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onnected operators are filtering tools that act by 
merging elementary regions called flat zones. 
Connecting operators cannot create new contours 
nor modify their position. Therefore, they have 
very good contour-preservation properties and are 

capable of both low-level filtering and higher-level object rec-
ognition. This article gives an overview on connected operators 
and their application to image and video filtering. There are 
two popular techniques used to create connected operators. 
The first one relies on a reconstruction process. The operator 
involves first a simplification step based on a “classical” filter 
and then a reconstruction process. In fact, the reconstruction 

can be seen as a way to create a connected version of an arbi-
trary operator. The simplification effect is defined and limited 
by the first step. The examples we show include simplification 
in terms of size or contrast.

The second strategy to define connected operators relies on a 
hierarchical region-based representation of the input image, i.e., 
a tree, computed in an initial step. Then, the simplification is 
obtained by pruning the tree, and, third, the output image is 
constructed from the pruned tree. This article presents the most 
important trees that have been used to create connected opera-
tors and also discusses important families of simplification or 
pruning criteria. 

We also give a brief overview on efficient implementations of 
the reconstruction process and of tree construction. Finally, the 
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 possibility to define and to use 
nonclassical notions of connec-
tivity is discussed and illustrated. 

INTRODUCTION
An increasing number of image 
or video processing applications are not efficiently dealt with 
using classical pixel-based filtering and processing approaches. 
Examples are multimedia applications such as content-based 
compression or indexing as well as many biomedical or remote 
sensing applications. 

For content-based image or video compression, the repre-
sentation based on an array of pixels is not appropriate if one 
wants to be able to act on objects, to selectively encode areas of 
interest, or to assign different behaviors to the entities repre-
sented in the image. In these applications, the notion of object 
is essential. As a consequence, the data modeling or at least the 
processing has to include the notion of regions to represent 
objects. Content-based indexing also faces the same kind of 
challenges. For instance, the video representation based on a 
flow of frames is inadequate for many video indexing applica-
tions. One would like to have access to a table of contents of the 
video where the notion of temporal regions is central. In a large 
number of biomedical as well as remote sensing applications, 
low-level processing of the data would benefit from a region-
based processing as most of the processing is directed toward 
the identification or classification of regions into meaningful 
entities with respect to the application (detection of organs, 
cells, and specific types of vegetation). 

In all of these examples, the notion of region turns out to be 
central in the processing. Note that regions may be two-dimen-
sional (2-D) or three-dimensional (3-D) spatial connected com-
ponents but also temporal or spatio-temporal connected 
components in the case of video. It must be recognized that 
most low-level image processing tools cannot handle the notion 
of region. The vast majority of low-level processing tools such as 
filters are very closely related to the classical pixel-based repre-
sentation of signals. Examples include linear convolution with 
an impulse response, median or rank-order filter, morphological 
operators based on erosion, and dilation with a structuring ele-
ment. In all cases, the processing strategy consists in modifying 
the values of individual pixels by a function of the pixels values 
in a local window. 

Early examples of region-based processing can be found in 
the literature in the field of segmentation. For example, the 
classical split and merge algorithm first defines a set of elemen-
tary regions (the split process) and then interacts directly on 
these regions allowing them to merge under certain conditions. 

Recently, connected operators from morphology have 
received much attention. Connected operators are region-based 
filtering tools because they act directly on the connected com-
ponents where the image is constant, the so-called flat zones. 
Intuitively, connected operators can remove boundaries between 
flat zones but cannot add new boundaries nor shift existing 
ones. The related literature rapidly grows and involves theoreti-

cal studies [1]–[11], algorithm 
developments [12]–[20], and 
applications [14], [21]–[28]. 
The goals of this article are 1) 
to provide an introduction to 
connected operators for gray-

level images and video sequences and 2) to discuss the tech-
niques and algorithms that have been most successful within 
the framework of practical applications. 

CLASSICAL FILTERING APPROACHES
In this section, we define the notation and the basic notions in 
complete lattice theory [29], [30] that are going to be useful in 
this article. Although the notion of connected operators can be 
defined for continuous images, we focus on the discrete case 
that is of interest in practice. Let f 3n 4 denote images and ft 3n 4 
video sequences where n denotes the pixel or space coordinate 
(a vector in the case of 2-D or 3-D images) and t the time instant 
in the case of a video sequence. In lattice theory, the notions of 
order relationship, supremum — and infimum –  are central. 
Let us first recall the definition of order between images. A gray-
level image f  is said to be smaller than a gray-level image g if 
and only if 

 f # g 3 4n, f 3n 4 # g 3n 4. (1)

If the lattice is complete, any set (finite or infinite) of images has 
a supremum and an infimum. The supremum is the smallest 
upper bound and the infimum is the highest lower bound. 

Many lattice theory properties are concerned with the inter-
action of an operator with the order relationship. In particular, 
an operator c acting on an input f  is said to be

increasing if the order that may be present between two  ■

input images is preserved by the filtering, 4f, g,
f # g 1 c 1 f 2 # c 1g 2  

idempotent if the iteration of the operator always gives the  ■

same result as applying the filter once (for example, ideal lin-
ear filters are idempotent but are not usable in practice since 
they are unstable). Equivalently, an operator is idempotent if 
the filtering of an arbitrary signal produces an invariant, 
4f, c 1c 1 f 2 2 5 c 1 f 2  

extensive if the input image is always smaller than the out- ■

put image 4f, f # c 1 f 2  
antiextensive if the output image is always smaller than  ■

the input image 4f, c 1 f 2 # f .
Based on these elementary properties, important classes of mor-
phological filters are defined as follows: 

A morphological filter is an increasing and idempotent  ■

operator. 
An opening is an antiextensive morphological filter. ■

A closing is an extensive morphological filter. ■

Note that sometimes the notion of a morphological filter is 
relaxed [3] to mean any idempotent operator, as in the case of 
shape filters [27]. Finally, an operator is said to be self-dual if it 
processes symmetrically bright and dark image components, 
4f, c 1 f 2 5 2c 12f 2 .

CONNECTED OPERATORS ARE 
FILTERING TOOLS THAT ACT BY 

MERGING ELEMENTARY REGIONS 
CALLED FLAT ZONES. 
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Figure 1 shows a number 
of classical approaches to 
image filtering, i.e., linear fil-
tering, median filtering, and 
opening and closing using a 
5 3 5 structuring element. 
The opening is given by 
gh 1 f 2 5 dh 1Ph 1 f 2 2  and the closing by wh 1 f 2 5 Ph 1dh 1 f 2 2 . 
Both are based on morphological dilation and erosion. The 
dilation by a structuring element h 3n 4  is defined by 
dh 1 f 2 3n 4 5 — k52`

` 1h 3k 41 f 3n 2 k 4 2 . The erosion is given by 
Ph 1 f 2 3n 4 5 – `

k52`f 3n 2 k 42 h 3 2 k 4. The opening and closing 
are morphological filters (i.e., both increasing and idempotent). 
Moreover, the opening is antiextensive (it removes bright compo-
nents) whereas the closing is extensive (it removes dark components). 

For all of these classical approaches, the filter design con-
sists in carefully choosing a specific signal h 3n 4 that may be the 
impulse response, the window or the structuring element. 
While this definition step is classically seen as the key point of 
the filter design, our point here is to highlight that, for image 
processing, the use of h 3n 4 has a major drawback: as h 3n 4 is 
based on shapes and structures that are not related to the input 
signal, its use inevitably introduces distortions in the output 
signal. The distortion effect depends on the specific filter, but 
for a large range of applications requiring high precision on 
contours, none of these filtering strategies is acceptable. 

To reduce the distortion, one possible solution is to adapt 
h 3n 4 to the local structures of the input signal. This solution 
may improve the results but still remains unacceptable in 
many circumstances. An attractive solution to this problem is 
provided by connected operators. Most connected operators 
used in practice rely on a completely different filtering strate-
gy: the filtering is done without using any specific signal such 
as an impulse response, a window, or a structuring element. In 

fact, the structures of the input 
signal itself are used to act on 
the signal. As a result, no new 
structures or distortions com-
ing from unrelated signals are 
introduced in the output. 

CONNECTED OPERATORS

DEFINITION AND BASIC PROPERTIES
Gray-level connected operators act by merging flat zones. The 
flat zones are the connected components where the image is 
constant. Note that in natural images, flat zones often involve 
only one or two pixels. Connected operators cannot create new 
contours, and, as a result, they cannot introduce in the output 
image a structure that is not present in the input image. 
Furthermore, they cannot modify the position of existing 
boundaries between regions and, therefore, have very good 
contour preservation properties. 

Gray-level connected operators originally defined in [1] rely 
on the notion of partition of flat zones. A partition is a set of 
nonoverlapping, nonvoid regions that fills the entire space. 
Until the section “Nonclassical Connectivities,” we assume 
that the connectivity is defined on the digital grid by a simple 
rule that defines the immediate neighbors of a pixel. Typical 
examples are the four- and eight-connectivity for 2-D images 
and six- and 26-connectivity for 3-D images. Let us denote a 
partition by P and the region of P that contains pixel n by 
P(n). A partial order relationship among partitions can be cre-
ated: P 1 “is finer than” P 2 (written as P1 _ P2), if 4n,
P1 1n 2 # P2 1n 2 . 

It can be shown that the set of flat zones of an image f  is a 
partition of the space, Pf. Based on these notions, connected 
operators are defined next. 

[FIG1] Example of filtering with classical filters: (a) original image, (b) low-pass filter (737 average), (c) median (window size: 535), 
(d) opening (structuring element size: 535), and (e) closing (structuring element size: 535).

(a) (b) (c)

(d) (e)

QUITE UNIQUELY, CONNECTED FILTERS 
CAN EASILY BE GIVEN MANY DESIRABLE 

INVARIANCE PROPERTIES, SUCH AS 
SCALE INVARIANCE. 
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DEFINITION 1

Connected Operators 
A gray-level operator c is connected if the partition of flat zones of 
its input f  is always finer than the partition of flat zones of its out-
put, that is 

 Pf  _ Pc1f 2,4f .

This definition clearly highlights the region-based processing of 
the operator: indeed, regions of the output partition are created by 
union of regions of the input partition. New connected operators 
can be derived from the combination of primitive connected oper-
ators. In particular, if c1, c2 are two connected operators, their 
composition c2c1 is also connected. If 5ci6 represents a family of 
connected operators, their supremum —i ci and infimum – i ci 
are connected. Finally, if c is a connected operator, its dual c* 
defined by: c* 1 f 2 5 2c 12f 2 , is also connected. 

As can be seen, connected operators heavily rely on the notions 
of flat zone partition and connectivity. In the section “Nonclassical 
Connectivities,” we will show that the notion of flat zones can be 
defined with some flexibility allowing flat zones to present some 
gray-level fluctuations. We will illustrate the practical interest of 
these extensions. 

Finally, connected operators are filtering tools in the sense that 
they transform an input gray-level image into a filtered gray-level 
image. However, as they are conceptually based on the notion of 
partition, they are often claimed to bridge the gap between classi-
cal filtering and segmentation [31], [32]. Moreover, some of the 
theoretical notions involved in connected operators have been 
recently extended for pure segmentation applications. The result-
ing approach is known as connective segmentation. The reader is 
referred to [33] and [34] for more information on this subject. 

EARLY EXAMPLE OF CONNECTED OPERATORS
The first known connected operator was defined for binary im-
ages. It is known as the binary opening by reconstruction [35]. 
This operator eliminates the connected components that would 
be totally removed by an erosion with a given structuring ele-
ment and leaves the other components unchanged. This filter-
ing approach offers the advantage of simplifying the image 
(some components are removed) as well as preserving the con-
tour information (the components that are not removed are 
perfectly preserved). It can be shown that the process is in-
creasing, idempotent, and antiextensive, that is, an opening. 
Moreover, it was called “by reconstruction” because of the 
 algorithm used for its im plementation. From the algorithmic 
viewpoint, if X is the original binary image, the first step is to 
compute an opening with a structuring element Bk of size k, 
dBk
1eBk

1X 2 2  (or an erosion eBk
1X 2  if Bk is connected and con-

tains the origin). This opening is used to “mark” the connected 
components that should be preserved. The final result is ob-
tained by progressively dilating the opening conditionally to 
the mask defined by the original image (see Figure 2) 

Y0 5 dBk
1eBk

1X 2 21)  

Yk5dC 1Yk212 d X,2)  where C is a binary structuring element 
defining the connectivity, e.g., square of 3 3 3 (cross) for the 
eight-connectivity (four-connectivity) 

Iterate Step 2 until idempotence (until no change is 3) 
observed between two iterations).
The first gray-level connected operator was obtained by a trans-

position of the previous approach to the lattice of gray-level func-
tions [13], [30]. It is known as an opening by reconstruction 

g0 5 dhk
1ehk
1 f 2 2 ,1)  where f  is the input and hk a structuring 

element of size k 
gk 5 dC 1 gk21 2 – f,2)  where C is a flat structuring element (a 

structuring element is flat if the values of h 3k 4 are 0 on its sup-
port S and 2` outside S. In this case, the dilation simply con-
sists in computing the supremum of the samples corresponding 
to k such that h 3h 45 0:dhflat

1 f 2 3n 45 —k[S
 
f 3n 2 k 4 2  defin-

ing the connectivity, e.g., square or cross 
iterate Step 2 until idempotence.3) 

It was shown in [1] that this operator is connected. 
Intuitively, the erosion acts as a simplification step by remov-
ing small, bright components. The reconstruction process 
restores the contours of the components that have not been 
completely removed by the erosion. 

There are several ways to construct connected operators, 
and many new operators have been recently introduced. From 
the practical viewpoint, the most successful strategies rely on 
a reconstruction process or on region-tree pruning. Operators 
resulting from these two strategies are discussed next. 

CONNECTED OPERATORS BASED ON RECONSTRUCTION

ANTIEXTENSIVE RECONSTRUCTION
Let us start by discussing openings that are filters that can sim-
plify images by removing some of their maxima. The most clas-
sical way to construct connected openings is to use an 
antiextensive reconstruction process.  

DEFINITION 2 

Antiextensive Reconstruction 
If f  and g are two images (called the “reference” and the “mark-
er” image, respectively), the antiextensive reconstruction 
rT 1 g|f 2  of g under f  is given by 

  gk 5 dC 1gk21 2 –    f  and
  r T 1g|f 2 5 limkS`  gk, (2) 

[FIG2] Example of reconstruction: (a) original image X, (b) erosion 
of X and conditional dilation, and (c) final reconstructed image.

X X

Erosion(X)

Reconstruction
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where g0 5 g # f  and dC is the dilation with the flat structuring 
element defining the connectivity (3 3 3 square or cross for 
2-D images and 3 3 3 3 3 or a 3-D cross for 3-D images). 

It can be shown that the series, gk, always converges and the 
limit always exists. The operator dC 1 # 2 – f  is sometimes called a 
conditional dilation as the elementary dilation is conditioned to 
remain below f. In this section, we will rely on this definition 
based on iterative conditional dilations. Later, we will see that 
efficient implementations of the reconstruction process do exist 
and do not rely on iterations.  

Of course by duality, an extensive reconstruction may be 
defined in Definition 3.  

DEFINITION 3 

Extensive Reconstruction 
If f  and g are two images (called the “reference” and the “mark-
er” image, respectively), the extensive reconstruction rc 1g|f 2  of 
g above f  is given by 

  gk 5 eC 1gk21 2 — f and
  r c 1g|f 2 5 limkS`  gk, (3) 

where g0 5 g $ f  and eC is the erosion with the flat structuring 
element defining the connectivity. 

In practice, useful connected operators are obtained by con-
sidering that the marker image g is a transformation t 1 f 2  of the 
input image f  that also plays the role of the marker image. As a 
result, most connected operators c obtained by reconstruction 
can be written as 

  c 1 f 2 5 r T 1t 1 f 2 |f 2    1antiextensive operator 2 , or
  c 1 f 2 5 rc 1t 1 f 2 |f 2    1extensive operator 2 .  (4) 

A few examples are discussed next. 

SIZE FILTERING
The simplest size-oriented connected operator is obtained by 
using as marker image, t 1 f 2 , the result of an erosion with a 
structuring element hk of size k. It is the opening by recon-
struction of erosion 

 c 1 f 2 5 rT 1ehk
1 f 2 | f 2 . (5) 

Note that it can be demonstrated that the same operator is 
obtained by changing the erosion, ehk

, by an opening, ghk
 with 

the same structuring element, hk, provided hk is connected 
and contains the origin. It can be demonstrated that this oper-
ator is an opening. By duality, the closing by reconstruction is 
given by 

 c* 1 f 2 5 rc 1dhk
1 f 2 |f 2 . (6)

An example of opening by reconstruction of erosion is shown in 
Figure 3(a). In this example, the original signal f  has 11 
 maxima. The marker signal g is created by an erosion with a flat 
structuring element which eliminates the narrowest maxima. 
Only five maxima are preserved after erosion. Finally, the mark-
er is reconstructed. In the reconstruction, only the five maxima 
that were present after erosion are visible and narrow maxima 
have been eliminated. Moreover, the transitions of the recon-
structed signal correspond precisely to the transitions of the 
original signal. 

As can be seen, the simplification effect, that is the elimi-
nation of narrow maxima is almost perfectly done. However, 
the preservation effect may be criticized: although the 
 maxima contours are well preserved, their shape and height 

[FIG3] Size-oriented connected operators: (a) opening by reconstruction and (b) new marker indicating where the reconstruction has 
been inactive and second reconstruction.
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are distorted. To reduce this 
distortion, a new connected 
operator can be built on top of 
the first one. Let us construct 
a new marker image, m 3n 4, 
indicating the maxima where 
the reconstruction has been 
inactive, i.e., where the final result is equal to the erosion

 m 3n 45 • f 3n 4 ,     if rT 1ehk
1 f 2 | f 2 3n 45 ehk

1 f 2 3n 4,
  and ehk

1 f 2 3n 4 belongs to a maxima
0  otherwise.

 (7) 

This marker image is illustrated in Figure 3(b). As can be 
seen, it is equal to zero except for the five maxima that are pres-
ent after erosion. At that locations, the gray-level values of the 
original image, f 3n 4, are assigned to the marker image. Finally, 
the second connected operator is created by the reconstruction 
of the marker, m under f  

 c 1 f 2 5 rT 1m| f 2 . (8) 

This operator is also an opening by reconstruction. The 
final result is shown in Figure 3(b). The five maxima are 
better  preserved than with the first opening by reconstruc-
tion whereas the remaining maxima are perfectly removed. 
The difference between both reconstructions is clearly visi-
ble when the initial erosion uses a rather large structuring 
element as in the example of Figure 4. The first opening by 
reconstruction removes small bright details of the image: 
the text in the upper left corner. The fish is a large element 
and is not removed. It is indeed visible after the first open-
ing by reconstruction [Figure 4(b)], but its gray-level val-
ues are not well preserved. This drawback is avoided by 
using the second reconstruction. Finally, let us mention 
that by duality closings by reconstruction can be defined. 
They have the same effect than the openings but on dark 
components (minima). 

CONTRAST FILTERING
The previous section considered size simplification. Contrast 
simplification can be obtained by substituting the erosion in (5) 

by a subtraction by a constant, 
c, from the original image f  

 f 1 f 2 5 rT 1 f 2 c| f 2 . (9) 

This operator, known as the 
hmax operator, is connected, 

increasing, and antiextensive but not idempotent. Its effect is 
illustrated in Figure 5(a). As can be seen, the maxima of small 
contrast are removed and the contours of the maxima of high 
contrast are well preserved. However, the height of the remain-
ing maxima are not well preserved. As in the previous section, 
this drawback can be removed if a second reconstruction pro-
cess is used. This second reconstruction process is exactly the 
same as the previous one defined by (7) (m 3n 45 f 3n 4  if 
rT 1 f 2 c| f 2 3n 45 f 3n 42 c and belongs to a maxima). This sec-
ond connected operator is called a dynamic opening [36]. 

The operators effect is illustrated in Figure 6. Both operators 
remove maxima of contrast c lower than 100 gray-level values. 
However, the hmax operator produces an output image of low 
contrast, even for the preserved maxima. By contrast, the 
dynamic opening successfully restores the retained maxima. 

SELF-DUAL RECONSTRUCTION AND LEVELING
The connected operators discussed in the previous section were 
either antiextensive or extensive. They allow the simplification of 
either bright or dark image components. For some applications, 
this behavior is a drawback and one would like to simplify in a sym-
metrical way, all components. From the theoretical viewpoint, this 
means that the filter has to be self-dual, that is c 1 f 2 5 2c 12 f 2 . 

With the aim of constructing self-dual connected operators, 
the concept of levelings was proposed in [5] by adding some 
restrictions in the definition of connected operators. 

DEFINITION 4 

Leveling 
The operator c is a level ing if 4n, n r neigh boring pixels, 
c 1 f 2 3n 4 . c 1 f 2 3n r 4 1  f 3n 4 $ c 1 f 2 3n 4 and c 1 f 2 3n r 4$ f 3n r4 .

This definition not only states that if a transition exists in 
the output image, it was already present in the original image 

[FIG4] Size filtering with opening by reconstruction: (a) erosion of the original image of Figure 1(a) by a flat structuring element of size 
30330, (b) reconstruction of the erosion, (c) marker indicating maxima where the first reconstruction has not been active (7), and 
(d) second reconstruction.

(a) (b) (c) (d)

WHEN USING PATH CONNECTIVITY, 
WE MIGHT NOT OBTAIN SETS OF 

PIXELS THAT CORRESPOND CLOSELY 
TO PERCEPTUAL GROUPS RELEVANT TO 

HUMAN OBSERVERS. 
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(This is equivalent to say that the operator is connected) but 
also that 1) the sense of gray-level variation between n and n r 
has to be preserved and 2) the variation interval between 
c 1 f 2 3n 4  and c 1 f 2 3n r 4  must contain the variation interval 
between f 3n 4 and f 3n r 4. 

The theoretical properties of levelings are studied in [5] and 
[6]. In particular, it has been shown that any opening or closing 
by reconstruction is a leveling. If c1, c2 are levelings, their com-
position c2c1 is also a leveling. Finally, if 5ci6 are levelings, their 
supremum — i ci, and infimum – i ci, are levelings. 

The most popular technique to create 
levelings relies on the self-dual reconstruc-
tion process described next. 

DEFINITION 5 

Self-Dual Reconstruction 
If f  and g are two images (respectively 
called the “reference” and the “marker” 
image), the self-dual reconstruction rD 1g|f 2  
of g with respect to f  is given by 

 gk 5 eC 1gk21 2 — 3dC 1gk21 2 – f 4
 5 dC 1gk21 2 – 3eC 1gk21 2 — f 4
 1equivalent expression 2  and
  r D 1g|f 2 5 limkS` gk, (10) 

where g0 5 g and dC and eC are respectively the dilation and the 
erosion with the flat structuring element defining the connec-
tivity (3 3 3 square or cross). 

In fact, the self-dual reconstruction is the antiextensive 
reconstruction of (2) for the pixels where g 3n 4 , f 3n 4 and the 
extensive reconstruction of (3) for the pixels where 
f 3n 4 , g 3n 4. In practice, the self-dual reconstruction is used to 
restore the contour information after an initial filtering 
 process. In other words, the reconstruction allows the creation 
of a connected version rD 1c 1 f 2 |f 2  of any filter c 1 f 2 . 

A typical example of initial filter c 1 f 2  is an alternating 
sequential filter 

 c 1 f 2 5 whk
ghk

whk21
ghk21

cwh1
gh1
1 f 2 ,  (11)

where whk
 and ghk

 are respectively a closing and an opening 
with a structuring element hk. In [26], the initial filter is a 
linear low-pass filter based on the convolution with a 
Gaussian impulse response. As can be seen in Figure 7, the 
low-pass filter removes most of the texture of the original 
image. The leveling provides then the structural part of the 
image, that is, the image content, with a precise definition of 

[FIG5] Contrast-oriented connected operators: (a) reconstruction of f – c and (b) second 
reconstruction: dynamic opening.
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[FIG6] Contrast filtering: (a) hmax operator and (b) dynamic 
opening.

(a) (b)

[FIG7] Example of image decomposition in structural and texture parts with leveling: (a) original image, (b) marker: low-pass filtering 
with Gaussian filter, (c) leveling: structural part, and (d) residue: texture part.

(a) (b) (c) (d)
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the contours but without the  texture. Finally, the residue 
f 2 rD 1c 1 f 2 | f 2  gives the texture part. This strategy can be 
viewed as a morphological approach to the classical problem 
of structure/texture image decomposition. 

Variational Formulation of 
Reconstruction and Leveling 
The definitions of the reconstruction process and the leveling 
done above rely on the notion of conditional erosion and dila-
tion. However, erosion and dilation can be formulated as the 
result of simple variational problems with the following partial 
differential equations (pdes) defining the flows [37], [38] 

 Dilation flow: 
'g
't

5 y=g y  and 

 Erosion flow: 
'g
't

5 2 y=g y ,  (12)

where = represents the classical gradient operator. As the level-
ing is a conditional dilation (erosion) of g at locations where 
g , f  (g . f ), it can be shown [39] that the leveling of the 
 reference f  with marker g can be obtained as a steady state of 
the following pde: 

 
'g
't

5 sign 1 f 2 g 2 y=g y . (13)

This alternative formulation of the leveling not only provides an 
alternative implementation approach but also new insights on 
the interpretation of leveling and its scale-space properties (see 
[39] for more details). 

EFFICIENT IMPLEMENTATIONS 
OF RECONSTRUCTION PROCESSES
Equations (2) and (3) define the reconstruction processes but do 
not provide efficient implementations. Indeed, the number of 
iterations is generally fairly high. The most efficient reconstruc-
tion algorithms rely on the definition of a clever scanning of the 
image and are implemented by hierarchical first-in, first-out 
(FIFO), or priority queues. A review of the most popular recon-
struction algorithms can be found in [13]. Here, we describe a 
simple but efficient one: the basic idea of the algorithm is to 
start from the regional maxima of the marker image g and to 
propagate them under the original image f. In the case of (2), 
the algorithm works in the following two steps: 

The initialization consists in putting in the queue the loca-1) 
tion of pixels that are on the boundary of the regional maxima 
of the marker image. Regional maxima are the set of con-
nected components where the image has a constant gray-lev-
el value and such that every pixel in the neighborhood of the 
regional maxima has strictly a lower value. Algorithms to 
compute regional maxima can be found in [40]. 

The propagation extracts the first pixel, with the highest 2) 
gray level, n, from the queue (note that n is a pixel of the 
marker image g). Then, it assigns to each of its neighbors, n r, 
that have a strictly lower gray-level value than g 3n 4 (that is, if 
g 3n r 4 , g 3n 4), the minimum between the gray-level value of 

n and the gray-level value of the pixel of the original image at 
the same location than n r, that is g 3n r 4 5g 3n 4 – f 3n r 4. 
Finally, the pixel n r is introduced in the queue, using gray 
level as priority or hierarchy level. This propagation process 
has to be carried on until the queue is empty. This is efficient 
since pixels are processed only once.

CONNECTED OPERATORS 
BASED ON REGION TREE PRUNING

TREE REPRESENTATION OF SIGNALS
The reconstruction strategies discussed in the previous section can 
be viewed as tools working on a pixel-based representation of the 
image that provide a way to create connected operators, which, in 
essence, are region-based processing tools. In this section, we pres-
ent a different approach. The first step of the filtering process is to 
construct a hierarchical region-based representation of the image 
represented by a tree structure, then the simplification effect is 
obtained by pruning of the tree, and finally the filtered image is 
created from the pruned tree. The approach may be considered as 
being conceptually more complex than the reconstruction, howev-
er, it provides more flexibility in the choice of the image structures 
to be simplified and the simplification criterion. 

Four region-based representations are discussed next: the 
max-tree/min-tree [15], the inclusion tree [17], and the binary 
partition tree (BPT) [18]. The first two lead to antiextensive or 
extensive connected operators whereas the second two are the 
basis for self-dual connected operators. Let us discuss first the 
max-tree, min-tree, and the inclusion tree. 

MAX-TREE, MIN-TREE, AND INCLUSION TREE
One of the simplest tree representations is known as the max-tree 
[15]. It structures the connected components of level set based on 
their inclusion relationship. Each tree node Nk represents a con-
nected component of the space that is extracted by the following 
thresholding process: for a given threshold T, consider the set of 
pixels XT that have a gray-level value larger than T and the set of 
pixels YT that have a gray-level value equal to T 

  XT 5 5n,  such that f 3n 4 $ T6
  YT 5 5n, such that f 3n 45 T6. (14)

The tree nodes Nk represent the connected components C of 
X such that C d Y Z [. The links between the nodes repre-
sent the inclusion relationship between the connected com-
ponents of XT. A simple example is illustrated in Figure 8. 
The original image is composed of five flat zones identified 
by the letters A, B, C, D, and E. The numbers represent the 
gray-level value of the flat zones. The leaves of the max-tree 
are the image maxima. In this example, as the image has 
only one maxima, the max-tree has only one leaf, therefore 
one branch. The dual structure is called a min-tree. In this 
case, the leaves correspond to minima. It can be computed 
by duality by creating the max-tree of 2f. As the image of 
Figure 8 has two  minima, the min-tree has two leaves. 
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Various fast algorithms have been proposed in the literature 
to efficiently compute these trees [10], [15], [19]. They are 
described in the section “Efficient Computation of the Tree 
Representations.” The pruning of a max-tree (min-tree) 
allows simplification, i.e., partial or total removal, of image 
maxima (minima). If one wants to interact with both maxi-
ma and minima, the processing strategy may either involve 
a combination of max- and min-tree-based filters or use a 
self-dual tree representation of the image as the inclusion 
tree. This structure (also known as a tree of shapes) repre-
sents maxima and minima in a symmetrical way. It struc-
tures the connected components of the level sets XT based 
on the inclusion relationship of their saturation sat 1XT 2 . 
The saturation is an operator that fills the holes of XT, that 
are the connected components of the background that are 
completely surrounded by XT. An example of the inclusion 
tree is illustrated in Figure 8. As the image has three 
extrema, the tree has three leaves. The filtering by pruning 
of these tree structures will be illustrated in the section 
“Tree Simplification.”

BINARY PARTITION TREE 
The second example of region-based representation of imag-
es is the BPT [18]. It represents a set of regions obtained 
from an initial partition that we assume to be the partition 
of flat zones (but in practice any initial segmentation can be 
used). The leaves of the tree represent the flat zones of the 
original signal. The remaining tree nodes represent regions 
that are obtained by merging the regions represented by the 
children. The root node represents the entire image sup-
port. The tree represents a fairly large set of regions at dif-
ferent scales. This is why this representation can be viewed 
as a hierarchical region-based representation of the image. 
Large regions appear close to the root whereas small details 

can be found at lower levels. This rep-
resentation should be considered as a 
compromise between representation 
accuracy and processing efficiency. 
Indeed, all possible merging of regions 
belonging to the initial partition are 
not represented in the tree. Only the 
most “likely” or “useful” merging steps 
are represented in the BPT. The con-
nectivity encoded in the tree structure 
is binary in the sense that a region is 
explicitly connected to its sibling (since 
their union is a connected component 
represented by the father), but the re -
maining connections between regions 
of the original partition are not repre-
sented in the tree. Therefore, the tree 
encodes only part of the neighborhood 
relationships between the regions of 
the initial partition. However, the main 
advantage of the tree representation is 

that it allows the fast implementation of sophisticated pro-
cessing techniques. 

The BPT should be created in such a way that the most 
“interesting” or “useful” regions are represented. This 
issue can be application dependent. However, a possible 
solution, suitable for a large number of cases, is to create 
the tree by keeping track of the merging steps performed 
by a segmentation algorithm based on region merging (see 
[41] and [42], for example). In the following, this informa-
tion is called the merging sequence. Starting from the 
partition of flat zones, the algorithm merges neighboring 
regions following a homogeneity criterion until a single 
region is obtained. An example is shown in Figure 8. The 
original partition involves five regions. The algorithm 
merges the five regions in four steps. In the first step, the 
pair of most similar regions, C and D, are merged. Then, 
region A is merged with region B. Then regions AhB and 
ChD are merged together and finally, region E is merged 
with region Ah BhChD  and this creates a region 
 corresponding to the region of support of the whole 
image. In this example,  the merging sequence is : 1C, D 2 | 1A, B 2 | 1AhB, ChD 2 | 1AhBhChD, E 2 . This merg-
ing sequence defines the BPT as shown in Figure 8. 

To completely define the merging algorithm, one has to 
specify the region merging order and the region model, i.e., 
the model used to represent the union of two regions. To cre-
ate the BPTs used to illustrate the processing examples dis-
cussed in this article, we have used a merging algorithm 
following the color homogeneity criterion described in [42]. 
Let us define the merging order O 1R1, R2 2  and the region 
model MR: 

Merging order ■ : at each step the algorithm looks for the 
pair of most similar regions. The similarity between regions 
R1 and R2 is defined by 

[FIG8] Tree representations. The root is at the bottom.
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  O 1R1, R2 2 5 N1||MR1
2 MR1hR2

||2 1 N2||MR2
2 MR1hR2

||2, (15)

where N1 and N2 are the numbers of pixels of regions R1 
and R2 and ||.||2 denotes the L2 norm. MR represents the 
model for region R. It consists of three constant values 
describing the YUV components. The interest of this merg-
ing order, compared to other classical criteria, is discussed 
in [42]. However, alternative order are discussed and evalu-
ated in [28]. 

Region model ■ : as mentioned previously, each region is 
modeled by a constant vector YUV value: MR. During the 
merging process, the YUV components of the union of two 
regions, R1 and R2, are computed as follows [42]: 

 if N1 , N2 1  MR1hR2
5 MR2

 if N2 , N1 1  MR1hR2
5 MR1

 if N1 5 N2 1  MR1hR2
5 1MR1

1 MR2
2 /2. (16)

As can be seen, if N1 2 N2, the model of the union of two 
regions is equal to the model of the largest region. This zero-or-
der (constant) model is the simplest possible one. More 
advanced modeling strategies, for example, relying on the 
region histogram, are described in [43]. They are particularly 
useful in the case of highly textured images.

It should be noticed that the homogeneity criterion does not 
need to be restricted to color. For example, if the image for 
which we create the BPT belongs to a sequence of images, 
motion information can also be used: in the first stage, regions 
may be merged for example using a color homogeneity criteri-
on, whereas a motion homogeneity criterion may be used in the 
second stage. Figure 9 shows an example 
of the Foreman sequence. In Figure 9(a), 
the BPT has been constructed exclusively 
with the color criterion described above. 
In this case, it is not possible to concen-
trate the information about the 
Foreground object (head and shoulder 
regions of Foreman) within a single sub-
tree. For example, the face mainly appears 
in the subtree hanging from region A, 
whereas the helmet regions are located 
below region D. In practice, the nodes 
close to the root have no clear meaning 
because they are not homogeneous in 
color. Figure 9(b) presents an example of 
BPT created with color and motion crite-
ria. The nodes appearing as white circles 
correspond to the color criterion, whereas 
the dark squares correspond to a motion 
criterion. The motion criterion is formally 
the same as the color criterion except that 
the YUV color distance is replaced by the 
YUV displaced frame difference (DFD). 
The process starts with the color criterion 
as in Figure 9(a) and then, when a given 

peak signal-to-noise ratio (PSNR) is reached, it changes to the 
motion criterion. Using motion information, the face and hel-
met now appear as a single region E. 

As can be seen, the construction of a BPT is considerably 
more complex than the creation of a max-or min-tree. However, 
BPTs offer more flexibility because one can choose the homo-
geneity criterion through the proper selection of the region 
model and the merging order. This choice has a direct impact 
on the definition of the structures that may be removed or sim-
plified by the pruning process, which are not restricted to be 
maxima, minima or extrema. Because of this, it can handle 
vector-data without problems. Furthermore, if the functions 
defining the region model and the merging order are self-dual, 
the tree itself is self-dual. The same BPT can be used to repre-
sent f  and 2f. Note that in all cases, trees are hierarchical 
region-based representations. They encode a large set of 
regions and partitions that can be derived for the flat zones 
partition of the original image without adding new contours. 

TREE SIMPLIFICATION
Once the representation has been created, the filtering strategy 
consists in simplifying the tree and in reconstructing an image 
from the simplified tree. Two general approaches might be rec-
ognized: i) pruning strategies and ii) nonpruning strategies. In 
the former, a single cut is made along each path from leaf to 
root, and all nodes leaf-side of the cut are collapsed onto the 
highest surviving ancestor. In the latter case, any number of 
nodes might be preserved or removed along a root path. 
Pruning strategies are often used because the idea is to elimi-
nate the image components that are represented by the leaves 

[FIG9] Examples of creation of BPT: (a) color homogeneity criterion and (b) color and 
motion homogeneity criteria.
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and branches of the tree. The nature of these components 
depends on the tree. In the case of max-trees, min-trees, or 
inclusion trees, the components that may be eliminated are 
respectively regional maxima, minima, or extrema, whereas the 
elements that may be simplified in the case of BPTs are unions 
of the most similar flat zones, the notion of similarity depending 
on the merging criterion used to build the tree. The simplifica-
tion itself is governed by a criterion that may involve simple 
notions such as size, contrast, or more complex ones such as 
texture, motion, or even criteria close to semantic notions, such 
as similarity to predefined shapes. 

In tree representations, the set of possible merging steps is 
fixed (represented by the tree branches). As a result, sophisti-
cated pruning strategies may be designed. An example of such 
a strategy deals with nonincreasing simplification criteria. 
Mathematically, a criterion C assessed on a region R is said to 
be increasing if the following property holds: 

 4R1 # R2 1 C 1R1 2 # C 1R2 2 . (17)

INCREASING CRITERION
Assume that all nodes corresponding to regions where the criteri-
on value is lower than a given threshold should be pruned. If the 
criterion is increasing, the pruning strategy is straightforward: 
merge all nodes that should be removed. It is indeed a pruning 

strategy since the increasingness of the cri-
terion guarantees that, if a node has to be 
removed, all of its descendants have also to 
be removed. An example of BPT with 
increasing decision criterion is shown in 
Figure 10(a). The criterion used to create 
this example is the size, measured as the 
number of pixels belonging to the region, 
which is indeed increasing. Note that this 
example involves a BPT but the same issue 
also applies to all tree representations. 

A typical filter corresponding to this 
situation, known as the area opening 
[12], [21] is illustrated in Figure 11. One 
possible implementation of the area open-
ing consists in creating a max-tree and in 
measuring the area (the number of pixels) 

Ak contained in each node Nk. If the area Ak is smaller than a 
threshold, TA, the node is removed. The area criterion is 
increasing. It can be shown that the area opening is equal to the 
supremum of all possible openings by a connected structuring 
element involving TA pixels. The simplification effect of the area 
opening is illustrated in Figure 11(a). As expected, the operator 
removes small bright components of the image. If this simpli-
fied image is processed by the dual operator, the area closing, 
small dark components are also removed [see Figure 11(b)]. 

Using the same strategy, a large number of connected opera-
tors can be obtained. For example, if the criterion is the volume: 

an[R
f 3n 4 (also increasing), the resulting operator is the volu-

mic operator. Many other properties or attributes such as area 
or diagonal length of the smallest bounding rectangle, moment 
of inertia, convex-hull area, and erosion width were suggested 
in [14] where the resulting connected filters were called attri-
bute opening or closing. The idea behind this approach is to 
think of attribute filtering as selecting objects, represented by 
flat zones, in images based on prior knowledge of the objects of 
interest. The reader is also referred to [18] to see examples of 
this situation involving a BPT. 

NONINCREASING CRITERION
If the criterion is not increasing, the simplification strategy is 
not straightforward, since the descendants of a node to be 
removed have not necessarily been removed. An example of 
such criterion is the region perimeter. If a region R1 is included 
in region R2, no specific relation can be stated about their 
respective perimeter. 

Figure 10(b) illustrates a case of nonincreasing criterion. If 
we follow either Path A or Path B in Figure 10(b), we see that 
there are some oscillations of the remove/preserve decisions. 
Several simple strategies [15] can be used to deal with this case. 
Four of these strategies are listed next. 

The max rule prunes the branches from the leaves up to  ■

the first node that has to be preserved. 
The min rule prunes the branches from the leaves up to  ■

the last node that has to be removed. 

[FIG10] (a) Example of increasing criterion (size). If a node has to be removed, all its 
descendants have also to be removed. Gray squares: nodes to be preserved, white circles: 
nodes to be removed. (b) Example of nonincreasing criterion (perimeter). No relation 
exists between the decisions among descendants (see decisions along Path A or Path B).
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[FIG11] Area filtering: (a) area opening, garea and (b) area 
opening followed by area closing, warea garea.
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The direct rule consists of simply removing the nodes that  ■

have to be removed even if this does not create a pruning 
strategy. The pixels belonging to the nodes that have been 
removed are merged to the node of their first ancestor that 
has to be preserved. 

The subtractive rule  ■ [27] is the same as the direct rule 
except that the gray levels of surviving descendants of 
removed nodes are also lowered, so that the contrast with the 
local background remains the same.
These four simple strategies are illustrated in Figure 12,  

which shows a 3 tesla (3T) magnetic resonance time-of-flight 
angiography data set of a human head (the original is courtesy 
of Özlem Gürvit from the Institute for Neuroradiology, 
Frankfurt, Germany). Here the aim is to enhance the blood ves-
sels without distortion. We observe that size does not identify 
blood vessels, but shape does. This means we need a scale-in-
variant criterion. This is obtained through the ratio of the trace 
of the moment-of-inertia tensor, and the volume to the power 
5/3, which is just the 3-D counterpart of Hu’s first moment 
invariant. This parameter is minimal for a solid sphere, and 
increases as the object becomes less compact. The attribute 
threshold is set to 3.7 in this case. Both nonpruning strategies 
[Figure 12(d) and (e)] suppress the background effectively, while 
preserving the blood vessels. However, the direct filter enhances 
the contrast of the parts of the skin that are also accepted at this 
attribute threshold. The reason is that their original gray level is 
preserved, whereas the background is reduced from around 55 
to zero. This means their contrast is increased from around 
10–50 to 65–105 gray levels. By contrast, the subtractive rule 
preserves contrast and the blood vessels show up more clearly. 
Note that this means that we are confident that the blood 

 clot-like structure in Figure 12(f), found using the subtractive 
rule must be present at a contrast level of at least 50–60 gray 
levels in the original data. 

All pruning strategies perform very poorly here, because one 
of the main concerns is removal of the background, i.e., nodes 
near the root of the tree. The max rule fails to remove this 
because the vessels are preserved at a higher level. By contrast 
the min rule removes everything, yielding a slow way to zero 
the volume. 

Many nonincreasing criteria have useful invariance proper-
ties, such as scale invariance used above. Scale invariance is 
needed whenever we want to characterize objects by shape 
rather than size. This is the case when, e.g, the distance to the 
observer or focal length of the camera are unknown, or dis-
tances vary widely with in the same image (e.g., galaxies in 
 astronomical images). The objects themselves might be better 
characterized by shape than size, e.g., blood vessels, or other 
organs, the size of which varies considerably during develop-
ment and growth, but which have a distinctive shape. Often 
scale invariant image processing is approximated by multiscale 
filtering using either wavelets, granulometries, or scale spaces 
[44]. However, if using tree-based connected operators, this 
can be achieved using a single filtering step with considerable 
speed benefits [27], [45]. Examples of scale invariant criteria 
are the ratio of area and square of the perimeter length (some-
times called circularity), ratio of convex-hull area to area, or 
moment invariants such as those of Hu. A 3-D counterpart of 
the latter was used to effectively enhance blood vessels in com-
puted tomography and magnetic resonance angiograms [45]. 
Other 3-D examples are given in [46]. We need not even limit 
ourselves to scale invariance. It has been shown that if a 

[FIG12] An example of 3-D attribute filtering: (a) X-ray rendering of magnetic resonance angiogram; (b)–(e) result of attribute filter 
using different filtering rules (b) max; (c) min; (d) direct; (e) subtractive; and (f) detail of iso-surface rendering, showing blood clot-like 
structure. Images generated using the mtdemo program (http://www.cs.rug.nl/~michael/MTdemo/). 
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 criterion T is invariant to any group of transformations, so is 
the tree-based connected operators derived from it, provided 
the connectivity is also invariant to the same transformations, 
i.e., each flat zone of the original image is mapped precisely 
onto a corresponding flat zone in the transformed image [27]. 

In some practical applications, the nonincreasingness of the 
criterion implies a lack of robustness of the operator. An exam-
ple might be perimeter length in 2-D or surface area in 3-D. 
This is neither scale-invariant nor increasing. In such cases, 
similar images may produce quite different results or small 
modifications of the criterion threshold involve drastic changes 
on the output. In these situations, a possible solution to the 
nonincreasingness of the criterion consists of applying a trans-
formation on the set of decisions. The transformation should 
create a set of increasing decisions while preserving the deci-
sions defined by the criterion as much as possible. This approach 
may be viewed as dynamic programming problem that can be 
efficiently solved with the Viterbi algorithm. 

The definition of the dynamic programming algorithm is 
explained and illustrated in the sequel assuming that the tree is 
binary but the extension to N-ary trees is straightforward. An 
example of trellis on which the Viterbi algorithm [47] is applied 
is illustrated in Figure 13. The trellis has the same structure as 
the tree except that two trellis states, preserve and remove cor-
respond to each node of the tree. The two states of each child 
node are connected to the two states of its parent. However, to 
avoid nonincreasing decisions, the preserve state of a child is 
not connected to the remove state of its parent. As a result, the 
trellis structure guarantees that, if a node has to be removed, its 
children also have to be removed. The cost associated to each 
state is used to compute the number of modifications the algo-
rithm has to apply to create an increasing set of decisions. If the 
criterion value states that the node of the tree has to be 

removed, the cost associated to the remove state is equal to zero 
(no modification) and the cost associated to the preserve state is 
equal to one (one modification). Similarly, if the criterion value 
states that the node has to be preserved, the cost of the remove 
state is equal to one and the cost of the preserve state is equal to 
zero. Although some modifications may be much more severe 
than others, the cost choice has no strong effect on the final 
result. This issue of cost selection is similar to the hard-ver-
sus-soft decision of the Viterbi algorithm in the context of 
digital communications [47]. The cost values appearing in 
Figure 13 assume that nodes N1, N4, and N5 should be pre-
served and that N2 and N3 should be removed. The goal of the 
Viterbi algorithm is to define the set of decisions such that

 Mina
k

Cost 1Nk 2such that the decisions are increasing. (18)

To find the optimum set of decisions, a set of paths going 
from all leaf nodes to the root node is created. For each node, 
the path can go through either the preserve or the remove state 
of the trellis. The Viterbi algorithm is used to find the paths that 
minimize the global cost at the root node and the trellis itself 
guarantees that this optimum decision is increasing. The opti-
mization is achieved in a bottom-up iterative fashion. A detailed 
explanation of the algorithm can be found in [15] and [18]. A 
complete example is shown in Figure 14. The original tree cor-
responds to the one shown in Figure 10(b). The Viterbi algo-
rithm has modified five decisions along Path A and one decision 
along Path B to get the optimum set of increasing decisions. 
This approach is particularly useful when the criterion has a 
certain “tendency” to increase but potentially defines several 
points along the branch where the pruning may be done. If the 
criterion has a tendency to increase, the various candidate prun-
ing points are localized in the branch and the Viterbi algorithm 

[FIG13] Trellis structure for the Viterbi algorithm. A circular (square) node on the tree indicates that the criterion value states that the 
node has to be removed (preserved). The trellis on which the Viterbi algorithm is run duplicates the structure of the tree and defines a 
preserve state and a remove state for each tree node. Paths from remove states to child preserve states are forbidden so that the 
decisions are increasing.
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can efficiently define a single pruning point. If the criterion does 
not exhibit any tendency to increase, the potential pruning 
points may be randomly distributed along the branch and the 
Viterbi algorithm may not provide a useful solution. In these 
cases, the max, min, direct, and subtractive rules may provide 
interesting and simple strategies. 

These strategies to define a pruning even if the criterion is 
not increasing are important because of practical applications, 
many useful criteria are not increasing. Various connected oper-
ators involving nonincreasing criteria such as entropy, simplici-
ty, and perimeter can be found in [14], [15], and [18]. 

This situation is illustrated here by a motion-oriented 
connected operator based on a max-tree [15] and ft 3n 4 repre-
sents an image sequence. The goal of the connected operator 
is to eliminate the image components that do not undergo a 
given motion defined by a displacement field at each position 
D 3n 4. The field can be constant D if one wants to extract 
objects following a translation, but in general, the displace-
ment depends on the spatial position n to deal with more 
complex motion models. 

The sequence processing is performed as follows: each frame 
is transformed into its corresponding max-tree representation 
and each node Nk is analyzed. To check whether or not the pix-
els contained in a given node Nk are moving in accordance to 
the motion field D 3n 4, a simple solution consists in computing 
the mean DFD of this region with the previous frame 

 DFDft

ft21 1Nk 2 5 a
n[Nk

|ft 3n 42 ft21 3n 2 D 3n 4 4| / a
n[Nk

1. (19) 

In practice, however, it is not very reliable to assess the 
motion on the basis of only two frames. The criterion should 
include a reasonable memory of the past decisions. This idea 
can be easily introduced in the criterion by adding a recursive 
term. Two mean DFD are measured: one between the current 
frame ft and the previous frame ft21 and a second one between 
the current frame and the previous filtered frame c 1 ft21 2  (c 
denotes the connected operator). The motion criterion is finally 
defined as 

 Motion 1Nk 2 5 aDFDft

ft21 1Nk 2 1 11 2 a 2DFDft

c1ft212 1Nk 2  (20) 

with 0 # a # 1. If a is equal to one, the criterion is memory-
less. Low values of a allow the introduction of an important 
recursive component in the decision process. In a way similar 
to recursive filtering schemes, the selection of a proper value 
for a depends on the application: if one wants to very rapidly 
detect any changes in motion, the criterion should be mainly 
memoryless (a < 1), whereas if a more reliable decision 
involving the observation of a larger number of frames is nec-
essary, then the system should rely heavily on the recursive 
part (0 # a ,, 1). 

The motion criterion described by (19) and (20) deals with 
one set of motion parameters. Objects that do not follow the 
given motion produce a high DFD and should be removed. The 
criterion is not increasing and the Viterbi algorithm has to be 
used. A motion filtering example is shown in Figure 15. The 
operator goal is to remove all moving objects. The motion 
model is defined by D 3n 45 10, 0 2 , 4n. In this sequence, all 
objects are still except the ballerina behind the two speakers and 
the speaker on the left side. The connected operator c 1 f 2  removes 
all bright, moving objects [Figure 15(b)]. The dual operator 
c* 1 f 2 5 2c 12f 2  removes all  dark, moving objects 
[Figure 15(c)]. The residue (the difference with the original 

[FIG15] Example of motion connected operator preserving fixed objects: (a) original frame, (b) motion connected operator c, 
(c) dual operator: c*c(f ), and (d) residue: f – c*(c(f ).

(a) (b) (c) (d)

[FIG14] Set of increasing decisions resulting from the Viterbi 
algorithm used on the original tree of Figure 10(b). Five decisions 
along Path A and one decision along Path B have been modified. 
Gray squares: preserve, green circles: remove.
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image) presented in Figure 15(d) shows what has been removed 
by the operator. As can be seen, the operator has precisely extract-
ed the ballerina and the (moving) details of the speaker’s face. 

PRUNING STRATEGIES INVOLVING GLOBAL 
OPTIMIZATION UNDER CONSTRAINT
In this section, we illustrate a pruning strategy involving global 
optimization under constraint that also takes benefit of the tree 
structure. To fix the notations, let us denote the criterion that 
has to be optimized (we assume, without loss of generality, that 
the criterion has to be minimized) by C and the constraint by K. 
The problem is minimizing the criterion C with the restriction 
that the constraint K is below a given threshold TK. Moreover, 
we assume that both the criterion and the constraint are addi-
tive over the regions represented by the nodes Nk: 
C5 g

Nk

C 1Nk 2  and K5 g
Nk

K 1Nk 2 . The problem is therefore 
to define a pruning strategy such that the resulting partition is 
composed of nodes Ni such that 

 Min a
Ni

C 1Ni 2 ,  with a
Ni

K 1Ni 2 # TK. (21)

It has been shown [48] that this problem can be reformulated as 
the minimization of the Lagrangian L5 C 1 lK, where l is the 
so-called Lagrange parameter. Both problems have the same 
solution if we find l* such that K is equal (or very close) to the 
constraint threshold TK. Therefore, the problem is to find a set 
of nodes that creates a partition and also minimizes the criteri-
on defined by (22). Now, to find this set of nodes, we use a prun-
ing process applied on the tree 

 Min aa
Ni

C 1Ni 2 1 l*
a
Ni

K 1Ni 2 b.  (22)

Assume, in a first step, that the optimum l* is known. In this 
case, the pruning is done by a bottom-up analysis of the tree. If 
the Lagrangian value corresponding to a given node N0 is 
smaller than the sum of the Lagrangians of the children nodes 
Ni, then the children are pruned 

 If C 1N0 2 1 l*K 1N0 2 , a
Ni

C 1Ni 2 1 l*
a
Ni

K 1Ni 2 ,
  prune the children nodes Ni. (23)

This procedure is iterated up to the root node. In practice, 
the optimum l* is not known and the previous bottom-up anal-
ysis is embedded in a loop that searches for the best l parame-
ter. The computation of the optimum l parameter can be done 
with a gradient search algorithm. The bottom-up analysis itself 
is not expensive in terms of computation since the algorithm 
has simply to perform a comparison of Lagrangians for all nodes 
of the tree. The part of the algorithm that might be expensive is 
the computation of the criterion and the constraint values asso-
ciated to the regions. Note, however, that this computation has 
to be done once. 

This type of pruning strategy is illustrated by two examples 
relying on a BPT. In the first example, the goal is to simplify 
the input image by minimizing the number of flat zones of the 
output image: C1 5 g

Nk

1. In the second example, the criterion 
is to minimize the total length of the flat zones contours: 
C2 5 g

Nk
Perimeter 1Nk 2 . In both cases, the criterion has no 

meaning if there is no constraint because the algorithm would 
prune all nodes. The constraint we use is to force the output 
image to be a faithful approximation of the input image: the 
squared error between the input and output images 
K5 g

Nk
gn[Nk

1c 1 f 2 3n 42 f 3n 4 2 2 is constrained to be below a 
given threshold. In the examples shown in Figure 16, the 
squared error is constrained to be of at least 31 dB. Figure 16(a) 
shows the output image when the criterion is the number of 
flat zones. The image is visually a good approximation of the 
original image but it involves a much lower number of flat 
zones: the original image is composed of 14,335 flat zones 
whereas only 87 flat zones are present in the filtered image. 
The second criterion is illustrated in Figure 16(c). The approxi-
mation provided by this image is of the same quality as the 
previous one (squared error of 31 dB). However, the character-
istics of its flat zones are quite different. The total length of the 
perimeter of its flat zones is equal to 3,684 pixels whereas the 
example of Figure 16(a) involves a total perimeter length of 
4,491 pixels. The reduction of perimeter length is obtained at 
the expense of a drastic increase of the number of flat zones: 
219 instead of 87. Figure 16(b) and (d) shows the flat zone con-
tours. As can be seen, the flat zone contours are more complex 
in the first example but the number of flat zones is higher in 
the second one. 

[FIG16] Example of optimization strategies under a squared error constraint of 31 dB: (a) minimization of the number of the flat zones, 
(b) contours of the flat zones of (a) (number of flat zones: 87, perimeter length: 4,491), (c) minimization of the total perimeter length, 
and (d) contours of the flat zones of (b) (number of flat zones: 219, perimeter length: 3,684).

(a) (b) (c) (d)



IEEE SIGNAL PROCESSING MAGAZINE   [151]   NOVEMBER 2009

This kind of strategy can be applied for a large number of 
criteria and constraints. Note that without defining a tree 
structure such as a max-tree or a BPT, it would be extremely 
difficult to implement this kind of connected operator. 

EFFICIENT COMPUTATION OF 
TREE REPRESENTATIONS
Building trees is usually done in one of two approaches. The 
first approach is flood-filling, which generally starts at the 
root, and performs a depth-first or breadth-first flooding pro-
cess to build the final tree. The second uses union-find 
approach, which was first introduced into connected filtering 
as an efficient means to perform area openings. 

THE UNION-FIND APPROACH
An efficient algorithm [20] for area and attribute openings is 
based on Tarjan’s union-find [49]. Union-find is an attractive 
choice as a basis for connected filter, because it is explicitly 
designed to administrate and merge disjoint sets. Connected 
filters always need to find disjoint sets based on flat zones and 
then merge them based on some criterion. 

The way in which union-find represents sets, here, flat 
zones, is by trees, in which each member of the set points, 
either directly or indirectly at the canonical element of the 
set, which lies at the root of the tree. Two objects,(n)and(p), 
are members of the same set if and only if(n)and(p) are 
nodes of the same tree, or equivalently that they share the 
same root of the tree they are stored in. There are four 
basic operations: 

MakeSet(n) ■ : Create a new singleton set {n}. This 
operation assumes that n is not a member of any other set. 
FindRoot(n) ■ : Return the root of the tree containing x. 
Union(n,p) ■ : Form the union of the two sets that con-

tain n and p. 
Criterion(n,p) ■ : a symmetric criterion that deter-

mines whether(n) and(p) belong to the same set.
Pixels or voxel positions in the image or volume are given 

by a single index (the algorithm treats both as one-dimen-
sional  arrays). Before proceeding with the main loop, the pix-
els are sorted into a predetermined processing order. The 
union-find trees are stored in an array parent, which holds 
either a reference to the parent of a pixel p, or the area of the 
component as a negative number. After the resolving stage, 
the output image is contained in the same array. It is impor-
tant to ensure that no cycles occur in the parent array. This 
is done by demanding that pointers always point towards the 
most recently processed pixels. This means we never need to 
perform a FindRoot on the current pixel, because it is 
always a root. 

In the case of the area opening, this processing order is from 
high gray levels to low, and in lexicographic order within each 
gray level. Figure 17 shows the basic operations in the case of 
area openings. Here, MakeSet(n) sets the parent to 21, indi-
cating the pixel is a root, and the area is 1, Criterion(n, p) 
assuming both parameters are roots, decide for a merge if either 

n and p have the same gray level, or the gray level of n differs, 
but the area indicated by -parent[n] is smaller than the area 
threshold. In Union(n, p), p always indicates the current pixel, 
and therefore a root, and n a neighbor that has been processed 
before (and is therefore in a union-find tree). First the root of n is 
found. If the root r differs from p, and if Criterion(r, p) is 
true, we add parent[r] to parent[p], which ensures that 
parent[p] now stores the sum of the two areas (as a negative 
number). Only then can we set parent[r] to p, which ensures 
the two sets are merged. If Criterion(r, p) is false, but p 
and r differ, we have encountered a higher gray-level component 
that is preserved, and therefore the current component (indicated 
by p) must be preserved. This is done by setting its area to the 
threshold, which prevent further mergers between regions with 
different gray levels. 

Once all pixels have been processed, as shown in Figure 18, 
for example, we have a forest of trees representing the compo-
nents in the filtered image. The root of each tree always has the 
lowest gray level within the component. We now need to resolve 

[FIG17] Implementation of the basic operations for area 
openings and closings. Note that the areas of flat zones are 
stored as negative numbers in the corresponding roots. The 
parameters for Criterion must be root nodes.

void MakeSet ( int n )

{ parent[n] = -1;

}

int FindRoot ( int n )

{ if ( parent[n] >=0 )

{ parent[n] = FindRoot( parent[n] );

return parent[n];

}

else return n;

}

boolean Criterion ( int n, int p )

{ return ( (f[n] == f[p]) ||

( -parent[n] < AreaThreshold ) ) ;

}

void Union ( int n, int p )

{ int r=FindRoot(n);

if ( r != p )

{ if ( Criterion(r, p) )

{ parent[p] = parent[p] + parent[r];

parent[r] = p;

}

else

parent[p] = -AreaThreshold;

}

}
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the parent array. In this case, all pixels are assigned the origi-
nal gray level of their root nodes. This is done by processing the 
pixels in reverse order, which guarantees that the first pixel we 
encounter of any component is its root. During the resolving 
phase, we check whether the current pixel is a root (i.e., 
parent[pix] is negative), and if so, assign parent[pix] 
the original gray level (stored in f[pix]). Otherwise, 
parent[pix] points to a pixel in the parent array that has 
already been resolved, and assign it that gray level. This simple 
algorithm does not build a full tree, but it can be extended to do 
this [19]. Further thoughts on the use of the use of union-find 
in connected filtering can be found in [50]. 

COMPLETE CONSTRUCTION OF THE TREE
Complete construction of the tree has many advantages over 
the partial construction just described. Computing the com-
plete tree has the disadvantage of higher memory footprint, 
but it does allow far more complicated manipulation of the 
representation. This is particularly important in the case of a 
nonincreasing criterion. Moreover, it also allows multiple 
manipulations to be applied to the same tree. In practice, the 
tree can be built once and multiple filtered images can be cre-
ated from this tree. Because the construction of the tree is 
generally the most costly stage, this allows speeding up the 
process of selecting the correct criteria in interactive applica-
tions, especially in 3-D [46]. 

The classical algorithm for building max-trees (and by 
duality, min-trees) uses a flood-filling approach [15] based on 
a hierarchical queue. It performs a depths-first sweep of the 

tree, starting at the lowest gray level of the image, which rep-
resents the root of the tree, and moving upwards in gray scale. 
As the tree is built, a STATUS array of the same dimensions as 
the image assigns labels to each pixel to indicate which node 
of the tree they belong to. 

The union-find approach was combined with the flood-fill-
ing approach in [19]. Though the resulting algorithm is gener-
ally slower than the hierarchical queue approach, it has a 
lower theoretical complexity, especially when high numbers of 
gray levels (more than 12 b) are used. Indeed, it is the most 
efficient approach to date for floating point data [51]. 

The construction of an inclusion tree [17] can rely on the 
construction of the max- and min-trees. Three steps are nec-
essary. First, the max- and min-trees of the image are comput-
ed taking into account the holes in each connected component 
stored in the tree nodes. Second, for each hole of a connected 
component corresponding to a node of the max-tree (min-
tree), find the connected component that corresponds to it in 
the min-tree (max-tree). And finally, both trees are merged by 
putting connected components corresponding to holes as 
descendants of the ones containing them. 

As explained in the section “Binary Partition Tree,” the 
creation of a BPT can be done by keeping track of the merging 
steps performed by a segmentation algorithm based on region 
merging. Starting from an initial partition (potentially the flat 
zones or any other precomputed partition), the algorithm 
merges neighboring regions following a homogeneity criteri-
on until a single region is obtained. When two regions are 
merged, two basic computation steps have to be done: first, 
compute the model of the union of the regions and second, 
update the value of the homogeneity criterion (also called 
merging order) corresponding to the neighboring regions. To 
have a fast algorithm, it is important to avoid going back to 
the pixels of the original image to compute the new model 
and update the merging order. To define a new node, it is 
indeed much more efficient to work recursively and rely on 
information that has been stored as descriptors of the chil-
dren nodes. Finally, the last key point of the implementation 
is to be able to efficiently access the pair of regions that has to 
be merged that is the closest pair of regions following the 
homogeneity criterion. 

PARALLEL COMPUTATION
Through the advent of multicore processors, parallel com-
putation of connected filters becomes more important due 
to images and volume data sets becoming larger and paral-
lel computers becoming cheaper. Most image processing 
operators are easily parallelized, either because of their 
local nature, or because they are separable. Connected fil-
ters are difficult, because they are not separable nor local-
ized. Especially in the case of shape-based attributes, 
connected components of any size might be either accepted 
or rejected. 

Regarding the max- and min-trees, a solution has been 
proposed [52] in the case of shared memory parallel 

[FIG18] Code showing how to perform an area opening with the 
union-find approach using the operations of Figure 17.

/* array S contains sorted pixel list */

for (p=0; p<Length(S); p++)

{

pix = S[p];

MakeSet(pix);

for all neighbors nb of pix do

if ((f[pix] < f[nb]) ||

((f[pix] == f[nb]) && (nb<pix)))

Union(nb,pix);

}

/* Resolving phase in reverse sort order */

for (p=Length(S)-1; p>=0; p--)

{

pix = S[p];

if (parent[pix] >= 0)

parent[pix] = parent[parent[pix]];

else

parent[pix] = f[pix];

}
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 computers. The solution lies in building separate max-trees 
for disjoint parts of the image or volume, and merging 
them efficiently, while maintaining attribute information. 
The image or volume is stored as a contiguous block in 
memory, and one of Np contiguous sections of the data is 
assigned to each of the Np processors. The method then 
uses an adaptation of the algorithm from [15] to build Np 
max-trees. However, instead of assigning arbitrary labels to 
max-tree nodes, the first detected pixel of a node is used to 
indicate the label. This  effectively has every pixel of a node 
point to this canonical element, and the node representa-
tion is done in a union-find style. The advantage of this 
approach lies in the stage in which the individual max-trees 
are merged. Consider a node of the max-tree of the entire 
data that straddles the boundary between to sections of the 
data. If arbitrary labels were assigned to the node, some 
equivalence table would be needed, with further memory 
burdens, or a relabeling would have to be performed. In the 
union-find approach, it is enough to let the canonical ele-
ment of one region points to that of the other, and the 
merging is done. 

NONCLASSICAL CONNECTIVITIES
Until now, we have implicitly considered the connected 
components and flat zones on which connected filters work 
to be the usual four- or eight-connectivity for 2-D images 
and six- or 26-connectivity for 3-D images. These connec-
tivities rely on graph-based path connectivity: two pixels 
belong to the same connected component or flat zone if 
they can be connected by a path composed of a succession 
of neighboring pixels with the same value. The terminolo-
gy “N-connectivity” used before specifies the number of 
neighbors each pixel has. 

However, this approach to connectivity has several limi-
tations. Because of strict preservation of edges, boundary 
noise cannot be removed. Furthermore, objects broken up 
by, e.g., sampling errors, are treated as different objects, 
rather than parts of the same. Conversely, disjoint real 
objects connected by noise pixels cannot be treated sepa-
rately. More fundamentally, when using path connectivity, 
we might not obtain sets of pixels that correspond closely to 
perceptual groups relevant to human observers. Human 
observers might consider clusters of distinct, path-connect-
ed objects as a single perceptual group. An example might 
be a flock of birds or a cluster of stars. Conversely, objects 
that touch each other, and are therefore path connected, 
might be considered separate objects by human observers. 
It is quite easy to accommodate such perceptual groupings 
within the context of connected filters. The key notion for 
this is that of connections or connectivity classes 
[7], [8], [53]. An in-depth review of the mathematical foun-
dations can be found in [9]. A connection is simply the set 
of all subsets of some set (e.g., the image domain) that are 
to be considered as connected sets. To define a connection, 
the following three rules in Definition 6 must be obeyed. 

DEFINITION 6

Connection 
A connection C is defined on the subsets of a set E when 

the empty set is connected 1) 
any singleton is connected (i.e., any single pixel is con-2) 

nected) 
for any set of connected sets, if the intersection is not 3) 

empty, then their union is connected.
It can easily be verified that these properties hold for classi-

cal path connectivity. It was shown in [53] that this connec-
tion definition is equivalent to the definition of a family of 
connectivity openings 5Gn6, associated to each pixel n belong-
ing to the image support E. Intuitively, the opening Gn 1X 2  
extracts the connected component of a binary set X that con-
tains x. Let us recall this result in Definition 7.  

DEFINITION 7 

Connectivity Characterized by Openings 
The definition of a connection is equivalent to the definition of 
a family of connectivity openings 5Gn, n [ E6 such that 

41)  pixel n, Gn 1 5n6 2 5 5n6 
42)  pixels n r, ns and a binary set X, Gnr 1X 2  and Gns 1X 2  are 

either equal or disjoint 
43)  pixel n and binary set X, if the pixel n does not belong 

to X, then Gn 1X 2  returns the empty set [. 
To change the notion of connectivity, the connectivity 

opening has simply to be modified while preserving the basic 
properties mentioned above. Later, we will briefly review the 
most classical examples. 

SECOND-GENERATION CONNECTIVITIES
Most nonclassical connectivities are derived from path connec-
tivity in some way. The most intuitive of these cases are so-
called clustering-based connectivities. These take the 
path-connected components of an image, and group them into 
clusters, based on the size of the separation between them. It 
is the clusters of path-connected components that now form 
the new connected components. In this case, any set that is 
connected in the base connection, is also connected in the new 
connectivity class, but the reverse is not true. 

To define a clustering-based connection, a simple approach 
consists in constructing a connectivity opening by first apply-
ing an extensive operator such as a dilation or a closing to the 
original image. These operators will tend to bridge narrow 
gaps between the original components. The connected compo-
nents are then defined on this modified image, and then inter-
sected with the original image. Assume that 5Gn | n [ E6 is 
the family of connectivity openings associated with C. If c is a 
clustering operator, the derived family of connectivity open-
ings 5Gn

c
 | n [ E6 is given by 

 Gn
c 1X 2 5 eGn 1c 1X 2 2 d X, if n [ X

[, otherwise.
 (24) 
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This definition means that the new connected components 
are defined on c 1X 2 . But as c 1X 2  may be larger than X, we 
have to finally compute the intersection of the connected 
components extracted from c 1X 2  with X. The theoretical 
properties that have to be fulfilled by the clustering operator 
c are discussed in [54]. In practice, the classical choices for 
c in (24) are extensive dilations and closings by connected 
structuring elements. This example is illustrated in the first 
row of Figure 19. The original image is composed of two 
footprints. Using classical path connectivity, each footprint 
is composed of five connected components. If c is a closing 
with a flat structuring element whose size is larger than the 
distance between the connected components of the foot-
prints, then c 1X 2  will involve only two connected compo-
nents. As a result, only two connected components can be 
extracted by the connectivity opening Gn

c (referred to Gp
c 1X 2  

and Gq
c 1X 2  in Figure 19). 

Alternatively, we can partition path-connected components 
into multiple fragments by cutting them at, e.g., narrow con-
necting “bridges” between wider regions. This idea leads to 
contraction-based connectivity [8]. In this case, c has to be an 
antiextensive operator, for example, an opening by a connected 
structuring element. Now, three situations can be distin-
guished: either n [ c 1X 2 , n [ X \ c 1X 2 , or n o X. The con-
nectivity opening returns different results in each case 

 Gn
c 5 •Gn 1c 1X 2 2 if n [ c 1X 25n6 if n [ X \ c 1X 2

[ otherwise.
 (25) 

What this means is that if n is in the contracted image, the cor-
responding contracted connected component is returned. If n is 
a pixel in the original image that is removed by the contracting 
operator, it is considered a singleton (not connected to any 
other pixel). An example of contraction-based connectivity 
openings can be seen in the second row of Figure 19. In this 
example, using a simple path connectivity would be difficult as 
the image is composed of a single connected component. 
However, if c is an opening with a small structuring element, 
then c 1X 2  is composed of ten different connected components. 
Each of these individual connected components can be extract-
ed by the connectivity opening Gn

c. 

MASK-BASED CONNECTIVITY
In some cases, we might want to cluster in certain regions, 
but partition in others. In this case, the framework of mask-
based connectivity is suitable [10]. The idea here is to com-
pute a mask image M by any method and use the connected 
components of this mask to modify the connectivity of the 
image X under study. Thus, rather than using an operator to 
modify the connectivity openings, a mask image is used as 

[FIG19] Second generation connectivity: (a) clustering-based connectivity and (b) contraction-based connectivity. On each row from 
left to right we see the original image, the result of c(X ), and the result of the connectivity openings at points p and q. Note that 
p 5 (65, 85) and q 5 (200, 225).

X ψ (X ) Γp(X )
ψ

Γq(X )
ψ

(a)

X ψ (X ) Γp(X )
ψ

Γq(X )
ψ

(b)
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parameter for the connectivity openings. Once this mask M 
has been obtained, the connectivity openings can be defined 
as follows: 

 Gn 1X | M 2 5 •Gn 1M 2 d X if n [ M d X5n6 if n [ X \ M
[ otherwise.

 (26) 

In other words, the mask takes the place of c 1X 2 . However, M 
need not stem from an operation on X. Instead, M and X might 
be images of the same scene obtained at different wavelengths 
(e.g., IR and visible in astronomy), or in different modalities 
(e.g., registered magnetic resonance imaging and functional 
MRI data). In Figure 20, we can see an example of attribute fil-
tering using the first moment invariant of Hu. For humans, the 
protein molecule in Figure 20(a) is considered a single percep-
tual group, despite its granular appearance. Using a closing with 
a small structuring element to “glue” the protein together in 
Figure 20(b), the resulting operator-based  clustering connectiv-
ity yields a reasonable result in Figure 20(c). Some background 
objects have already been glued to the  protein, however. 
Figure 20(d) shows a mask that first determines the dominant 
direction at each point using a Gabor filter bank. If such a domi-
nant direction exists, an adaptive pseudodilation is performed in 
that direction at each point. Using this mask, we obtain a far 
better result, without gluing noise to the protein as can be seen 
in Figure 20(e) and (f). 

MODIFYING FLAT ZONES
Another approach to changing connectivity is to change the 
definition of flat zones. The simplest approach is based on 
quasiflat zones [6], also known as l-flat zone [15]. These are 
connected regions where, from any given pixel in the compo-
nent, any other pixel of the same component can be reached 
through a path in which neighbors differ by no more than l. 

This approach, first proposed by [55], reduces the fragmenta-
tion of images into very small flat zones but increases prob-
lems with leakage, because a narrow path of very low gradient 
might link to otherwise distinct regions, because l only 
restricts the slope along minimum-slope paths, not the range 
of gray levels allowed. 

An alternative is to use k-flat zones [56], which are defined 
as connected regions of maximal extent, where the total gray-
level variation is no more than k. This prevents zones from 
becoming arbitrarily large, thus avoiding the under segmenta-
tion problem. However, k-flat zones do not provide a partition 

[FIG20] Modifying connectivity for an electron micrograph of protein: (a) original image, (b) the mask by a closing with an SE of size 
5 3 5, (c) the filtered output with l 5 6, (d) the mask described in the text, (e) the filtered output with l 5 6, and (f) the difference 
image after contrast enhancement. Image from [10].

(a) (b) (c) (d) (e) (f)

[FIG21] Separating galaxies from stars: (a) spiral galaxy M81, 
(original image, image courtesy of Giovanni Benintende), (b) 
stars suppressed by an opening with a disk of radius 8, (c) area 
attribute filter with 2,000 " area " 240,000, and (d) filtered 
result using k-flat version [56] of area attribute filter used in (c). 
The latter shows the best preservation of edge detail, and the 
best suppression of stellar signal.

(a) (b)

(c) (d)
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of the image, because they can overlap each other. The only 
way to use them is through hyperconnectivity (see [56] for 
their application to max- and min-trees). An example is shown 
in Figure 21. Hyperconnectivity [7] steps beyond the confines of 
connectivity and allows hyperconnected image regions to over-
lap without their union necessarily being hyperconnected. A 
similar effect is obtained using attribute-space connectivity [57], 
in which the image is first mapped into a higher dimensional 
space where a connection is applied, and the resulting struc-
tures are projected back onto the image domain. 

Various ways to get around this problem have been sought, 
and they are reviewed in [58]. They all try to provide simultane-
ous smoothness, as in l-flat zones, but restrict the growth and 
prevent overlap. The solution offered by Soille can be considered 1k, lmax 2-flat zones, in which a succession of l flat zones is built 
with increasing slope parameter l (up to some maximum lmax ), 
none of which may have a gray-level range larger than k. The 
approach has the advantage of providing a unique partition of 
the image domain, which is very difficult to achieve in any other 
way. This has been used in image simplification and filtering of 
satellite images. An important feature is that the method is 
readily extended to multichannel images by generalizing the 
definitions of slope and range to their multichannel equivalents 
[58]. A general theoretical background to definition of 
 pseudoflat zones of different types to partition the image domain 
is given in [33] and [34]. 

CONCLUSIONS
This article has presented and discussed a region-based process-
ing technique involving connected operators. There is currently 
an interest in defining processing tools that do not act on the 
pixel level, but on a region level. Connected operators are exam-
ples of such tools that come from mathematical morphology. 

Connected operators are operators that process the image by 
merging flat zones. As a result, they cannot introduce any con-
tours or move existing ones. The two most popular approaches 
to create connected operators have been reviewed. The first one 
works on a pixel-based representation of the image and involves 
a reconstruction process. The operator first involves a simplifi-
cation step based on a “classical” operator (such as morphologi-
cal open, close, low-pass filter, and median filter) and then a 
reconstruction process. Three kinds of reconstruction processes 
have been analyzed: antiextensive, extensive, and self-dual. The 
goal of the reconstruction process is to restore the contour 
information after the simplification. In fact, the reconstruction 
can be seen as a way to create a connected version of an arbi-
trary operator. Note that the simplification effect is defined and 
limited by the first step. The examples we have shown include 
simplification in terms of size or contrast. 

The second strategy used to create connected operators 
involves three steps, First, a region-based representation of 
the input image is constructed. Four examples have been dis-
cussed: max-tree, min-tree, inclusion tree, and binary parti-
tion tree. In the second step, the simplification is obtained by 
modifying the tree and, in the third step, the output image is 

constructed from the simplified tree. The tree creation defines 
the set of regions that the pruning strategy can use to create 
the final partition. It represents a compromise between flexi-
bility and efficiency: on the one hand, not all possible merging 
of flat zones are represented in the tree, but on the other 
hand, once the tree has been defined, complex pruning strate-
gies can be defined. In particular, it is possible to deal in a 
robust way with nonincreasing criteria. Criteria involving the 
notions of area, shape, and optimization under a quality con-
straint have been demonstrated. 

Quite uniquely, connected filters can easily be given many 
desirable invariance properties, such as scale invariance. 
Normally, multiscale analysis is used, often requiring several fil-
tering discrete steps. In connected filters, multiscale analysis is 
often highly efficient. This is possible, because the tree repre-
sentations form a compact multiscale representation of the 
image, and a multiscale analysis of the image (e.g., using pat-
tern spectra) is as time consuming as a single filtering of the 
image [27]. Another extension is the use of vector attributes, 
which allows filtering based on multiple properties [59]. By sup-
plying one or more prototype objects, the user could train a fil-
ter to detect specific classes of objects efficiently. 

Given the rapid development of connected filters and the 
availability of fast algorithms, we expect a large increase in their 
use in many domains in the future. 
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