within 0.1 degrees and with a further
imit on discrepancy of curvature. This has proved satisfactory
hen panels are manufactured by pressing of metal sheets be-
ause the ‘springback’ of the metal as the die pressure is released
llows the metal to forget these small discrepancies in the dies.
owever, if panels (typical internal ones) are to be made by
dditive manufacture, there is no springback, and the condition
n normal direction allows creases to appear in the final shape.
hese are small, but not small enough. A tolerance of 0.1 degrees
≈ 0.002 radians) will cause a crest of more than 0.1 mm if the
djacent pieces are more than 5 mm wide. A width of 50 mm
auses a crest of 1 mm, which may well be a lot more than
he resolution of the additive manufacturing process and even
omparable with the thickness of the part being made. If the error
s a hollow rather than a crest, the problem is even worse, since
olishing out a crease at the bottom of a hollow to give a smooth
urface takes a much larger amount out of the material.
Although one solution would be to tighten the normal vector

onstraint on the standard, this would make the task of the
oftware aids for making the pieces significantly harder (and for
heir operators).

There is a clear need for mathematics and software giving ex-
ct continuity of the necessary derivatives between the trimmed
URBS pieces of such composite surfaces.

.4. T-splines and related methods

This was claimed by Sederberg et al. [7], but close exami-
ation of that paper shows that the mechanism for matching
soparametric lines to the piece boundaries is actually subdi-
ision. Subdivision surfaces are not trimmed NURBS, and the
ransfer standards (IGES and STEP) and the downstream activities
o not accept them. It is believed that because of this the Seder-
ergs’ approach has been modified in their commercial software,
eplacing the shape around the necessary extraordinary vertices
y higher degree patches which can be exported as individual
URBS pieces but this information is not publicly available.
There has been a lot of other work on constructions similar

o T-splines, such as LR-splines [8] and THB-splines [9], but this
as focused on keeping the density of basis functions sparse in
egions which do not have high spatial frequency components,
ather than on aligning the knots with features.

.5. Simplex splines

Simplex splines [10] are optimal in terms of the trade-off
etween degree and continuity. The problems for application in
he styling of objects to be manufactured (as against the graphics
pplications) are twofold: First, the actual surface consists of
any more tiny pieces which would each need to be exported
2

via IGES independently. This is because each simplex spline basis
function consists of a large number of individual polynomial
fragments, and these have to be very carefully designed to avoid
very narrow ones (slivers). Second, the support of each basis
function is a polygon, and so curving the boundary even of a
collection of such basis functions is not possible.

2.6. Watertight Boolean operations

This recent method [11] reparametrises NURBS patches af-
fected by trimming curves so that these become iso-lines of
the patches. This then allows for a watertight connection of
the patches as the B-rep edges can, after this reparametrisa-
tion and slight perturbation, be exactly interpolated. In some
cases, extraordinary points need to be introduced, for now largely
manually, to deal with some of the arising configurations.

2.7. ABC patches

The first serious attempt started in the mid 2010s, the first
publication to describe it being [12]. This was followed up by [13]
which claimed up to G2 continuity, but the claim in [12] that
the mathematics supports general levels of derivative continuity
is totally plausible. (This may be a question of ‘sweet spot’ for
implementation mentioned in Section 4.4.)

The idea is based on transfinite interpolation between the
boundaries of the known pieces implemented as a correction
to base surfaces. Transfinite surfaces between NURBS boundary
curves are themselves representable as NURBS and so the neces-
sary compatibility with the downstream activities is maintained.

Current commercial CAD techniques do not provide exact con-
tinuity, and so the process of styling a shape to meet aesthetic re-
quirements within industry-accepted tolerances on continuity is
non-trivial. Our method introduces details to existing B-rep faces,
which means that it can build on top of commercial CAD system
representations as well as all the base-surface methods reviewed
here, as well as various finite filling constructions [14] and even
subdivision surfaces [15] (although the latter are currently not
directly CAD-compatible).

3. Preliminaries

Although the original definition of a spline is a piecewise
polynomial map R ↦→ R, we unashamedly generalise this to
domains and ranges of higher dimension. Where necessary this
will be made explicit by using the terms spline curve and spline
surface.

A spline curve is a map R ↦→ R2 (a 2D spline curve) or R ↦→ R3

(a 3D spline curve). A spline surface is a map R2
↦→ R3. In these

maps the abscissa/argument values are called parameters.
A knot is an abscissa value where polynomial pieces join,

where there is at least a potential discontinuity of some deriva-
tive. In the curve case it is just a parameter value. In the surface
case, the tensor product structure forces any knots to be isopara-
metric lines, and it is this limitation which is removed here. We
permit a knot in a surface to be a curve in parameter space. In
the terminology of CAD systems such a curve is called a p-curve.

In CAD, a solid object is represented by its boundary, the so-
called B-rep. This is held in data supporting computations in the
form of a Whitney stratification of space into cells, which are
manifold open-regular pointsets of different dimension together
covering the entire boundary of the object. The full stratification
also includes solid cells for the interior. Cells can be vertices, edges
or faces. The adjacency relationships of these cells are commonly
called the topology of the representation.
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Each cell also has an embedding, which is a pointset in which
the vertex, edge or face lies. A vertex is embedded in a point,
an edge in a curve and a face in a surface. These are collectively
called the geometry of the representation. A collection of surfaces
sharing the same parameter space is called a carpet.

We treat as axiomatic certain lemmas from Algebraic Ge-
ometry. A rational polynomial curve (not piecewise) in 2D is a
pointset which can be represented in its parametric form by a
map R ↦→ R2. Each such curve also has a representation of the
implicit form f (.) = 0 where f takes positive values on one side
of the curve and negative values on the other. It is therefore
usefully understood as the map R2

↦→ R. The implicit form has
the same degree as the parametric one. Not every implicit curve
has a parametric equivalent.

4. General theory

4.1. Overall Carpet structure

We propose that the definition of the entire carpet be the
sum of: (1) a base surface B(u, v) which can itself be a standard
NURBS (or another spline representation over a single parametric
domain), and (2) a collection of perturbations (or details) which
tend to correspond to desired features of the final composite
surface. These are called ‘TWEAKS’ in the definition file; see Fig. 4.
The definition is completed by a collection of overall trimming
curves which bound the entire carpet. These are called ‘TRIMS’ in
the definition file; see Appendix A.

The entire surface is a map from a single parameter space, and
so we do not need to be concerned about G continuity versus C
ontinuity: there is exact C continuity of the degrees demanded.
Each perturbation is defined in terms of its outline which is the

rontier between itself and the rest of the surface, and a displace-
ent coefficient, which is a constant displacement [16] indicating
ow much the feature is moved from the corresponding point
f the underlying surface. This displacement does not need to be
ligned with the normal direction of the base surface.
Perturbations can overlap, without concern, except that if the

utlines make tangential contact this will cause ‘slivers’ which
ay cause difficulties in the downstream operations when there

s floating point rounding error in the transfer formats. Tangential
ontact is better avoided.

.2. Outlines

We use as outlines complete closed polynomial curves which
ave both an implicit representation (R2

↦→ R) and a piecewise
ational parametric representation. By convention the non-zero
art of the perturbation lies in the positive region of the implicit
orm. Because each of the parametric pieces becomes a p-curve
eparating two pieces of the total surface, its direction is not
onstrained.

.3. Interior form of a perturbation

The displacement of each interior point of a perturbation is
iven by the product of the coefficient with a function of para-
etric position given by a truncated power of the function of the

mplicit form.
A truncated power f n

+
(p) of a function f (p) at point p = (u, v)

n parameter space is defined to be

n
+
(p) =

{
f (p)n if f (p) > 0
0 otherwise

This function f n
+

has a discontinuity of nth derivative across
f (p) = 0, which is exactly what we are trying to construct. If f (p)
3

Fig. 1. An illustration of the sweet spot. Using the same circle equation f =

− u2
− v2 raised to different powers (from left to right: 1, 2, and 3) yields

perturbations with different continuities (from left to right: C0 , C1 , and C2).
he displacement was in all three cases set perpendicular to the base plane:
= (0, 0, 1). The top row shows the shaded surface and the bottom row shows

he same surface using slices.

s itself a polynomial of degree d, then f n
+
(p) is a polynomial of

egree nd in the region where f (p) > 0.
Admissible functions f include linear ones, quadratic func-

ions (discussed in detail in Section 4.4), and higher degree ones
hich admit a (piece-wise) rational parametrisation of their zero
ontour (are of genus zero).
Each exported piece has an equation of the form

(u, v) = B(u, v) + ΣiCif
ni
+ (u, v), (1)

here B(u, v) is the base surface, i counts through the tweaks
ctive in that piece, Ci is the ith displacement-valued coefficient
lso known as a control vector [16], and ni is the degree of
ontinuity of that tweak.
Thus each intersection of interiors has as its equation the sum

f the base surface (a bi-polynomial/bi-rational function) and a
umber of perturbations, each of which is a bi-polynomial, so that
ts final shape is also bi-polynomial or bi-rational, which can be
xported to IGES or STEP. The explicit parametric forms of the
oundaries of the perturbations form the trimming curves of the
epresentation.

There is no inherent limit to the degrees involved, but high
egrees of d or n imply that the final surface may be of very high
egree. For CAD/CAM purposes this is not very desirable, and so
imited values give a ‘sweet spot’ for implementation.

.4. Sweet spot

It appears that the use of functions f (p) limited to quadratic
utlines (thus avoiding all problems with multiple points except
or degenerate cases) and truncated powers limited to degree
(thus supporting surfaces which have continuity of derivative
p to C2) gives a useful operational capability; see Fig. 1. If the
ase surface is bicubic this gives surfaces of total degree 6, which
an be exported as bi-6 NURBS and trim curves (evaluated by
xporting rational quadratic parametric p-curves on a degree 6
urface) of rational degree 12. Both degrees are well within the
apability of both of the transfer standards (IGES and STEP) and
rofessional CAD systems.
These limitations are not inherent in the idea itself and can be

tretched. The penalty for increasing the degree of the outlines is
hat more care must be taken with self-intersection points, and
or increasing the degree of continuity is that the final degree of
he surface pieces and trim curves will be higher. These might be
cceptable in a professional implementation.
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Fig. 2. This program was used to make the examples, using the CADfix
product [17] (via the .fbm file) to interface through to the IGES format and for
making the illustrations, and the Paraview product (via .ply files) to provide a
good way of viewing the shapes created. The reflection lines were created from
the IGES file by Darmstadt Technical University using MATLAB-based software.

Fig. 3. These figures illustrate how features with different degrees of derivative
continuity can be combined. The model has a flat base surface with three
overlapping features each being inside a circular outline. On the left appears
a plan view where the three different continuity levels (C0 , C1 and C2) are
isible in the greyscale: The bottom left feature joins C0 , the bottom right C1 ,

and the top one C2 . On the right is a view of the resulting surface from a skew
angle and again the different continuity degrees are visible, crossing the other
features where they overlap.

4.5. Status

Much of this theory has been implemented in a Delphi3 pro-
gram for Windows. It is limited to the sweet spot of degrees,
but is further limited to having only elliptical (and straight line)
parametric trim curves, not hyperbolae. The dataflow diagram
appears in Fig. 2.

The IGES format does not support the parametric trim lines
explicitly. They are recovered if necessary by the downstream
software by projection on to the relevant surfaces. Since the
space-curves issued will lie exactly on these surfaces, this process
can be expected to be robust.

5. Examples

The simple example shown in Fig. 3 uses a flat base surface
and has three perturbations. Each perturbation has a circular out-
line, but they vary in the continuity degree across those outlines.
The input data file is shown in Fig. 4.

We created a fictional shape similar to the surface covering
the front wheel of a car, with a small feature for an auxiliary
light at the front; see Fig. 5. This region is typically a hard one
4

Fig. 4. Input data file for Fig. 3.

Fig. 5. Figures created from the IGES file, showing the curvature behaviour. Top
left shows the regions within the overall carpet, top right shows the reflection
lines. Although in some places these do not appear C1 , zooming in indicates
that the complete surface is indeed C2 . Bottom left shows the distribution of
mean curvature and bottom right that of Gaussian curvature. In the region
where there are rapid changes of direction of the reflection lines, the curvature,
though continuous, is also changing rapidly. The full input file can be found in
Appendix A, Fig. 7.

to represent, needing several trimmed NURBS patches with only
approximate continuity. Fig. 6, left, shows the knot curves in the
parameter plane. The right image depicts a cross section through
the rim around the wheel hole. It shows the knots and a very
similar cubic B-spline. The similarity is not exact because the
cross-section has sextic pieces not cubic, but the difference tends
to zero as the distance between knots as a fraction of the diameter
of the ellipses becomes small.

6. Conclusion

A method has been presented for designing single curved sur-
faces with features flowing in different directions, which can be
transferred via IGES or STEP to the downstream analysis and man-
ufacture operations. The method uses two key ideas, of curved
knots and truncated powers to achieve this and has been demon-
strated by examples. In principle arbitrary degrees of continuity
can be achieved, at the cost of high degree, but C2 involves only
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Fig. 6. Left: The layout of curved knots around the wheel cutout, showing how
parallel’ curved knots give an effect similar to familiar B-spline control. Right:
cross section through the rim.

egree bi-6 pieces which is well within practical limits. Several
otential extensions are discussed in Appendix B.
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ppendix A. More complex input file example

Fig. 7 lists the full input file for the model shown in Fig. 5.

ppendix B. Desirable enhancements

The following are possible enhancements which could be
ade from the current proof of concept implementation to a

uller sweet-spot version. Increasing the degrees to full generality
ould require significant design effort before implementation.

egree 6 base surfaces

Allow the use of a degree 6 Bézier triangle as an alternative to
bicubic for the base surface. This requires a little extra coding,
s a bicubic base has to be converted to a degree 6 triangle as
oon as a perturbation is added.

yperbolae as knots

Add hyperbolae to the possible p-curves. This opens up the
ption of requiring just one half of the hyperbola to be used,
hich can be achieved by using an auxiliary selector, as described
ext.

uxiliary conditions

If we require only part of f (p) = 0 to act as a knot, then
hanging the definition of f n

+
to

n
+
(p) =

{
f (p)n if f (p) > 0 and g(p) > 0
0 otherwise

allows only that part of f = 0 which lies within g > 0 to form the

actual knot. The shape within f (p), g(p) > 0 is unchanged. Note

5

Fig. 7. A more complex input file example; see Fig. 5.

that the detail of the shape there does not depend on the exact
shape of g , which can be chosen to separate the desired part of
the perturbation from an undesired part. This idea will be rele-
vant if higher degrees of outline are used, when the parametric
form of the outline will in general have either self-intersection
points or (multiple) loops. A particularly useful case appears in
the sweet-spot, when the hyperbola consists of two straight lines,
but only one quadrant is required for the perturbation, giving it a
sharp convex corner. Another example might be to separate the
tear-drop shape of a Tschirnhausen cubic from the part beyond
the self-intersection point. For such cases (of degree lower than
4), g can simply be linear.

‘Parallel’ knots

If we have a number of knots which use scalar offsets of a
common function, the knots together behave very similarly to
standard isoparametric knots defined over a reparametrisation of
the domain. Thus a lot of standard tensor-product B-spline theory
can be carried over and exploited to make the specification of the
desired shape simpler. Actually doing the reparametrisation on
the active side of the outermost knot is probably not necessary,
and is not explored further here. The theory of plane Cremona
transformations [18] may be relevant, but is also beyond the
scope of this paper.

Non-constant coefficients

We used displacement-valued coefficients, so that the centre
of a tweak could be moved in any direction, not just normal to the
base surface. It would be possible to use coefficients themselves
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ontaining a polynomial function of u and v, thus increasing
he range of shapes definable. We did not include this because
t would complicate the stylist’s task, but it could be useful in
efining nested functions for analysis or optimisation.

ersion with graphical input of the stylist’s data

This would require a better local rendering (with adequate
peed) instead of the use of the .ply file, together with the use
f graphical input to specify the points defining each tweak.

utomatic generation of data from a clay model scan

An ideal part of the work-flow would be software which
reated the input data from a dense triangulation such as might
e created by laser-scanning a clay model. This is highly non-
inear, but might be addressed by the kind of technology used
y Barrowclough et al. [19].
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