
Interpretation of Inconsistencies via Context Consistency Diagrams

Viktoriya Degeler and Alexander Lazovik
Distributed Systems Group, Johann Bernoulli Institute

University of Groningen
Nijenborgh 9, 9747 AG, The Netherlands

{V.Degeler,A.Lazovik}@rug.nl

Abstract—Pervasive context-aware systems base their re-
sponses on information about the environment collected from
ubiquitous sensors. The inevitable drawback of such systems is
that raw data collected from sensors is often noisy, corrupted,
and imprecise. Erroneous sensor readings create uncertainties
and ambiguous interpretations. Thus creating an interpretation
challenge for the context-aware system that needs to reason
about possible states of only partially observable subjects.

We propose a mechanism for pervasive context-aware sys-
tems to process the information gathered from sensors so
to obtain knowledge about possible environment states. This
includes both the ability to reason about a situation with
incomplete knowledge and to cope with erroneous contexts.
We present a probabilistic approach to reason about the
likelihood of each particular situation, state of a variable,
and variable interdependence. The evaluation shows that the
proposed approach is applicable to real-time context inference
problems.

Keywords-Context-aware computing, context reasoning, con-
text inconsistencies.

I. INTRODUCTION

Pervasive context-aware systems gather information from
the environment to adapt application behavior without an
explicit user intervention. A typical example is a smart home
system [1] that monitors needs of users and coordinates low-
level tasks of home devices. Such a system is responsible
for the following three activities: (i) raw data collection from
the sensors; (ii) data transfer to the system middleware that
processes the acquired data and draws logical conclusions
from it, that is, it creates consistent interpretations of the
environment; (iii) high-level applications use of this infor-
mation to make appropriate decisions using the information
provided by the pervasive system middleware.

The inevitable challenge is the processing of raw data
collected from sensors that is often noisy, corrupted, im-
precise, and easily leads to inconsistencies. Inconsistencies
may be caused by different factors. A study by Jeffery et
al. [2] shows that in dynamic environments the percentage
of RFID tags reads can drop down to 60-70%. The data may
become obsolete rapidly. Due to the asynchronous nature
of sensor readings, the data being correct at the time of
sensing may turn obsolete at the time of delivery at the
end-point applications. The order of raw data arrival may
be different from the order of sensing, which may influence

the interpretation of the context. Finally, context reasoning
algorithms themselves may introduce errors.

In this paper, we propose a mechanism of reasoning about
sensor information to define possible context interpretations.
This includes both the ability to reason about a context
with incomplete knowledge, as well as the ability to cope
with erroneous contexts that may lead to false beliefs. We
propose a data structure called context consistency diagrams
(CCD) for efficient tracking of sensed contexts, which can be
efficiently maintained and queried in real-time, and used to
obtain information about the likelihood of a particular con-
text interpretation, variable or relations between variables.

The rest of the paper is organized as follows. Section II
overviews the state of the art in context reasoning. In
Section III, we discuss types of context inconsistencies and
ways to resolve them. In Section IV, we introduce CCD.
Section V shows how CCD can be used to query context
information. In Section VI, we show how to maintain CCDs
in real-time. We evaluate the approach in Section VII and
provide concluding remarks in Section VIII.

II. RELATED WORK

Various authors address the issue of inconsistent sensor
readings and precise context determination.

Xu and Cheung et al. [3] study the detection of context
contradictions based on predefined constraints. They propose
to convert each constraint into a tree with constraint opera-
tors as vertices and contexts as edges. Then they introduce a
partial constraint checking (PCC) algorithm that is capable
of re-checking only parts of the constraint tree that may be
affected by a new context. Huang et al. [4] propose to check
branches probabilistically. This enables fast processing of
large trees and adds scalability to PCC, but reduces the
percentage of correctly found inconsistencies. The papers
aim at fast detection of contradictions, while in the present
approach we concentrate on the problem of different context
interpretations after inconsistencies are found. Their findings
can also be combined with our approach, as inconsistencies
found through their method may be interpreted using CCD.

Bu et al. [5], [6] perform context reasoning by modelling
the context ontology and then finding inconsistencies using
ontological reasoning. They propose to discard conflicting
contexts based on their relative frequencies. Xu et al. [7]

propose similar resolution strategies, among which are
drop-latest, drop-all, drop-random, and drop-bad. The latter
heuristic counts the number of conflicts for each context and
drops the one with the biggest number. While those tech-
niques can be used to successfully resolve the straightfor-
ward inconsistencies, our approach is helpful when proposed
heuristics cannot confidently resolve the conflict, which may
lead to retaining the incorrect interpretation.

Henricksen and Indulska [8] classify context properties
and outline initial ideas on handling several inconsistencies.
While introducing a classification, they do not provide
precise algorithms for dealing with context inconsistencies.
Lu et al. [9] provide a mechanism for detecting failures in
context-aware applications and means to test such applica-
tions. Huang et al. [10] study the detection of inconsisten-
cies that emerge due to asynchronous arrival of concurrent
events. The proposed algorithm detects the original order of
such events based on happen-before relation. On the other
hand, we do not consider inconsistencies caused by the order
in which context information is arriving.

Kong et al. [11] propose to extend the OWL ontology with
fuzzy membership to tolerate inconsistencies. Their proposal
involves manual assignment of membership values and does
not propose a way to retrieve useful information from it.

A similar fuzzy approach to ours is discussed in [12].
The authors try to minimize the impact of early incorrect
decisions made during software design. They show that
wrong classification of an entity to one of the mutually
exclusive classes if done early, may lead to further incorrect
or suboptimal design of the software system. They propose
to improve the process by deferring decisions about entity’s
classification as long as possible, instead of assigning fuzzy
membership values to each of possible classes. However, the
solution is not applicable to context reasoning, as it is based
on human decisions about entity’s properties membership
values that have to be updated with each information change.
This is acceptable for the prolonged and slow software
development process, but impossible in highly dynamic
automated context-aware systems.

III. ARCHITECTURE

Context-aware reasoning systems produce an application-
friendly interpretation of raw sensor data. A possible ar-
chitecture for such systems is shown in Figure 1. Often,
an optional rule-based pre-processing of raw sensor data is
performed. In Figure 1, a rule (TV sound = max =⇒
TV channel ∈ {sports, shows}) is applied to a sensed
value (TV sound = max). The resulting pre-processed con-
text (TV sound = max, TV channel ∈ {sports, shows})
is then passed to a context subsystem (“CCD representation”
layer, see Section IV) that is responsible for efficient storage
of acquired context information, resolving inconsistencies,
answering to queries, or triggering events to the subscribed
top-level applications.

Figure 1: Context reasoning using CCD.

To deal with inconsistencies, we introduce context consis-
tency diagrams (CCD). CCD allow efficient representation
of acquired context information together with all possible
context inconsistencies and interpretations. CCD is inconsis-
tent, if there is no single interpretation that is confirmed by
all sensed (and then pre-processed) data. Ideally, conflicts
caused by a failed sensor or by data expiration should
not stop the system from providing the best possible in-
terpretation for the acquired context information. Several
techniques exist to resolve an ambiguous conflict in favor
of one interpretation. But if the resolution is incorrect,
further interpretations of a situation will also be wrong,
even if further information may show that another solution
was preferable. To deal with this, a CCD keeps several
interpretations, each with its own probability of being true.

We associate a likelihood of being true to each acquired
chunk of data. Whenever chunks “support” each other (there
is an interpretation of a situation that is consistent with all
of them), their mutual truth likelihood is higher compar-
ing to the conflicting ones. Additionally, each arrived and
pre-processed information shares a certain degree of truth
likelihood, thus compensating the effect of a faulty sensor
over the inferred information received from that particular
sensor. The most probable interpretation is then the one that
is “supported” by the majority of consistent contexts. Even
if a particular context does not support the most “popular”
interpretation, it is still stored in a CCD. It might happen that
with the acquisition of new data, the context is considered
more likely, if the new data support it. With such a structure

Table I: Example of environment and context creation.

(a) Variables.

Variable Domain
Electricity off, on
Light off, on
TV off, news, sports, shows
TV sound 0, 1, 2, 3

(b) Dependency rules.

¬(E = off∧ Light and TV can be turned on
(L = on ∨ ¬(TV = off))) only if electricity is on.

¬(TV = off∧ Non-silent TV sound means
TV s ∈ {1, 2, 3}) TV is turned on.

TV = shows ⇒ L = off If TV channel is ‘shows’,
light should be turned off.

(c) Sensor readings and contexts.

ID Sensor reading Context
c1 TV = Sh E : 1 | L : 0 | TV : Sh | TV s : 0123
c2 TV s = 2 E : 1 | L : 01 | TV : NSpSh | TV s : 2
c3 L = 1 E : 1 | L : 1 | TV : 0NSp | TV s : 0123
c4 TV ∈ {Sp, Sh} E : 1 | L : 01 | TV : SpSh | TV s : 0123

the context interpretation is never final, as new data may
change the interpretation by contributing to an interpretation
previously considered wrong.

IV. CONTEXT CONSISTENCY DIAGRAM

A server that collects raw data (pre-processing layer in
Figure 1) obtains information from the underlying layer in a
form vi = dij , i.e., a variable vi has a value dij . It is possible
that the sensors return a set of values, i.e., vi ∈ {dij1 , dij2}.
For example, a location variable may be sensed by a sensor
(e.g. RFID) that is known to be imprecise.

Definition 1 (Environment). An environment 〈V,D〉 is
defined by a set of context variables V = {v1, v2, ..., vn}.
Each variable vi varies over a domain
Di = {di1, di2, ..., dimi

} with size mi.

Many variables either cannot be directly observed, or can
only be partially sensed. If the heating mechanism is broken,
we can sense that the heater is turned on, but we cannot
observe if it actually started to heat the room, unless we have
a reliable temperature sensor. Fortunately, many variables
influence each other. For example, it is impossible to have
a light turned on, if there is no electricity in the house; a
location of a person and of the tool that she works with
must be the same, etc. If these correlations are taken into
account, even a few observed variables may give an overall,
yet possibly incomplete, knowledge about the environment.

Definition 2 (Context, Interpretation). For a given
environment 〈V,D〉, a context c is a valuation of all
variables in V with a non-empty subset Dc of D. If all
variables vi are assigned one and only one specific value
in Di, a context is called an interpretation.

Non-emptiness ensures that a context is always possible
in practice, i.e. each variable has at least one possible value.

We represent a context by enumerating its possible context
variables values: Dc

0, . . . , D
c
n, or, alternatively, as v0 ∈

{d0l, . . . , d0k}. We write c.vi to refer to i-th variable of c.
Our knowledge about an environment is described by a

set of contexts c0, . . . , cn. If for any two interpretations x, y
s.t. ∀ci : x ∈ ci ∧ y ∈ ci, it follows that x = y, then
we have complete and unambiguous knowledge about the
given environment. More than one interpretation represents
an ambiguity or incomplete knowledge. Intuitively, each new
sensor reading adds knowledge about the environment, thus
it reduces the number of possible interpretations. Faulty con-
texts can be detected when an impossible situation is created,
i.e. when there is no interpretation x, s.t. ∀ci : x ∈ ci.

For example, in Table Ia a portion of a smart home is
modelled by 4 variables. In Table Ib, few pre-processing
rules are defined that represent the inter-relation between the
context variables. Note though, that it is not important how
these rules are defined, as far as they result in a context
information shown in Table Ic. Using these rules, from a
reading that the light is on, we infer that the electricity is
on, and if the TV is on as well, the channel is definitely not
‘shows.’

A set of contexts C = {ck} is consistent if there exist
at least one interpretation x : x.vi = diji ,∀i ∈ 1..n such
that diji ∈ ck.vi, ∀ck ∈ C, ∀i ∈ 1..n. A set of contexts is
inconsistent otherwise.

Additionally, we define two relations over contexts:
• Inclusion: c1 ⊂ c2 iff ∀i ∈ 1..n : c1.vi ⊂ c2.vi

Inclusion can be viewed as a relation of a more precise
and less precise contexts. If c1 ⊂ c2 then context c1 is
more precise, than c2, in other words, each variable of
c1 contains less values that are possible.

• Intersection: cu =
⋂k

j=1 cj = c1 ∩ c2... ∩ ck iff
∀i ∈ 1..n : cu.vi = c1.vi ∩ c2.vi... ∩ ck.vi An
intersection of inconsistent contexts always equals to
∅. An intersection of consistent contexts is a context,
that is at least as precise, that any of the originals:
∀j ∈ 1..k cu ⊆ cj .

To compactly represent all possible interpretations for a
given set of contexts, we use relations defined in the previous
section, thus forming a diagram with arrows representing
inclusion relation. Any two contexts ci, cj are connected in
the diagram, if ci ⊂ cj , and there is no such ck, so that
ci ⊂ ck ⊂ cj .

The idea of putting contexts into the diagram structure
is essentially an introduction of a compact representation of
all possible interpretations of the environment. The “full do-
main” context is always at the top, meaning “no information
is received; any situation is possible.” Starting from the top
and going down, contexts become more and more restrictive,
with the most restrictive (as well as the most knowledgeable)
contexts at the bottom. Formally, CCD is defined as follows:

Figure 2: Example of context consistency diagrams.

Definition 3 (Context consistency diagram (CCD)).
Given an environment 〈V,D〉 and a set of contexts
C0 = {ck}, k ∈ 1..N , a context consistency diagram
(CCD) is a tuple G = 〈C,E, r〉, where:
• r = D, is a special context, the root;
• C = C0 ∪ Cu ∪ r where Cu is the full set of

intersections of a power set of C0.
• E ⊆ C × C, such that (c2, c1) ∈ E iff
∃c1, c2 ∈ C : c1 ⊂ c2 and @cm ∈ C : c1 ⊂ cm ⊂ c2.

Contexts from a set C are vertices of the diagram and E
is a set of directed edges. In a relationship (c1, c2) ∈ E,
c1 is called a parent, and c2 is called a child. cp is
called a predecessor of cc, and, respectively, cc is called
a descendant of cp if either of the following holds:

1) (cp, cc) ∈ E
2) ∃{ci} ∈ C, i ∈ 1..k s.t. (cp, c1) ∈ E ∧ (ck, cc) ∈

E ∧ (ci, ci+1) ∈ E,∀i ∈ 1..k − 1

We write ψ(c) to denote the full set of descendants of c
and Ψ(c) to denote the full set of predecessors of c. Several
important characteristics of the CCD directly follow from
its definition:

1) An intersection of two consistent contexts c1 ∈ C
and c2 ∈ C is a descendant of both contexts. ∃cu ∈
C, cu = c1 ∩ c2 s.t. cu = ψ(c1), cu = ψ(c2).
If c1 ∈ C and c2 ∈ C are inconsistent, then they
do not have common descendants. @c ∈ C s.t. c =

ψ(c1), c = ψ(c2).
2) If a set of contexts is empty, then CCD has only one

root context. C0 = ∅⇒ G = 〈r;∅; r〉
3) There is no context that is a predecessor of the root.

A root is a predecessor of all other CCD contexts.
∀c ∈ C : @(c, r) ∈ E , r ∈ Ψ(c)

For a set C0 = {c1, c2, c3}, the corresponding set of
intersections of its power set is equal to Cu = {c1∩ c2, c1∩
c3, c2∩c3, c1∩c2∩c3}. For a set of contexts listed in Table Ic
the corresponding CCD is shown on Figure 2.

V. CALCULATION OF PROBABILITIES

When the CCD results in more than one interpretation, it
is important to assess the likelihood of each interpretation.
For a query (Figure 1), we provide answers for the following
three possible requests: (i) the probability that a particular
situation is true; (ii) the probability that a variable has
a certain value; (iii) the dependence of variables on one
another. In other words, the conditional probability that a
certain variable has a certain value in case another variable
has a priori known value.

We now describe how the CCD is used to address all
above queries at any given moment of time. To calculate the
probabilities mentioned above, we first need to introduce the
concept of initial weight function w0(c). The initial weight
function shows the importance of each original context
c ∈ C0. The weights depend on many things, among which
are the infrastructure of sensor network; the importance of
each sensor (the more important is the sensor, the more
important is the context, associated with this sensor reading);
and the number of times a particular context has been read.
If the initial probabilities are unknown, we assume a uniform
distribution, that is, any sensed information is equally likely.
In a presence of additional information, other strategies for
assigning weights may be chosen. The strategy should be
chosen at the initial setup. The example in Figure 3 assigns
the weight 1 uniformly to all contexts.

For all contexts that are not in C0 the initial weight
function equals to 0: ∀c /∈ C0 : w0(c) = 0. The full
weight function w(c) for each context in a CCD is defined
as w(c) = w0(c) +

∑
∀cp: (cp,c)∈E w(cp).

The full weight function takes into account that contexts
that are consistent with each other should weight more than
inconsistent ones. The idea is that consistent contexts form
a consistent view on the situation, thus they all can be
correct. While in the set of inconsistent contexts some are
certainly faulty. So the full weight function rewards contexts
for being consistent with others by increasing the weight of
their descendants. The full weight of the CCD is the sum of
weights of all its contexts: w(G) =

∑
c∈C w(c)

To calculate the probability that a variable has a certain
value, we adapt the weight of the context to calculate the
weight of each value of the variable inside a context. The
context with several values of some variable assumes that

Figure 3: Assigning weights to the CCD in Figure 2d.

each of these values is equally probable, so we divide the
weight of the context among all values for each variable:
w(c.vi = dij) = w(c)/|c.vi|, ∀dij ∈ c.vi. However, we do
it only if the context actually knows something about the
variable vi. For example, if we got a sensor reading that the
light is on, it tells nothing about the TV sound, so we do not
split the context weight among TV sound values. If later we
receive a context that tells us both that the light is on and
TV sound is 2, then the first context supports the second
one (since they are consistent), so we transfer the weight of
the TV sound of a first context to a second one. For this
we introduce the ? value for a variable weight. This value
means that the weight is transferred to the children of the
context. Taking this into account, the weight of each value
of each variable in a context is calculated by:

w(c.vi = dij) =

{
? if c.vi = Di
w(c)+t(c.vi)
|c.vi| otherwise (1)

where t(c.vi) is a transfer (or carrying) value from the
parents of the context:

t(c.vi) =
∑

∀cp: (cp,c)∈E & w(cp.vi)=?

w(cp) + t(cp.vi)

|{∀cc : (cp, cc) ∈ E}|
(2)

? also contributes towards the efficiency during CCD updates
(Section VI). To calculate the final probabilities, we treat ?
differently depending on the context having children or not.
If the context has children, the weight of a variable is fully
transferred to them. Otherwise, we have no knowledge about
the value of the corresponding variable, so each domain

value gets an equal amount of the full weight, i.e. ∀dij ∈ Di:

(w(c.vi) = ?)⇔

w(c.vi = dij) = 0

if ∃(c, cc) ∈ E
w(c.vi = dij) = w(c)+t(c.vi)

|c.vi|
if @(c, cc) ∈ E

(3)

Now we can calculate the probability for each variable that
it has a certain value:

pr(vi = dij) =

∑
∀c∈C w(c.vi = dij)

w(G)
(4)

As an example, we describe the calculation of weights on
context 6 (grayed out) in Figure 3. The full weight of the
context is 2, because w(6) = w(1)+w(2). This weight fully
goes to the sole value of the variable E, so w(E = 1) = 2.
But for values of the variable TV , this weight is split equally
in two, so each value TV = Sp and TV = Sh gets half of
the full weight, or 1. The weight of the variable TV s is equal
to 2.33, because it combines the weight of the context 6, and
a third part of a transfer value from the context 1. The weight
of the variable L is equal to ?,because this variable allows
any value of the corresponding domain. So, this context does
not assign any weight to values of L, but instead transfers
it to its two children.

If we want to calculate the conditional probability that a
certain variable has a certain value in case another variable
has a particular value pr(vi = dij/vc = dc), we need to
reduce weights in a CCD in such a way that only contexts
that are compatible with vc = dc have weights higher than
0. Also, for contexts, that allow other values for vc, we need
to correspondingly reduce their weight.

The conditional weight of each context is equal to

w′(c) =

{
w(c)
|c.vc| if dc ∈ c.vc
0 otherwise

(5)

Similarly, the conditional weight of each variable is

w′(c.vi) =

{
w(c.vi)
|c.vc| if dc ∈ c.vc

0 otherwise
(6)

Finally, conditional probability is equal to

pr(vi = dij/vc = dc) =

∑
∀c∈C w

′(c.vi = dij)

w′(G)
(7)

where w′(G) =
∑

c∈C w
′(c)

VI. MAINTAINING CCD

A. Algorithms

Next, we describe the algorithms for maintaining the CCD
when new sensor data arrives. We start by introducing a few
properties of the CCD that make the maintenance possible.

Property 1. For a given set of contexts there is one and
only one non-isomorphic representation of its CCD.

It follows directly from the rules of construction. Cu is
only dependent from C0, and the root is always the same for
the same variables and their domains. So C = C0 ∪Cu ∪ r
is always the same for a given C0. For each pair of contexts
in the CCD c1, c2 ∈ C we use Definition 3 to determine if
they are connected, i.e. if ∃(c1, c2) ∈ E. So, for each C0

there is only one way to construct a tuple G = 〈C;E; r〉.
The actual context information changes rapidly and the

CCD should be updated in real-time to always conform to it.
Sensor readings arrive independently, and the CCD must be
reconstructed to accommodate new information. After some
time, obsolete contexts should be removed from the CCD to
eliminate obsolete situations. Obviously, the CCD should not
be constructed from scratch with each change in a contexts
set. Instead a newly arrived context should be added to the
existing CCD (by only changing the affected nodes), and
an obsolete context and its obsolete descendants must be
removed without affecting other parts of the diagram.

From the fact that for the given set of contexts there is
only one CCD follow two more important properties.

Property 2. The order of contexts addition does not
change the resulting CCD.

According to this property we can handle contexts updates
one by one, without taking into account the order of their
arrival, which can vary for asynchronous updates.

Property 3. Adding and then removing a context does not
change the resulting CCD.

Properties 2 and 3 follow from the fact that the set C0 is
not ordered.

Algorithm 1 Adding context to CCD

1: function AddContext(context, parent, weight)
2: for all child ∈ parent.children do
3: if child = context then
4: W0(child)←W0(child) + weight
5: return
6: else if context ⊂ child then
7: AddContext(context, child, weight)
8: return
9: else if child ⊂ context then

10: Remove link from parent to child
11: Insert link from context to child
12: end if
13: end for
14: Add link from parent to context
15: for all child ∈ parent.children\context do
16: if isConsistent(context, child) then
17: x← context ∩ child
18: AddContext(x, child, 0)
19: AddContext(x, context, 0)
20: end if
21: end for

Algorithm 1 contains the pseudocode of the addition of
a new context to the diagram. It is started by running
AddContext(context, root, weight) (trying to add a new
context directly under the root) and recursively descends to
check all contexts that are consistent with a new one. The
function AddContext(context, parent, weight) is called
only when a context should be a descendant of a parent.
Firstly it checks if a context is already present as a child of
a parent (lines 3-5), if it is a child of a child (lines 6-8), or if
some existing children of a parent should become children of
a new context (lines 9-11). If the context is not yet present
and not a child of a child, then it is added as a new child,
and all existing children are checked for consistency with
it. If they are consistent, their intersection is created and
recursively added to both contexts (lines 15-21). Note that
an intersection context receives no initial weight.

Algorithm 2 shows the removal of an outdated context
from the diagram. CCD has to be changed only if there
are no other similar contexts and if it has only one parent
(line 3), otherwise it must stay in the diagram as an in-
tersection of its parents. The reduction of the CCD starts
with removing a link from a parent to a context (line 5)
and from a context to all its children (line 7). We want all
children of a removed context to be added to its parent
directly. But we do not want to add a link from a parent to
a child, if they are already linked through different path. So
on lines 8-10 we check if this is the case, and if it is not, we
add a link (line 9). To be sure that no child without initial
weight is left with a single parent, we recursively check all

Algorithm 2 Removing context from CCD

1: function RemoveContext(context, weight)
2: W0(context) = W0(context)− weight
3: if W0(context) = 0 and |context.parents| = 1 then
4: parent← context.parents
5: Remove link from parent to context
6: for all ch ∈ context.children do
7: Remove link from context to ch
8: if @brth ∈ ch.parents s.t. brth ⊂ parent then
9: Add link from parent to ch

10: end if
11: RemoveContext(ch, 0)
12: end for
13: end if

children of a context for deletion (line 11).
Algorithm 3 calculates the probabilities in the CCD

as described in Section V. The important part is line 7.
conditions is a context that contains a conditional situation,
if we want to calculate a conditional probability. For finding
unconditional probabilities, we put to conditions the full
domain context, similar to root. When we want to obtain
probabilities in case that a certain variable has a certain value
vc = dc, we produce a context conditions in such a way,
that we only allow one value for vc, but all values for other
variables: conditions = {vc = dc;∀vi ∈ v\vc : vi = Di}.
This can be combined, to create a more sophisticated con-
ditions. coeff contains a percent of a context c that is
contained in conditions. Later a weight of c and all its
variables is reduced to this percent.

Lines 11-15 check the applicability of the ? value.
Lines 18-25 go through all children of a context and

increase their weight. In case all parents are calculated,
they are also added to the queue. Each context of the CCD
will be queued exactly once, but only in a case it satisfies
conditions (otherwise it’s conditional weight is 0).

B. CCD complexity

Explicit description of different interpretations in a CCD
can potentially grow in space exponentially with the size
of the environment. inconsistencies. However, there are
several considerations that help to keep the size of a CCD
reasonable.

The biggest growth of a CCD results from faulty contexts.
While correct contexts tend to have the same descendants,
faulty contexts will generate many new CCD nodes. With a
growth of a CCD, one may discard contexts that support
the most unlikely interpretations, as most probably they
represent faulty or imprecise sensors.

Each environment in a CCD should only contain interde-
pendent variables (i.e. associated by dependency rules, as in
Table Ib). We split independent variables on non-intersecting
subgroups and produce a smaller CCD for each subgroup.

Algorithm 3 Retrieve probabilities

1: function RetrieveProbabilities(conditions)
2: Set all WG,W (c.vi),W (dij), t(c.vi) to 0
3: Set all W (c) to W0(c)
4: queue← root
5: while queue is not empty do
6: c← queue.poll()
7: coeff ← CalcCoefficient(conditions, c)
8: WG ←WG + coeff ∗W (c)
9: for all c.vi do

10: W (c.vi)← coeff ∗W (c) + t(c.vi)
11: if c.vi = Di and |cch← c.children| > 0 then
12: t(ch.vi)← t(ch.vi) +W (c.vi)/|cch| ∀ch ∈ cch
13: else
14: W (dij)←W (dij) +W (c.vi)/|c.vi| ∀dij ∈ c.vi
15: end if
16: end for
17: Mark c as calculated
18: for all child ∈ c.children do
19: if child satisfies conditions then
20: W (child)←W (child) + coeff ∗W (c)
21: if all child.parents are calculated then
22: queue.add(child)
23: end if
24: end if
25: end for
26: end while
27: return prob(dij)←W (dij)/WG for all dij

VII. PERFORMANCE EVALUATION

The experiments are performed on a Intel Core2Duo
P7370 2GHz PC with 3 GB RAM running OS Ubuntu
10.04. The software is written in Java JDK 1.6. The test
environment consists of a test generation part that generates
situation and contexts, and a middleware part that collects
contexts, maintains CCD, and calculates probability.

The experiments model a situation with 10 dependent
sensors that sense the same type of data and are located
in line one by one. The dependence is represented by a
fact that the data of two neighboring sensors cannot differ
for more than one measurement unit. Related real world
situations include temperature or noise sensors. The context
arrival rate is set to 0.05 seconds; lifetime is set to 6 seconds.
The test generation part creates a situation. Contexts are
generated based on it with a 5% error rate and are sent to the
middleware part. Each 20 seconds the situation changes to
capture the behavior of the CCD in a changing environment.

Figure 4 shows the adding of a new context to the CCD.
The spikes in Figure 4a show that some contexts take over
hundred times more time to process than average. Those
are erroneous contexts, and contexts that are received after
a change of a situation. Erroneous contexts require more

(a) Time to update the CCD with a new context

(b) Close view to the data in 4a. Correct context require little processing time.

(c) Confidence of the correct contexts with time

Figure 4: Performance experiment

time to calculate, as most of them imply that new nodes
are added to the CCD. This also happens with a change of
situation when new CCD nodes should be constructed. After
receiving several new contexts the CCD “remembers” the
new situation, and the time of context processing is reduced
to the previous level. Figure 4b is a zoom of the bottom of
the Figure 4a in close proximity. Most of the correct contexts
already fit into the existing CCD structure, thus they require
little processing time. Figure 4c shows the confidence in
the correct context: the calculated probability of a correct
situation. Drops in confidence when the situation changes
represent that the CCD mainly remembers the obsolete
situation. With the arrival of new contexts the new situation
quickly becomes the most probable one.

CCD are maintained continuously during the work of
context-aware applications. Thus it is important that CCD
maintenance computation efforts remain on the same level
and do not increase with system up-time. Figures show that
this is indeed the case. Once the middleware reaches its
normal workload, the time of context processing remain on
the same level over time, as can be seen in Figure 4b.

VIII. CONCLUDING REMARKS

We introduced Context Consistency Diagrams, a novel
data structure for reasoning about situations with incomplete

knowledge of the environment and context conflicts that
cannot be unambiguously resolved. The CCD allows for the
computation of the probability of a certain interpretation,
the value of a particular variable (or set of variables), and
conditional probability over different dependent variables.
Our experiments show that the CCD can be efficiently
maintained and computed in real-time.

ACKNOWLEDGMENT

The research is supported by the EU projects Smart
Homes for All, contract FP7-224332 and Greener Buildings,
contract FP7-258888.

REFERENCES

[1] E. Kaldeli, E. Warriach, J. Bresser, A. Lazovik, and M. Aiello,
“Interoperation, Composition and Simulation of Services at
Home,” in ICSOC, vol. 6470, 2010, pp. 167–181.

[2] S. R. Jeffery, M. Garofalakis, and M. J. Franklin, “Adaptive
cleaning for RFID data streams,” in Proc. of the Int. Conf. on
Very Large Data Bases, 2006, pp. 163–174.

[3] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “Partial
constraint checking for context consistency in pervasive com-
puting,” ACM Trans. Softw. Eng. Methodol., pp. 1–61, 2010.

[4] Y. Huang, X. Ma, X. Tao, J. Cao, and J. Lu, “A probabilistic
approach to consistency checking for pervasive context,” in
EUC ’08: Proc. IEEE/IFIP Int. Conf. on Embedded and
Ubiquitous Computing, 2008, pp. 387–393.

[5] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, “Managing
quality of context in pervasive computing,” in QSIC ’06: Proc.
Int. Conf. on Quality Software, 2006, pp. 193–200.

[6] Y. Bu, S. Chen, J. Li, X. Tao, and J. Lu, “Context consistency
management using ontology based model,” ser. Lecture Notes
in Computer Science, 2006, vol. 4254, pp. 741–755.

[7] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “Heuristics-
based strategies for resolving context inconsistencies in per-
vasive computing applications,” in Proc. of the 28th Int. Conf.
on Distributed Computing Systems, 2008, pp. 713–721.

[8] K. Henricksen and J. Indulska, “Modelling and using imper-
fect context information,” in Proc. of the 2nd IEEE Annual
Conf. on Perv. Computing and Communications, 2004, p. 33.

[9] H. Lu, W. Chan, and T. Tse, “Testing pervasive software in
the presence of context inconsistency resolution services,” in
Proc. Int. Conf. on Software engineering, 2008, pp. 61–70.

[10] Y. Huang, X. Ma, J. Cao, X. Tao, and J. Lu, “Concurrent
event detection for asynchronous consistency checking of
pervasive context,” in IEEE Int. Conf. Pervasive Computing
and Communications, 2009, pp. 1–9.

[11] H. Kong, G. Xue, X. He, and S. Yao, “A proposal to handle
inconsistent ontology with fuzzy owl,” in Proc. WRI World
Congress on CS and Inf. Eng., vol. 1, 2009, pp. 599–603.

[12] F. Marcelloni and M. Aksit, “Leaving inconsistency using
fuzzy logic,” Information and Software Technology, 2001.

