

Morphological Image Analysis

Michael H. F. Wilkinson

Johan Bernoulli Institute of Mathematics and Computer Science University of Groningen The Netherlands

ASCI Course Advanced Morphologcal Filters, 2010

- What is mathematical morphology?
- Basic operators: dilation, erosion, opening, and closing
- Comparison to linear filtering
- Lattice theory: what is it and why do we need it?
- Extensions to vector images
- Basic multi-scale operators

- Started out as a set-theoretical approach to image analysis
- Simple geometrical interpretation
- Image is probed by small subsets B, structuring elements
- Extended to a lattice-theoretical approach to image analysis
- Includes very efficient adaptive filters

- The simplest operations in mathematical morphology are dilation and erosion.
- In the binary case the dilation is given by

$$\delta_B(X) = X \oplus B = \bigcup_{b \in B} X_b \tag{1}$$

in which *B* is the *structuring element* (S.E.),

• X_b denotes the translation of X by b, i.e.

$$X_b = \{x + b | x \in X\}.$$
 (2)

The erosion is given by

$$\varepsilon_B(X) = X \ominus B = \bigcap_{b \in B} X_{-b}$$
(3)

Dilation: discrete case

Left: binary image X. Middle: S.E. A. Right: dilation of X by A.

Erosion: discrete case

Left: binary image X. Middle: S.E. A. Right: erosion of X by A.

The S.E. does not need to contain the origin, so that $X \oplus A$ may have zero intersection with X.

Left: binary image X. Middle: S.E. A. Right: dilation of X by A.

$$X \oplus A = \{h \in E : \overset{\vee}{A}_h \cap X \neq \emptyset\},\$$

$$X \oplus A = \{h \in E : A_h \subseteq X\}$$

where

$$\overset{\scriptscriptstyle \vee}{A} = \{-a : a \in A\}$$

is the *reflection* of A.

$\bigcup_{i \in I} X_i \oplus A = \bigcup_{i \in I} (X_i \oplus A)$
$(X \oplus A)_h = X_h \oplus A.$
$\subseteq Y \implies X \oplus A \subseteq Y \oplus A$

Similarly for the **erosion** with **intersection** instead of union.

Let X^c denotes the complement of the set X. Then:

```
X \oplus A = (X^c \ominus \overset{\vee}{A})^c
```

In words: **dilating** an image by A gives the same result as **eroding** the **background** by $\stackrel{\scriptscriptstyle \vee}{A}$.

 $X \oplus A = A \oplus X$ commutativity $(X \oplus A) \oplus B = X \oplus (A \oplus B)$ associativity $(X \oplus A) \oplus B = X \oplus (A \oplus B)$ iteration $(X \cup Y) \oplus A = (X \oplus A) \cup (Y \oplus A)$ distributivity $(X \cap Y) \oplus A = (X \oplus A) \cap (Y \oplus A)$ distributivity $X \oplus (A \cup B) = (X \oplus A) \cup (X \oplus B)$ $X \oplus (A \cup B) = (X \oplus A) \cap (X \oplus B)$

A *structural opening* γ_B by S.E. *B* is obtained by first applying an erosion, followed by a dilation with the same SE, i.e.,

$$\gamma_B(X) = \delta_B(\varepsilon_B(X)) \tag{4}$$

whereas the structural closing ϕ_B is defined as

$$\phi_B(X) = \varepsilon_B(\delta_B(X)) \tag{5}$$

Opening & Closing: continous case

Opening & Closing: discrete case

Upper left: binary image X. Upper right: S.E. A. Lower left: **opening** of X by A. Lower right: **closing** of X by A.

A mapping ψ is called:

- 1. idempotent, if $\psi(\psi(X)) = \psi(X)$
- **2. increasing,** if $X \subseteq Y \implies \psi(X) \subseteq \psi(Y)$
- **3. extensive**, if for every $X, \ \psi(X) \supseteq X$
- **4. anti-extensive**, if for every $X, \ \psi(X) \subseteq X$

Theorem . The **opening** is increasing, idempotent and **anti**-extensive. The **closing** is increasing, idempotent and extensive.

Duality: $(X^c \circ A)^c = X \bullet \overset{\vee}{A}$.

In the grey scale case dilation and erosion become maximum and minimum filters respectively

$$(\delta_h(f))(x) = \bigvee_{k \in B} f(x - k)$$
(6)

and

$$(\epsilon_h(f))(x) = \bigwedge_{k \in B} f(x+k)$$
(7)

A slightly more general form uses a function b with support B:

$$(\delta_h(f))(x) = \bigvee_{k \in B} (b(k) + f(x - k))$$
(8)

and

$$(\epsilon_h(f))(x) = \bigwedge_{k \in B} (f(x+k) - b(k))$$
(9)

Classic Filters

ASCI Course Advanced Morphologcal Filters, 2010

Distributivity	:	$\delta_A\left(\bigvee_{i\in I}f_i\right) = \bigvee_{i\in I}(\delta_A(f_i)$
Translation invariance	•	$(\delta_A(f))_h = \delta_A(f_h).$
Increasing	•	$f \le g \implies \delta_A(f) \le \delta_A(g)$

Similarly for the **erosion** with **intersection** instead of union.

Let us recall linear filters, which are convolutions by some kernel h with support H, we have

$$(h * f)[n] = \sum_{k \in H} (h[k]f[n-k])$$
 (10)

Compare this to grey-scale dilation:

$$(\delta_h(f))(x) = \bigvee_{k \in B} (b(k) + f(x - k))$$
(11)

A complete lattice is defined as follows

Definition 1. A *complete lattice* \mathcal{L} is a set with a partial order \leq , in which each subset $A \subseteq \mathcal{L}$ has an infimum $\bigwedge A$ and a supremum $\bigvee A$ contained in \mathcal{L}

 Complete lattices have a least element denoted as 0 and a largest element denoted as 1

- The powerset $\mathcal{P}(E)$ of some universal set E with \subseteq as the order, \bigcap as infimum, and \bigcup as supremum.
- The family of all functions $f: E \to T$, with T some *totally ordered*, complete lattice (or chain), with

$$f \le g \quad \equiv \quad f(x) \le_{\mathcal{T}} g(x) \; \forall x \in E$$

with $\leq_{\mathcal{T}}$ the total order on \mathcal{T}

Adjunctions

- Given a lattice \mathcal{L} with a partial order \leq
- A dilation δ is any operator which commutes with supremum \bigvee and preserves the least element 0, or

$$\left(\bigvee_{a\in A}\delta(a)\right) = \delta\left(\bigvee_{a\in A}a\right), \quad \forall A \subseteq \mathcal{L}$$
(12)

and

$$\delta(\mathbf{0}) = \mathbf{0} \tag{13}$$

• An erosion ε is any operator which commutes with supremum \bigwedge and preserves the greatest element 1, or

$$\left(\bigwedge_{a\in A}\varepsilon(a)\right)=\varepsilon\left(\bigwedge_{a\in A}a\right),\quad\forall A\subseteq\mathcal{L}$$
(14)

and

$$\varepsilon(1) = 1 \tag{15}$$

• An **adjunction** is any pair (δ, ε) such that δ is a dilation and ε is an erosion, for which

$$a \le \varepsilon(b) \Leftrightarrow \delta(a) \le b.$$
 (16)

- For every dilation δ there is precisely one erosion ε for which (16) holds.
- Likewise, for every erosion ε there is precisely one dilation δ for which (16) holds.
- If (δ, ε) is an adjunction

$$\gamma = \delta \varepsilon \tag{17}$$

is an algebraic opening, and

$$\phi = \varepsilon \delta \tag{18}$$

is an algebraic closing

- Vector and matrix images can be modelled as mappings $f: E \to T^N$, and $f: E \to T^{N \times M}$ respectively.
- There is no natural order on either \mathcal{T}^N or $\mathcal{T}^{N \times M}$.
- The most common solution: marginal processing
- This leads to false colours
- The alternative are lexicographic ordering, total preordering, or partial ordering.

open-close

Example II

gaussian blur

area open-close

ASCI Course Advanced Morphologcal Filters, 2010

A size distribution or *granulometry* is a set of openings $\{\alpha_r\}$ with r from some totally ordered set Λ with the following three properties:

$$\alpha_r(X) \subseteq X, \tag{19}$$

$$X \subseteq Y \quad \Rightarrow \quad \alpha_r(X) \subseteq \alpha_r(Y), \tag{20}$$

$$\alpha_r(\alpha_s(X)) = \alpha_{\max(r,s)}(X), \tag{21}$$

in the binary case, and in the grey scale case:

$$\alpha_r(f) \leq f, \tag{22}$$

$$f \le g \Rightarrow \alpha_r(f) \le \alpha_r(g),$$
 (23)

$$\alpha_r(\alpha_s(f)) = \alpha_{\max(r,s)}(f), \qquad (24)$$

An anti-size distribution is a set of *closings* $\{\alpha_r\}$ with r from some totally ordered set Λ with the following three properties:

$$X \subseteq \alpha_r(X), \tag{25}$$

$$X \subseteq Y \quad \Rightarrow \quad \alpha_r(X) \subseteq \alpha_r(Y), \tag{26}$$

$$\alpha_r(\alpha_s(X)) = \alpha_{\max(r,s)}(X), \tag{27}$$

in the binary case, and in the grey scale case:

$$f) \leq \alpha_r(f), \tag{28}$$

$$f \le g \Rightarrow \alpha_r(f) \le \alpha_r(g),$$
 (29)

$$\alpha_r(\alpha_s(f)) = \alpha_{\min(r,s)}(f), \tag{30}$$

Note that scale parameter r is usually held to be *negative*.

- A grey-level image with the result of a size and anti-size distribution
- A sequence of approximations of circular S.E. are used.

