
Differential Maximum Euclidean Distance
Transform Computation in Component Trees

Dennis J. Silva(�)1,2[0000−0001−7631−9403], Paulo A.V.
Miranda1[0000−0001−6496−697X], Wonder A.L. Alves3[0000−0003−0430−950X],

Ronaldo F. Hashimoto1[0000−0002−6399−8790], Jǐŕı Kosinka2[0000−0002−8859−2586],
and Jos B.T.M. Roerdink2[0000−0003−1092−9633]

1 Institute of Mathematics and Statistics, University of São Paulo, R. do Matão,
1010, CEP 05508-090, Butantã, São Paulo, SP, Brasil

{dennis,pmiranda,ronaldo}@ime.usp.br
2 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,

University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands.
{d.j.da.silva,j.kosinka,j.b.t.m.roerdink}@rug.nl

3 Informatics and Knowledge Management Graduate Program, Nove de Julho
University, R. Vergueiro, 235/249, CEP 01525-000, Liberdade, São Paulo, SP, Brasil.

Abstract. The distance transform is an important binary image trans-
formation that assigns to each foreground pixel the distance to the closest
contour pixel. Among other applications, the maximum distance trans-
form (DT) value can describe the thickness of the connected components
of the image. In this paper, we propose using the maximum distance
transform value as an attribute of component tree nodes. We present
a novel algorithm to compute the maximum DT value of all connected
components of a greyscale image in a differential way by joining an incre-
mental method for contour extraction in component trees and the Differ-
ential Image Foresting Transform (DIFT). We save processing time by
reusing the DIFT subtrees rooted at the contour points (DIFT seeds) of
a node in its ancestors until those points are not contour points anymore.
We experimentally show that we can compute the maximum distance at-
tribute twice as fast as the node-reconstruction approach. Our proposed
attribute is increasing and its applicability is exemplified by the design
of an extinction value filter. The ability to select thin connected compo-
nents, like cables, of our filter is compared to filters using other increasing
attributes in terms of their parameters and their resulting images.

Keywords: Component tree · Distance transform · Image Foresting
Transform

1 Introduction

Component trees are powerful full image representations used in different im-
age processing and analysing tasks, including designing connected operators [14],
text location [12], eye vessel segmentation [1], interactive image manipulation [19],
and many others. In this representation, the connected components (CCs) of the



2 D.J. Silva et al.

level-sets are the nodes of the tree and the subset relation of these CCs is en-
coded in the parenthood relationship. An important step in processing images
using component trees is describing the nodes through attributes. Different at-
tributes such as area, perimeter, number of holes, height, and volume have been
successfully applied in different applications [14, 12, 1].

The distance transform is an important binary image transformation that
assigns for each foreground pixel the distance to the closest contour pixel. Al-
though widely used in image processing [18], the distance transform applied to
component trees has not received much attention in the mathematical morphol-
ogy community. In particular, we note that the maximum distance transform
value of the CCs describes the thickness of the CC and could be a useful increas-
ing attribute for the nodes of a component tree. Thus, in this paper, we propose
the maximum distance transform value as an attribute of component trees. To
make it feasible, we propose a novel algorithm that combines a recent incremental
approach to compute the contours of component trees with the computation of
the distance transform using the Differential Image Foresting Transform (DIFT),
which can reuse a previously computed IFT by only recomputing the IFT on the
removed and inserted seeds. We experimentally demonstrate that our algorithm
is on average twice as fast as a non-differential approach and that the proposed
attribute can be used in extinction value filters to remove thin objects which
other increasing attributes cannot easily do.

The remainder of this paper is organised as follows. We recall some useful
definitions and notations in Sec. 2. We describe the proposed attribute and the
differential algorithm in Sec. 3. In Sec. 4, we report our run-time experiments
and present a simple example application of the proposed attribute to extinction
filters. We conclude the paper in Sec. 5.

2 Background

2.1 Images

A greyscale image is a function f : Df → Kf where Df ⊆ Z2 is a regular grid of
pixels and Kf = {0, 1, . . . ,Kf − 1} ⊂ Z is the greylevel set. When Kf = 2, f is
a binary image and we represent it as a set X = {p ∈ Df : f(p) = 1}. We say a
pixel p is a foreground pixel if p ∈ X and a background pixel if p ∈ Z2 \X. We
can extract binary images from a greyscale image by selecting the pixels whose
grey level is greater or equal to, respectively less than or equal to, a threshold
value λ ∈ Z as its foreground pixels. This thresholding operation is denoted by

[f ≥ λ] = {p ∈ Df : f(p) ≥ λ},
[f ≤ λ] = {p ∈ Df : f(p) ≤ λ}.

(1)

We call [f ≥ λ] and [f ≤ λ]), resp.,the upper and lower level-set of f wrt. λ.
We relate spatially close pixels by an adjacency relation. In particular, we de-

fineN4(p) = {p+q : q ∈ {(−1, 0), (0,−1), (1, 0), (0, 1)}} andN8(p) = N4(p)∪{p+



Differential Maximum EDT Computation in Component Trees 3

q : q ∈ {(−1,−1), (1,−1), (1, 1), (−1, 1)}} as the 4-connected and 8-connected ad-
jacency relation (or 4- and 8-connected neighbourhood) of p, resp. We denote an
arbitrary neighbourhood of pixel p by N (p). If q ∈ N (p), we say q is a neighbour
of (or adjacent to) p, and that p and q are neighbours (adjacent pixels). Given a
set of pixels X ⊆ Z2, we denote the set of pairs of adjacent pixels by

A(X) = {(p, q) ∈ X2 : q ∈ N (p)}. (2)

Given a greyscale image f : Df → Kf and an adjacency relation A, we can enrich
the image by representing it by a vertex-weighted graph Gf,A = (f,Df ,A(Df )),
where its vertices are pixels, its edges are defined by the adjacency relation, and
the weights of the vertices are the pixel grey levels. Using the set representa-
tion of the binary image, we can also create the graph GX,A = (X,A(X)) that
enriches the binary image representation. Using the graph representation of bi-
nary images, we define a path π(p, q) between two pixels p, q ∈ X as the sequence
(r0, r1, . . . , rn) of pixels in X with ri ∈ N (ri+1) for 0 ≤ i < n, r0 = p and rn = q.
If there exists such a path π(p, q) in X, we say p and q are connected, otherwise,
we say they are disconnected. A subset of pixels S ⊆ X is called connected if
all pairs of pixels p, q ∈ S are connected in S. If S is maximally connected, it is
called a connected component of X. We denote the set of connected components
of a graph GX,A by CC(GX,A), and the connected component containing pixel
p ∈ Z2 by CC(GX,A, p), with CC(GX,A, p) = ∅ if p ̸∈ X. Further, we define the
family of connected components of the upper and lower level-sets by

U(f,A) = {C ∈ CC(G[f≥λ],A) : λ ∈ Z},
L(f,A) = {C ∈ CC(G[f≤λ],A) : λ ∈ Z}.

(3)

2.2 Component Trees

A (rooted directed) tree T is an acyclic (directed) graph T = (V (T ), E(T )),
where V (T ) is the set of vertices/nodes and E(T ) is the set of (directed) edges.
Given a node N ∈ V (T ), a tree T supports the following operations:

parent(N,T ) = P ⇔ (N,P ) ∈ E(T ),

children(N,T ) = {C ∈ V (T ) : (C,N) ∈ E(T )},
rootTree(T ) = N ⇎ ∃P ∈ V (T ) : P = parent(N,T ).

(4)

A component tree Tf = (V (Tf ), E(Tf )) is a tree such that

V (Tf ) is either U(f,A) or L(f,A),

E(Tf ) = {(N,P ) : N,P ∈ V (Tf ), N ⊂ P, between(N,P, Tf ) = ∅},

where
between(N,P, Tf ) = {P ′ ∈ V (Tf ) : N ⊂ P ′ ⊂ P}. (5)

We can associate the grey level at which a node N first appears during greylevel
decomposition of f with the node in the component tree as follows:

level(N,Tf ) =

{
infp∈N f(p), if V (Tf ) = U(f,A),

supp∈N f(p), if V (Tf ) = L(f,A).
(6)



4 D.J. Silva et al.

0

0

0

0

0

0

0

0

77

44

77

77

44

0

0

77

44

44

77

44

0

0

44

44

44

44

44

0

0

77

77

77

77

77

0

0

77

44

44

44

77

0

0

77

77

77

77

77

0

R̂′

Ĉ ′B̂′

Â′

R̂

D̂

Ĉ

B̂

Â

input image f min-tree max-tree

Fig. 1. Max-tree and min-tree of the input image f . The red pixels are the CNPs of
the nodes, the black pixels are pixels of the node that are stored in a descendant node
and the white pixels are the background pixels.

Naive handling of component trees by computers can be costly due to the
pixels that belong to many nodes. To alleviate this, each pixel is stored only at
the first node where it becomes a foreground pixel. The full node is then formed
by the pixels it stores and the pixels stored by its descendants. Such nodes are
called compact nodes and are formally defined by N̂ = N \

⋃
C∈children(Tf ,N) .

We call a pixel p ∈ N̂ a compact node pixel or CNP for short. Since the compact
node that stores a pixel p is the smallest CC in the tree containing p, we call it
the small component of p and denote it by SC(Tf , p) = N ⇔ p ∈ N̂ . This leads

to the definition of the compact component tree T̂f = (V̂ (Tf ), Ê(Tf )):

V̂ (Tf ) = {N̂ : N ∈ V (Tf )},
Ê(Tf ) = {(Â, B̂) : Â, B̂ ∈ V̂ (Tf ), (A,B) ∈ E(Tf )}.

The compact representations of component trees built using the upper and lower
level-sets are called max-tree and min-tree, respectively; see Figure 1.

Component trees are useful tools for image processing because we can asso-
ciate attributes to their nodes. Formally, an attribute is a function that maps
component tree nodes to a set that describes some feature of the nodes. The
function level is an example of an attribute that maps nodes to their associ-
ated grey level. Other common examples are area, volume, and perimeter [11].
Attributes that increase as we move from the leaves to the root are called in-
creasing. Formally, an attribute attr is increasing if for A,B ∈ V (Tf ) : A ⊂ B
implies attr(A) ≤ attr(B); e.g. area. Otherwise, the attribute is called non-
increasing ; e.g. perimeter. An incremental algorithm is an algorithm that com-
putes an attribute of a node using the node’s CNPs and the attribute value of



Differential Maximum EDT Computation in Component Trees 5

Fig. 2. Contour definition and the impact of the adopted adjacency relation. X is a
binary image, ∂A8(X) is the contour ofX extracted usingA8 and ∂A4(X) is the contour
of X extracted using A4. The graph in red (middle) shows that ∂A8(X) produces an
A4-contour and the graph in green (right) shows that ∂A4(X) produces an A8-contour.

its children [17]. When there exists an incremental algorithm that computes an
attribute, we say that the attribute is incremental.

2.3 Contours

Given a binary image X and an adjacency relation A, we say that a pixel p ∈ X
is a contour pixel if it is adjacent to a background pixel q ∈ Z2 \X. The set of
contour pixels of X is the contour of X [10]:

∂A(X) = {p ∈ X : ∃q ∈ N (p), q ∈ Z2 \X}. (7)

When extracting contours, it is important to note that the connectivity of the
adjacency relation used to compute the contour is dual to the connectivity of the
resulting contour. That is, ∂A8(X) produces A4-connected contours and ∂A4(X)
results in A8-connected contours; see Figure 2.

2.4 Differential Image Foresting Transform

The Image Foresting Transform (IFT) algorithm is a generalization of Dijkstra’s
algorithm for multiple sources (seeds) and more general connectivity functions. It
can be applied to an image graph to develop image operators based on optimum
connectivity [7]. In its seeded version, as used in this work, the search for optimal
paths is restricted to paths starting in a set of seeds S ⊂ Df .

For a given image graph GX,A and seed set S ⊂ X ⊆ Df , let π∗(s, p) with
s ∈ S denote the path computed by IFT ending at pixel p ∈ X ⊆ Df . Computed
paths are stored in a predecessor map pred : Df → D∗

f = Df ∪ {NIL}, such
that for each pixel p ∈ X \ S, q = pred(p) indicates the path’s predecessor node
of p in the computed path π∗(s, p) and pred(s) = NIL indicates that s is the
origin of the path (root node). A root map root : Df → Df is used to explicitly
store the origin of paths π∗(s, p), such that root(p) = s and pred(s) = NIL.

Let Πq(GX,A) be the set of all possible paths in graph GX,A ending at pixel
q ∈ X and Π(GX,A) =

⋃
q∈X Πq(GX,A) indicate the set of all possible paths in

GX,A. A connectivity function Ψ : Π(GX,A) → R+ computes a cost Ψ(π(p, q))
for any path π(p, q). A path π(p, q) is optimal if Ψ(π(p, q)) ≤ Ψ(π′(x, q)) for any



6 D.J. Silva et al.

other path π′(x, q) ∈ Πq(GX,A), irrespective of its starting point x. During the
IFT calculation, a cost map cost : Df → R+ is used to store the costs of the
computed paths π∗(s, p), such that cost(p) = Ψ(π∗(s, p)) for all p ∈ X.

In the case of a sequence of IFT applications for different sets of seeds mod-
ified by insertion and/or removal of seeds and the same connectivity function,
the Differential Image Foresting Transform (DIFT) allows the updating of paths
stored in pred and other maps in a time proportional to the size of the modi-
fied regions in the image (i.e., in sublinear time) [6]. Let a sequence of IFTs be
represented as ⟨IFT(S1), IFT(S2), . . . , IFT(Sn)⟩, where n is the total number of
IFT executions on the image. At each execution, the seed set Si is modified by
adding and/or removing seeds to obtain a new set Si+1. We define a scene Gi

as the set of maps Gi = {predi, rooti, costi}, resulting from the i-th iteration
in a sequence of IFTs. DIFT allows to efficiently compute a scene Gi from the
previous scene Gi−1, a set ∆+

Si = Si \ Si−1 of new seeds for addition, and a set

∆−
Si = Si−1 \Si of seeds marked for removal, by reusing the part of the previous

calculation that remains unchanged.

2.5 Distance Transform

The Distance Transform (DT) is a well-known binary image transformation that
assigns to each foreground pixel the distance to the closest background/contour
pixel. Formally, given a binary image X the DT at a pixel p ∈ X is defined as

edt(X, p) = min
q∈∂A(X)

∥q − p∥, (8)

where ∥ · ∥ denotes the standard Euclidean L2 norm on Df ⊂ Z2.
DT-based image operators are obtained in the IFT framework by considering

the connectivity function

ΨEuc(π(p, q)) =

{
∥q − p∥ if p ∈ S;
+∞ otherwise.

(9)

Its applications involve its use in multi-scale shape skeletonization [8, 9] and
shape descriptors (e.g., fractal dimensions [5], contour saliences [13], and shape
descriptors based on tensor scale [2]).

The distance transform computation in a differential mode requires an up-
dated version of the DIFT algorithm as proposed in [4]. In this work, we adopt
this algorithm with some extra modifications, since we also have here the expan-
sion of the graph GX,A and not just the modification of the set of seeds from
Si−1 to Si, as explained in Section 3, given that X grows as we move towards
the root of the component tree. Therefore, we have a different Xi for each exe-
cution of DIFT with Xi−1 ⊂ Xi. For each new node of the expanded graph in
Xi \Xi−1, its neighbours in Xi−1 that already have computed paths, rooted in
seeds not marked for removal, must also be inserted into the priority queue used
by DIFT to allow their future path extensions.



Differential Maximum EDT Computation in Component Trees 7

3 Proposed Method

3.1 Proposed Attribute

We define the maximum distance transform value (or maximum distance for
short) maxDist : V (Tf ) → R as an attribute of component trees for a node
N ∈ V (Tf ) as

maxDist(N) = max
p∈N

edt(p,N). (10)

Since a node N can never lose pixels when we move to its ancestors, the edt of
the pixels never decreases, making the maximum distance an increasing attribute
(see Sec. 2.2). Consequently, it can be used in an extinction value filter (see
Sec. 4.2). It describes the thickness of the node in such a way that a thin object
independent of its size (area) has a low value of maximum distance. We propose
an efficient differential algorithm to compute it.

3.2 Differential Algorithm

Our proposed algorithm processes the max-tree from its leaves to the root. For
each level-set, we collect the new seeds by finding new contour pixels and the
removed seeds by finding the contour pixels from the previously processed level-
set that are not contour pixels on the level-set which is currently being processed.
Then, we use DIFT for distance transform computation using the seeds from the
previously computed level-set (maintained seeds), the found new seeds (inserted
seeds), and removing the seeds (removed seeds) that are not contour pixels in the
level-set being processed. The maximum distance transform value for each DIFT
root is mapped to a contour pixel of the node. Finally, we scan the contour pixels
of the node (computed incrementally) to find the maximum distance transform
value mapped to the DIFT root in the previous step.

We summarise these steps in Algorithm 1. In the algorithm, we denote by
Z+ the set of positive integers, R+ the set of positive real numbers, and D∗

f =
Df ∪ {NIL} : NIL ̸∈ Df , where NIL denotes an invalid pixel.

Algorithm 1 starts by initialising the maxDist map, the DIFT variables,
and the incremental contour variables in lines 2–7. In line 8, we create a map
levelToNodes that maps to λ all nodes associated with grey level λ such that we
can quickly access all nodes associated with λ. Then, we loop over all levels λ of
the input image in lines 9–35 and skip processing levels that are not in the image
using the if statement in line 10. Then, we loop over all nodes N associated with
λ in lines 11–32. For each node N , we (i) remove the background neighbours
by scanning the contour of the children and checking if the contour pixel is a
neighbour of a CNP of N (lines 15–17), (ii) if the analysed contour pixel has no
background neighbour anymore it is included in the sets of seeds to be removed,
otherwise, it is a maintained seed and is included in the contour of N (lines
18 and 19). In line 20, we remove the collected seeds by calling treeRemoval

(function as described in [4, 6]). Next, we scan the CNPs of N (lines 21–32).
For each CNP p, we (i) include it in the current level-set (line 22) such that



8 D.J. Silva et al.

Algorithm 1: Differential algorithm

Input: A greyscale image f : Df → Kf and its max-tree T̂f = (V̂ (Tf ), Ê(Tf ))
Output: A map maxDist : V (Tf )→ R+

1 Function computeMaximumDistanceDifferential (f , T̂f )
2 Let maxDist : V (Tf )→ R+ with maxDist[N ] = 0, ∀N ∈ V (Tf );
3 Let bin = ∅ and cost : Df → R+ be the cost image;
4 Let pred : Df → D∗

f with pred[p] = NIL,∀p ∈ Df ;
5 Let root : Df → Df with root[p] = p, ∀p ∈ Df and Q be a cost queue;
6 Let contours : V (Tf )→ P(Df ) with contours[N ] = ∅, ∀N ∈ V (Tf );
7 Let ncount : Df → Z+ with ncount[p] = 0, ∀p ∈ Df ;
8 Let levelToNodes : Kf → V (Tf ) with

levelToNodes[λ] = {N ∈ V (Tf ) : level(Tf , N) = λ}, ∀λ ∈ Kf ;
9 foreach λ ∈ max(Kf ) down to min(Kf ) do

10 if levelToNodes[λ] = ∅ then continue;
11 foreach N ∈ levelToNodes[λ] do
12 Let toRemove = ∅ and Ncontour = ∅ be two sets;
13 foreach C ∈ children(Tf , N) do
14 foreach p ∈ contours[C] do
15 foreach q ∈ N4(p) do
16 if q ∈ Df and f(q) = level(Tf , N) then
17 ncount[p]- -;

18 if ncount[p] = 0 then toRemove← toRemove ∪ {p};
19 else Ncontour← Ncontour ∪ {p};

20 if toRemove ̸= ∅ then
treeRemoval(toRemove, bin, Q, root, pred, cost);

21 foreach p ∈ N̂ do
22 bin← bin ∪ {p};
23 foreach q ∈ N4(p) do
24 if q ̸∈ Df or f(p) > f(q) then ncount[p]++;

25 if ncount[p] > 0 then
26 Ncontour← Ncontour ∪ {p};
27 root[p]← p, pred[p]← NIL, cost[p]← 0;
28 insert(Q, cost, p);

29 else
30 cost[p]← +∞;
31 foreach q ∈ N4(p) : q ∈ bin do
32 if q ̸∈ Q and cost[q] ̸= +∞ then insert(Q, cost, q) ;

33 Bedt← EDTDiff(Q,A8, bin, root, pred, cost)
34 foreach N ∈ levelToNodes[λ] do
35 maxDist[N ]← maxp∈contours[N ] Bedt[p]

36 return maxDist;



Differential Maximum EDT Computation in Component Trees 9

Fig. 3. MIR sets for each level-set of the image in Fig. 1. The pixels in black represent
the seeds which are maintained from the previous computed λ, the green pixels rep-
resent the inserted seeds at the current level λ, and the red pixels represent the seeds
removed from the previous processed λ.

when finishing the loop of lines 11–32, we have bin = [f ≥ λ], (ii) we count
the background neighbours of p (line 24), (iii) if p has at least one background
neighbour, we include it in the contour of N and update DIFT variables to
include it as a new seed (lines 25–28), otherwise we set the variables of the
DIFT to make it a non-seed pixel which needs to be processed (lines 30–32).
In line 33, all nodes associated with λ have been processed, the DIFT variables
are set and we can run the DIFT to compute the distance transform of the
level-set [f ≥ λ]. Then, we call EDTDiff in line 33 which computes the distance
transform using a DIFT and returns an image Bedt containing the maximum
distance transform valued mapped to a DIFT’s seed (contour pixel) of the node.
Finally, we extract the maximum DT value from this boundary image Bedt for
all nodes associated with λ by scanning their contour pixels in lines 34–35.

The main idea of Algorithm 1 is to incrementally keep the sets of maintained,
inserted, and removed seeds (MIR sets for short). It keeps these sets implicitly in
lines 18 (removed seeds), 19 (maintained seeds), and 26 (inserted seeds). Using
MIR sets we can quickly set up a DIFT for distance transform computation and
find its maximum value for each CC. Figure 3 depicts the MIR sets for each
level-set of the image in Figure 1.

4 Experimental Results

4.1 Run Time Analysis

We have performed experiments to compare Alg. 1 to a non-differential ap-
proach. In the non-differential approach, we decompose the input image f into
all its level-sets, and run an IFT (non-differential) that computes EDT for each
one of them. Then, we reconstruct each node associated with the threshold
value and compute the maximum value of the EDT. We implemented both ap-
proaches in single-thread C++14 programs, and ran the experiments on the
dataset available at [3]. This dataset contains 18 greyscale images varying on
content and with dimensions varying from 256 × 256 to 8218 × 2700. We ran



10 D.J. Silva et al.

the experiments on a laptop computer with Ubuntu 19.10, 16GiB of RAM, and
an Intel®Core™i7-8750H CPU (2.20Ghz ×12) processor. The experiments were
run 10 times, alternating between starting running the non-differential and dif-
ferential approach. Then, we took the average run-time of the 10 runs for each
image. The details of the experiments, including source code, scripts, and re-
sults, are available on GitHub [16]. In summary, our differential approach was
on average 2.01 times faster than the non-differential approach. In addition, the
differential approach was at least 1.04 times faster and was maximally 2.87 times
faster than the non-differential approach.

4.2 Extinction Value Filters

Fig. 4. Synthetic figure for attribute illustrations. The max-tree of the image contains
three leaves highlighted in red, green, and blue. Their respective moment of inertia
extinction values are +∞, 9.51×106, and 9.59×107, and maximum distance extinction
values are +∞, 2350, and 53. Unlike the moment of inertia, the maximum distance
extinction value of the spiral is lower than that of the circle.

If we have an increasing attribute and consider a greyscale image as a topo-
graphic surface in which the ground is at level zero and the grey-level of each
pixel denotes its altitude, we can associate to the peaks the lowest attribute value
such that peak will be extinguished. These attribute values are called extinction
values and can be associated with leaves of a component tree [15]. Then, we can
apply a connected filter to the image by sorting the leaves by their extinction
value, selecting a desired number L of leaves, and pruning the branches asso-
ciated with L lowest extinction values. Height, area, volume and many other
increasing attributes are applied in different applications. In particular, moment
of inertia is an increasing attribute commonly used in applications that rely
on object thickness [20]. Similarly, our proposed attribute is increasing and de-
scribes the thickness of the object. However, our proposed attribute can better
describe the thickness of elongated objects as shown in Figure 4.

We demonstrate an extinction value filter to remove a cable on a desk with
different objects in Figure 5. The figure shows that our attribute correctly filters
thin objects out before filtering out other thick objects. In this example, only
our proposed algorithm kept the semi-rounded eraser.



Differential Maximum EDT Computation in Component Trees 11

input height (L = 3) area (L = 4) inertia (L = 4) max EDT (L = 5)

Fig. 5. Extinction value filter for different attributes. Each image corresponds to the
input image after an extinction value filter applied to keep L leaves for each attribute.
The number L was chosen as the highest L-value for which the cable is filtered out.

5 Conclusion

The distance transform of a binary image is an important operator used in
many applications. In particular, it can be used to describe the thickness of con-
nected components. In this work, we have proposed using the maximum distance
transform value as an attribute of component trees. To do so, we have intro-
duced a novel algorithm that adapts the incremental contour computation and
the Differential Image Foresting Transform to quickly compute this attribute.
We experimentally show that our algorithm is on average twice as fast as the
non-differential approach. We have shown that this attribute is increasing and
demonstrated its usage in an extinction value filter to remove thin objects of a
greyscale image, also comparing it to other increasing attributes.

Acknowledgment

Dennis J da Silva, Ronaldo F. Hashimoto, Paulo A.V. Miranda and Wonder A.L.
Alves acknowledge CNPq - Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico (Proc. 141422/2018-1, Proc. 428720/2018-7, Proc. 407242/2021-
0, and Proc. 313087/2021-0) for financial support. Ronaldo F. Hashimoto and
Wonder A.L. Alves acknowledge FAPESP - Fundação de Amparo a Pesquisa
do Estado de São Paulo (Proc. 2015/22308-2 and 2018/15652-7) for financial
support.

References

1. Alves, W.A., Gobber, C.F., Araújo, S.A., Hashimoto, R.F.: Segmentation of retinal
blood vessels based on ultimate elongation opening. In: International Conference
Image Analysis and Recognition. pp. 727–733. Springer (2016)

2. Andalo, F.A., Miranda, P.A.V., da Silva Torres, R., Falcão, A.X.: A new shape
descriptor based on tensor scale. In: International Symposium on Mathematical
Morphology and Its Application to Signal and Image Processing (2007)



12 D.J. Silva et al.

3. Carlinet, E., Géraud, T.: A comparison of many max-tree computation algorithms.
In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology
and Its Applications to Signal and Image Processing. pp. 73–85. Springer Berlin
Heidelberg, Berlin, Heidelberg (2013)

4. Condori, M.A., Cappabianco, F.A., Falcão, A.X., Miranda, P.A.: An extension of
the differential image foresting transform and its application to superpixel genera-
tion. Jrnl. of Visual Communication and Image Representation 71, 102748 (2020)

5. da S. Torres, R., Falcão, A., da F. Costa, L.: A graph-based approach for multiscale
shape analysis. Pattern Recognition 37(6), 1163–1174 (2004)

6. Falcão, A.X., Bergo, F.P.: Interactive volume segmentation with differential image
foresting transforms. IEEE Transactions on Medical Imaging 23(9), 1100–1108
(2004)

7. Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image foresting transform:
Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(1), 19–29 (2004)

8. Falcão, A., da F. Costa, L., da Cunha, B.: Multiscale skeletons by image foresting
transform and its application to neuromorphometry. Pattern Recognition 35(7),
1571–1582 (2002)

9. Falcão, A., Feng, C., Kustra, J., Telea, A.: Chapter 2 - multiscale 2D medial axes
and 3D surface skeletons by the image foresting transform. In: Saha, P.K., Borge-
fors, G., Baja, G.S.d. (eds.) Skeletonization, pp. 43–70. Academic Press (2017)

10. Gonzalez, R.C., Woods, R.E.: Digital Image Processing 4th edition. Pearson (2018)
11. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE

Transactions on Image Processing 15(11), 3531–3539 (2006)
12. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
pp. 3538–3545. IEEE (2012)

13. da S. Torres, R., Falcão, A.: Contour salience descriptors for effective image re-
trieval and analysis. Image and Vision Computing 25(1), 3–13 (2007), sIBGRAPI

14. Salembier, P., Wilkinson, M.H.: Connected operators. IEEE Signal Processing
Magazine 26(6), 136–157 (2009)

15. Silva, A.G., Lotufo, R.d.A.: New extinction values from efficient construction and
analysis of extended attribute component tree. In: 2008 XXI Brazilian Symposium
on Computer Graphics and Image Processing. pp. 204–211 (2008)

16. Silva, D.J., Miranda, P.A.V., Alves, W.A.L., Hashimoto, R.F., Kosinka, J.,
Roerdink, J.B.T.M.: Differential maximum euclidean distance transform value
computation in component trees - experiments analysis webpage and source code.
https://github.com/dennisjosesilva/max_dist_diff (2023), accessed in 10 Oc-
tober of 2023

17. Silva, D.J., Alves, W.A., Hashimoto, R.F.: Incremental bit-quads count in com-
ponent trees: Theory, algorithms, and optimization. Pattern Recognition Letters
129, 33–40 (2020)

18. Telea, A.: Data Visualization: Principles and Practice, chap. Image Visualization,
pp. 363–379. CRC Press, 2 edn. (2014)

19. Wang, J., Silva, D.J., Kosinka, J., Telea, A., Hashimoto, R.F., Roerdink, J.B.: In-
teractive image manipulation using morphological trees and spline-based skeletons.
Computers & Graphics 108, 61–73 (2022)

20. Wilkinson, M.H.F., Roerdink, J.B.T.M.: Fast Morphological Attribute Operations
Using Tarjan’s Union-Find Algorithm, pp. 311–320. Springer US, Boston, MA
(2002)


