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Overview

What is mathematical morphology?

Basic operators: dilation, erosion, opening, and closing

Comparison to linear filtering

Lattice theory: what is it and why do we need it?

Extensions to vector images

Basic multi-scale operators
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Morphological Image Processing

Started out as a set-theoretical approach to image analysis

Simple geometrical interpretation

Image is probed by small subsets B, structuring elements

Extended to a lattice-theoretical approach to image analysis

Includes very efficient adaptive filters
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Erosions and Dilations

The simplest operations in mathematical morphology are dilation
and erosion.

In the binary case the dilation is given by

δB(X) = X ⊕B =
⋃
b∈B

Xb (1)

in which B is the structuring element (S.E.),

Xb denotes the translation of X by b, i.e.

Xb = {x+ b|x ∈ X}. (2)

The erosion is given by

εB(X) = X 	B =
⋂
b∈B

X−b (3)
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Dilation/erosion: continuous case

.

.

..

.

X A

Dilation of X by A Erosion of X by A
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Dilation: discrete case

→↓ •
•
• •

•
→↓• •

→↓ • •
• •
• • •

• •

Left: binary image X. Middle: S.E. A. Right: dilation of X by A.
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Erosion: discrete case

→↓

• • • •
•
•
•

→↓• •

→↓

• • •

Left: binary image X. Middle: S.E. A. Right: erosion of X by A.
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Dilation: discrete case

The S.E. does not need to contain the origin, so that X ⊕A may have
zero intersection with X.

•
→↓•
•

• →↓ •
• •
• →↓ •
• •

Left: binary image X. Middle: S.E. A. Right: dilation of X by A.
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Geometrical interpretation

X ⊕A = {h ∈ E : A
∨

h ∩X 6= ∅},
X 	A = {h ∈ E : Ah ⊆ X}

where
A
∨

= {−a : a ∈ A}
is the reflection of A.
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Characteristic properties

Distributivity :
(⋃
i∈I

Xi

)
⊕A =

⋃
i∈I

(Xi ⊕A)

Translation invariance : (X ⊕A)h = Xh ⊕A.
Increasing : X ⊆ Y =⇒ X ⊕A ⊆ Y ⊕A

Similarly for the erosion with intersection instead of union.
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Duality w.r.t. set-complementation

Let Xc denotes the complement of the set X. Then:

X ⊕A = (Xc 	A
∨
)c

In words: dilating an image by A gives the same result as eroding
the background by A

∨
.
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Algebraic properties

X ⊕A = A⊕X commutativity

(X ⊕A)⊕B = X ⊕ (A⊕B) associativity

(X 	A)	B = X 	 (A⊕B) iteration

(X ∪ Y )⊕A = (X ⊕A) ∪ (Y ⊕A) distributivity

(X ∩ Y )	A = (X 	A) ∩ (Y 	A) distributivity

X ⊕ (A ∪B) = (X ⊕A) ∪ (X ⊕B)

X 	 (A ∪B) = (X 	A) ∩ (X 	B)
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Structural Openings and Closings

A structural opening γB by S.E. B is obtained by first applying an
erosion, followed by a dilation with the same SE, i.e.,

γB(X) = δB(εB(X)) (4)

whereas the structural closing φB is defined as

φB(X) = εB(δB(X)) (5)

ASCI Course Advanced Morphologcal Filters, 2010 12 of 30



Opening & Closing: continous case

X A

.

..
. .

...

. .

..
.

Opening of X by A Closing of X by A
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Opening & Closing: discrete case

→↓
• •

• • • •
• •

→↓ •
• • •
•

→↓
•

• • •
•

→↓
• •

• • • • •
• •

Upper left: binary image X. Upper right: S.E. A. Lower left: opening
of X by A. Lower right: closing of X by A.
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Properties of Openings and Closings

A mapping ψ is called:

1. idempotent, if ψ(ψ(X)) = ψ(X)

2. increasing, if X ⊆ Y =⇒ ψ(X) ⊆ ψ(Y )

3. extensive, if for every X, ψ(X) ⊇ X

4. anti-extensive, if for every X, ψ(X) ⊆ X

Theorem . The opening is increasing, idempotent and
anti-extensive. The closing is increasing, idempotent and extensive.

Duality: (Xc ◦A)c = X •A
∨
.
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Grey Scale Erosion and Dilation

In the grey scale case dilation and erosion become maximum and
minimum filters respectively

(δh(f))(x) =
∨

k∈B

f(x− k) (6)

and
(εh(f))(x) =

∧
k∈B

f(x+ k) (7)

A slightly more general form uses a function b with support B:

(δh(f))(x) =
∨

k∈B

(b(k) + f(x− k)) (8)

and
(εh(f))(x) =

∧
k∈B

(f(x+ k)− b(k)) (9)
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Classic Filters

(a) f (b) ε9f (c) δ9f (d) δ9ε9f (e) ε9δ9f
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Characteristic properties

Distributivity : δA

(∨
i∈I

fi

)
=
∨
i∈I

(δA(fi)

Translation invariance : (δA(f))h = δA(fh).

Increasing : f ≤ g =⇒ δA(f) ≤ δA(g)

Similarly for the erosion with intersection instead of union.
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Relationship to Linear Filters

Let us recall linear filters, which are convolutions by some kernel h
with support H, we have

(h ∗ f)[n] =
∑
k∈H

(h[k]f [n− k]) (10)

Compare this to grey-scale dilation:

(δh(f))(x) =
∨

k∈B

(b(k) + f(x− k)) (11)
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Complete Lattices

A complete lattice is defined as follows

Definition 1. A complete lattice L is a set with a partial order ≤,
in which each subset A ⊆ L has an infimum

∧
A and a supremum∨

A contained in L

Complete lattices have a least element denoted as 0 and a largest
element denoted as 1
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Examples of Complete Lattices

The powerset P(E) of some universal set E with ⊆ as the order,
⋂

as infimum, and
⋃
as supremum.

The family of all functions f : E → T , with T some totally ordered,
complete lattice (or chain), with

f ≤ g ≡ f(x) ≤T g(x) ∀x ∈ E

with ≤T the total order on T
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Adjunctions

Given a lattice L with a partial order ≤

A dilation δ is any operator which commutes with supremum
∨
and

preserves the least element 0, or(∨
a∈A

δ(a)
)

= δ

(∨
a∈A

a

)
, ∀A ⊆ L (12)

and
δ(0) = 0 (13)
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Adjunctions II

An erosion ε is any operator which commutes with supremum
∧

and preserves the greatest element 1, or(∧
a∈A

ε(a)
)

= ε

(∧
a∈A

a

)
, ∀A ⊆ L (14)

and
ε(1) = 1 (15)

An adjunction is any pair (δ, ε) such that δ is a dilation and ε is an
erosion, for which

a ≤ ε(b)⇔ δ(a) ≤ b. (16)
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Adjunctions III

For every dilation δ there is precisely one erosion ε for which (16)
holds.

Likewise, for every erosion ε there is precisely one dilation δ for
which (16) holds.

If (δ, ε) is an adjunction

γ = δε (17)

is an algebraic opening, and

φ = εδ (18)

is an algebraic closing
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Vector and Matrix Images

Vector and matrix images can be modelled as mappings f : E → T N,
and f : E → T N×M respectively.

There is no natural order on either T N or T N×M.

The most common solution: marginal processing

This leads to false colours

The alternative are lexicographic ordering, total preordering, or
partial ordering.
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Example

Lenna with noise open-close
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Example II

gaussian blur area open-close
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Size Distributions

A size distribution or granulometry is a set of openings {αr} with r
from some totally ordered set Λ with the following three properties:

αr(X) ⊆ X, (19)

X ⊆ Y ⇒ αr(X) ⊆ αr(Y ), (20)

αr(αs(X)) = αmax(r,s)(X), (21)

in the binary case, and in the grey scale case:

αr(f) ≤ f, (22)

f ≤ g ⇒ αr(f) ≤ αr(g), (23)

αr(αs(f)) = αmax(r,s)(f), (24)
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Anti-Size Distributions

An anti-size distribution is a set of closings {αr} with r from some
totally ordered set Λ with the following three properties:

X ⊆ αr(X), (25)

X ⊆ Y ⇒ αr(X) ⊆ αr(Y ), (26)

αr(αs(X)) = αmax(r,s)(X), (27)

in the binary case, and in the grey scale case:

f) ≤ αr(f), (28)

f ≤ g ⇒ αr(f) ≤ αr(g), (29)

αr(αs(f)) = αmin(r,s)(f), (30)

Note that scale parameter r is usually held to be negative.
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Example

A grey-level image with the result of a size and anti-size distribution

A sequence of approximations of circular S.E. are used.
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Questions

?
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