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What Are Connected Filters?

Connectivity preserving morphological filters

The image domain M can be partitioned into disjoint sets based on

connected components in the binary case

connected zones of constant grey/colour level in the grey-scale/colour case

A connected filter works by

merging disjoint sets in the partition

assigning new grey levels or colours to them

This means that no new edges are introduced by connected filters.

Connected filtering therefore works on image structures rather than pixels

Note that these filters depend on a definition of connectivity
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Key Properties

Connected filters differ from other morphological filters in that they:

work on the connected components of images, rather than on single pixels or
rigidly defined neighbourhoods,

are strictly edge preserving,

can be used to create strictly causal scale-spaces,

can perform both low level and intermediate to high level processing tasks

can be given many useful invariance properties such as scale invariance.

Problems with classical connected filters include:

noise along edges of objects cannot be removed

objects linked by noise pixels cannot be separated

objects broken up by imaging artefacts cannot be joined

These problems can partly be solved by second-order connectivities.
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Reconstruction

original f marker g = γ21f reconstruction of f by g

The edge preserving effect of openings-by-reconstruction compared to structural
openings
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Reconstruction

The basis of an opening by reconstruction is the reconstruction of image f from
an arbitrary marker g.

This is usually defined using geodesic dilations δ̄f defined as

δ
1

f(g) = f ∧ δ(g). (1)

This operator is used iteratively until stability, to perform the reconstruction ρ i.e.

ρ(f |g) = lim
n→∞

δ̄nf g = δ̄1f . . . δ̄
1
f δ̄

1
f︸ ︷︷ ︸

until stability

(g). (2)

In practice we apply δ̄nf with n the smallest integer such that

δ̄nf g = δ̄n−1
f g. (3)
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Openings-by-Reconstruction

What this process does in the binary case is reconstruct any connected component
in f which intersects some part of g.

An opening-by-reconstruction γ̄X with structuring element (S.E) X is computed
as

γ̄X(f) = ρ(f |γX(f)), (4)

in which γX denotes an opening of f by X.

Reconstructing from this marker preserves any connected component in which X
fits at at least one position.

Closing-by-reconstruction φ̄X can be defined by duality, i.e.

φ̄X(f) = −γ̄X(−f) (5)
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Levelings

Openings-by-reconstructions are anti-extensive, and closings-by-reconstructions
are extensive, removing bright or dark image details respectively.

Meyer (J.Math. Imag. Vis. 2004) proposed levelings as an auto-dual extension of
reconstruction filters.

In this case a marker is used which may lie partly above and partly below the
image.

We can compute a leveling of λ(f |g) of f from marker g as

(λ(f |g))(x) =

{
(ρ(f |g))(x) if f(x) ≥ g(x)
−(ρ(−f | − g))(x) if f(x) < g(x),

(6)

Levelings allow edge-preserving simplification of images, by simultaneously
removing bright and dark details.
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Example: Levelings

original blurred by Gaussian leveling

Leveling using a Gaussian filter to simplify the image in an auto-dual manner.
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Example: Leveling Cartoons

original cartoon texture channel

Leveling cartoons for texture/cartoon decomposition.
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Area openings

The opening by reconstruction can also be defined as

γ̄X(f) =
∨

B∈BX

γB(f) (7)

with BX the family of all connected S.E. B such that X ⊆ B.

The area opening γaλ can be defined as

γaλ(f |γB(f)) =
∨
B∈Bλ

γB(f) (8)

with Bλ the family of all connected S.E. B such that its area A(B) ≥ λ.

These were the first two attribute openings
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Attribute Filters I

Introduced by Breen and Jones in 1996.

Examples: area openings/closings, attribute openings, shape filters

How do they work?

Binary image :

1. compute attribute for each connected component
2. keep components of which attribute value exceeds some threshold λ
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Attribute Openings: Formally

Let T : P(E)→ {false, true} be an increasing criterion, i.e. C ⊆ D implies that
T (C)⇒ T (D).

A binary trivial opening ΓT : P(E)→ P(E) using T as defined above is defined
as

ΓT (C) =

{
C if T (C),
∅ otherwise.

(9)

A typical form of T is
T (C) = (µ(C) ≥ λ) (10)

in which µ is some increasing scalar attribute value (i.e.
C ⊆ D ⇒ µ(C) ≤ µ(D)), and λ is the attribute threshold.

The binary attribute opening ΓT is defined as

ΓT (X) =
⋃
x∈X

ΓT (Γx(X)), (11)

in other words it is the union of all connected foreground components of X which
meet the criterion T .
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Attribute Openings: Examples

X T = A(C) ≥ 112 T = I(C) ≥ 114/6

An area opening is obtained if the criterion T = A(C) ≥ λ, with A the area of
the connected set C.

A moment-of-inertia opening is obtained if the criterium is of the form
T = I(C) ≥ λ, with I the moment of inertia.
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Other Attribute Filters

If criterion T is non-increasing in (9), ΓT becomes a trivial thinning, or trivial,
anti-extensive grain filter ΦT :

ΦT (C) =

{
C if T (C),
∅ otherwise.

(12)

Using a trivial thinning rather than a trivial opening in (11), ΓT becomes an
attribute thinning or anti-extensive grain filter ΦT :

ΦT (X) =
⋃
x∈X

ΦT (Γx(X)), (13)

The extensive dual of the atribute opening ΓT is the attribute closing ΨT , which
is defined as

ΨT (X) = (ΓT (Xc))c. (14)

The extensive dual of the attribute thinning is the attribute thickening, which is
defined as above, but with a non-increasing criterion.
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Non-Increasing Attributes

Attribute thinnings can be defined using the usual form T (C) = (µ(C) ≥ λ) if µ
is non-increasing, e.g.:

Perimeter length P

Circularity (or boundary complexity) P 2/A

Concavity: (H −A)/A, with H the convex hull area

Elongation (non-compactness): I/A2

Any of Hu’s moment invariants

Alternatively, increasing attributes (i.e. C ⊆ D ⇒ µ(C) ≤ µ(D)) can be used if
the form of T is changed:

T = (µ(C) = λ)

T = (µ(C) ≤ λ)

etc.
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The Grey-scale Case

In the case of attribute openings, generalization to grey scale is achieved through
threshold decomposition.

A threshold set Xh of grey level image (function) f is defined as

Xh(f) = {x ∈ E|f(x) ≥ h}. (15)

The grey scale attribute opening γT based on binary counterpart ΓT is given by

(γT (f))(x) = sup{h ≤ f(x)|x ∈ ΓT (Xh(f))} (16)

Closings ψT are defined by duality:

ψT (f) = −γT (−f). (17)

The non-increasing case will be dealt with after discussing the algorithms.
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(Semi) Auto-dual filtering

A filter is auto-dual (or self-dual) if it is invariant to inversion:

ψ(f) = −ψ(−f) (18)

An approximation is offered by alternating sequential filters (ASFs), which consist
of an alternating sequence of openings and closings of increasing scale (e.g. radius
of structuring element).

Let γaλ be a area opening of attribute threshold λ, and φaλ the corresponding area
closing.

The area N-Sieve ψNλ is given by

ψNλ (f) = φaλ(γaλ(. . . (φa2(γa2(φa1(γa1(f))))) . . .)) (19)

and is an alternating sequential filter.

The corresponding M-Sieve ψMλ is just

ψMλ (f) = γaλ(φaλ(. . . (γa2(φa2(γa1(φa1(f))))) . . .)) (20)
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Grey Scale Example

f γa256(f)

φa256(f) ψN256(f)

ASCI Course Advanced Morphological Filters, 21-25 June 2010 18 of 71



Definitions for Grey Scale

A level set Lh of image f is defined as

Lh(f) = {x ∈ E|f(x) = h} (21)

A flat zone or level component Lh at level h of a grey scale image f is a
connected component of the level set Lh(f).

peak component Ph at level h is a connected component of the thresholded set
Xh(f).

A regional maximum Mh at level h is a level component no members of which
have neighbors larger than h. A

At each level h there may be several such components, which will be indexed as
Lih, P

j
h and Mk

h , respectively.

Any regional maximum Mk
h is also a peak component, but the reverse is not true.
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Definitions for Grey Scale

Xh"

Xh'

Xh

h

h'
h"

L1
h"

M = P = L1 1 1
h h h

P1
h'

M = P = L2 2 2
h h h

(a) (b)

One-dimensional example of level components, peak components and regional
maxima.
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Algorithms for the Grey-scale Case

Naive computation of these filters in the grey-scale case can be done by threshold
decomposition. This is SLOW!

Three faster algorithms have been proposed

A priority-queue based approach (Vincent, 1993; Breen & Jones, 1996): low
memory cost, time complexity O(N2 logN).

A union-find approach (Meijster & Wilkinson 2002): low memory cost, time
complexity O(N logN), fastest in practice, only for increasing filters.

The Max-tree based approach (Salembier et al., 1998): high memory cost, time
complexity O(N), most flexible.

ASCI Course Advanced Morphological Filters, 21-25 June 2010 21 of 71



Tree Structures for Connected Filtering

Because peak components at different grey levels are nested within eachother, it
is possible to represent the entire component structure as a tree.

In Max-trees (Salembier et al., 1998) the nodes represent peak components.

In Min-trees the nodes represent valley components (peak components of the
inverted image).

Level-line trees are built by computing a Min-tree and a Max-tree and merging
these in such a way that the leaves of the tree are both minima and maxima in
the image.

Removing nodes in the Max-tree is leads to anti-extensive filtering

Removing nodes in the Min-tree is leads to extensive filtering

Removing nodes in the Level-line tree leads to auto-dual filtering.
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Max-Tree representation
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Filtering

C0
3

�3

?
� C0

2
@
@R

2 C1
2

�
�	

- 2

C0
1

?

�1

C0
0

�0

C0
3

�2

?
� C0

2
@
@R

1 C1
2

�
�	

- 1

C0
1

?

�1

C0
0

�0

20

8 6

50

70

P 0
3

P 0
2 P 1

2

P 0
1

P 0
0

P 0
2

P 0
1

P 0
0

0 1 2 3 2 1 2 1 0 0 1 1 2 1 1 1 1 0

attribute values original filtered (λ = 10)

ASCI Course Advanced Morphological Filters, 21-25 June 2010 24 of 71



Filtering Rules

Different rules exist for removal of nodes:

20

8 6

50

70

P 0
1

P 0
0

P 0
3

P 0
2

P 0
1

P 0
0

attributes Min Max

P 0
3

P 0
1

P 0
0

P 0
2

P 0
1

P 0
0

Direct Subtract

The first two are ”pruning” rules, the second two ”non-pruning”. These different
rules have an impact on the way ”top-hat” equivalents of grey-scale shape filters

work.
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The Difference between Filtering Rules

original min max

direct subtractive
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Invariances in Attribute Filters

Very often in image analysis, we want our methods to be invariant to certain
transforms.

Most, if not all filters are shift invariant

Rotation invariance can be obtained in structural filtering by:

Using a rotation invariant structuring element (SE), or

Using a non-rotation invariant SE at all possible rotations.

In attribute filtering invariance properties of the attribute carry over in the filter if
the connectivity is also invariant.

Example: area is a rotation invariant attribute. and so is the area opening.

Scale invariance is easily achieved in attribute filtering: use scale-invariant
attributes: I/A2.

This leads to so-called shape-filters.
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Why shape filters?

Shape extraction is required whenever the objects of interest are characterized by
shape, rather than scale.

The common approach to this problem is by using multi-scale processing
techniques.

One example is finding elongated structures (vessels) is by using successive
top-hat filters to obtain features of different width, followed by selection of
sufficiently long features at each width scale by area openings.

Multi-scale operators usually require multiple applications of filters to a single
image.

It may be more economical to design filters select for shape directly, in a single
filter step.
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Grey-Scale Image Decomposition by Shape

If we filter a grey-scale image f using shape criteria, we want the following properties
to hold:

All connected components of any threshold set of the filtered image φTr (f) satisfy
the shape criterion used.

None of the connected components of any threshold set of the difference between
the filtered image and original image φTr (f)− f satisfy the shape criterion used

More formally we have

ΦTr (Xh(φTr (f))) = Xh(φTr (f)) (22)

and
ΦTr (Xh(f − φTr (f))) = ∅ (23)

for all h.
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Grey-Scale Image Decomposition by Shape

Min Max Dir. Sub.

φTr (f)

Original image f

f − φTr (f)

φTr (f − φ
T
r (f))
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Explicit Multiscale Approach

original radius = 1 radius = 3 radius = 9 final
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Shape filters: formal description

Let us define a scaling Xλ of set X by a scalar factor λ ∈ R as

Xλ = {x ∈ Rn|λ−1x ∈ X}, (24)

An operator φ is said to be scale invariant if

φ(Xλ) = (φ(X))λ (25)

for all λ > 0.

If an operator is scale, rotation and translation invariant, we call it a shape
operator.
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An instance of a shape filter

The binary connected opening Γx extracts the connected component to which x
belongs, discarding all others.

The trivial thinning ΦT of a connected set C with criterion T is just the set C if
C satisfies T , and is empty otherwise. Furthermore, ΦT (∅) = ∅.

The binary attribute thinning ΦT of set X with criterion T is given by

ΦT (X) =
⋃
x∈X

ΦT (Γx(X)) (26)

If T is scale, rotation and translation invariant, ΦT is a shape filter. An example
would be:

T (C) =
(
I(C)
A2(C)

≥ λ
)
. (27)
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An Application

In angiography it is often necessary to enhance curvilinear detail before
segmentation.

Standard multi-scale techniques require filtering at multiple scales and
orientations, and may require > 1 hr CPU-time.

Shape filtering using I/V 5/3 > λ as 3D shape criterion can be used instead.

The result can be computed in 12 s on a Pentium 4 at 1.9 GHz for a 2563 volume.
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Blood-Vessel Enhancement

angiogram filtered λ = 2.0

segmentation of original segmentation of filtered set
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Size Distributions

A size distribution or granulometry is a set of openings {αr} with r from some
totally ordered set Λ with the following three properties:

αr(X) ⊆ X, (28)

X ⊆ Y ⇒ αr(X) ⊆ αr(Y ), (29)

αr(αs(X)) = αmax(r,s)(X), (30)

in the binary case, and in the grey scale case:

αr(f) ≤ f, (31)

f ≤ g ⇒ αr(f) ≤ αr(g), (32)

αr(αs(f)) = αmax(r,s)(f), (33)
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Anti-Size Distributions

An anti-size distribution is a set of closings {αr} with r from some totally ordered
set Λ with the following three properties:

X ⊆ αr(X), (34)

X ⊆ Y ⇒ αr(X) ⊆ αr(Y ), (35)

αr(αs(X)) = αmax(r,s)(X), (36)

in the binary case, and in the grey scale case:

f) ≤ αr(f), (37)

f ≤ g ⇒ αr(f) ≤ αr(g), (38)

αr(αs(f)) = αmin(r,s)(f), (39)

Note that scale parameter r is usually held to be negative.
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Pattern Spectrum

The pattern spectrum sα(X) obtained by applying granulometry {αr} to a binary
image X is defined as

(sα(X))(u) = −∂A(αr(X))
∂r

∣∣∣∣
r=u

(40)

in which A(X) is a function denoting the Lebesgue measure in Rn.

In the case of discrete images, and with r ∈ Λ ⊂ Z, this differentiation reduces to

(sα(X))(r) = #(αr(X) \ αr+(X)) (41)

= #(αr(X))−#(αr+(X)), (42)

with r+ = min{r′ ∈ Λ|r′ > r}, and #(X) the number of elements of X.
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Computing Pattern Spectra in Grey Scale

For structural openings, we generally use a set of structuring elements {Br} (e.g.
discs) of increasing size.

From this we construct a granulometry {αr} for which

αr(f) = f ◦Br (43)

In this case the pattern spectrum is generally computed by naive implementation
of the equation for the patter spectrum sf(r)

sf(r) =
∑
x

((f ◦Br−1)(x)− (f ◦Br)(x)) (44)

This requires one structural opening per bin of the spectrum.
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Using Connected Filters

The nesting property of peak components makes computation of patterns spectra
in the case of connected filters very simple.

Any of the algorithms for attribute openings can be adapted to computation of
pattern spectra with any number of bins in just one application of the algorithm.

As each peak component is processed, simply add its grey-level sum to the
appropriate bin based on the attribute.

The method also works for shape spectra using attribute thinnings rather than
openings.
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Shape distributions I

A shape distribution is a set of operators {βr} with r from some totally ordered set
Λ, with the following three properties

βr(X) ⊂X (45)

βr(Xλ) =(βr(X))λ (46)

βr(βs(X)) =βmax(r,s)(X), (47)

for all r, s ∈ Λ and λ > 0 in the binary case, and in the grey-scale case:

(βr(f))(x) ≤f(x) (48)

βr(fλ) =(βr(f))λ (49)

βr(βs(f)) =βmax(r,s)(f), (50)
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Shape distributions II: Example

Shape distributions can be implemented using families of attribute thinnings.

Care must be taken that the third (absorption) property holds.

If τ(C) is scale, rotation, and translation-invariant attribute of connected set C,
the family of shape filters {ΦTλ} is a shape distribution, if T has the form:

T (C) = (τ(C) > λ). (51)

An example would be:

T (C) =
(
I(C)
A2(C)

> λ

)
. (52)
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An Example

Applying the I/V 5/3-based shape distribution to an angiogram (top left) with λ =
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0.

ASCI Course Advanced Morphological Filters, 21-25 June 2010 43 of 71



Multi-Variate Pattern Spectra

Computation of pattern spectrum using Max-Tree (Subtractive):
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Application to Diatom Identification
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Vector-attribute filters

Aim: Removing objects that are similar enough to a given shape.

Example: removing objects that are similar enough (ε) to the reference shape
(letter A).

Original image X ε = 0.01 ε = 0.10 ε = 0.15

A value of ε = 0 means only those shapes are removed that are exactly the same
as the reference shape.

To gain more descriptive power we may use more than one attribute per node.
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Binary Vector-Attribute Thinning

A multi-variate attribute thinning Φ{Ti}(X) with scalar attributes {τi} and their
corresponding criteria {Ti}, with 1 ≤ i ≤ N , preserves a component C if ∃i : Ti,
Ti = τi(C) ≥ ri:

Φ{Ti}(X) =
N⋃
i=1

ΦTi(X). (53)

An alternative is the vector-attribute thinning, in which C is preserved if
~τ(C) ∈ RD satisfies criterion

T ~τ~r,ε(C) = d(~τ(C), ~r) ≥ ε (54)

in which dissimilarity measure d : RD ×RD → R quantifies the difference between
~τ(C) and ~r.

A binary vector-attribute thinning Φ~τ~r,ε(X), with D-dimensional vectors, removes
the connected components of a binary image X whose vector-attributes differ less
than ε from a reference vector ~r ∈ RD.
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Vector Attribute Thinning

Definition 1. The vector-attribute thinning Φ~τ~r,ε of X with respect to a reference
vector ~r and using vector-attribute ~τ and scalar value ε is given by

Φ~τ~r,ε(X) = {x ∈ X| T ~τ~r,ε(Γx(X))}. (55)

Possible choices for d:

Euclidean distance d(~u,~v) = ||~v − ~u||.

Manhattan distance d(~u,~v) =
∑
|vi − ui|

Any dissimilarity measure can be used (such as Mahalanobis distance).

Since the triangle inequality d(a, c) ≤ d(a, b) + d(b, c) is not required, d need not
be a distance.
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Thinning with Respect to a Shape (Family)

To select the appropriate vector ~r we can provide a shape in a binary image and
compute its vector attributes.

Definition 2. The vector-attribute thinning Φ~τS,ε of X with respect to a
reference shape S and using vector-attribute ~τ and scalar value ε is given by

Φ~τS,ε(X) = Φ~τ~τ(S),ε(X) (56)

More robustness can be obtained using a series of example shapes in a shape
family F = {S1, S2, . . . , Sn}:

Definition 3. The vector-attribute thinning Φ~τF,ε of X with respect to a
reference shape family F and using vector-attribute ~τ and scalar value ε is given
by

Φ~τF,ε(X) =
⋂
S∈F

Φ~τS,ε(X) (57)

This removes objects if they are similar enough to any of the example shapes
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Gray-scale vector-attribute thinning

Extension to gray-scale using threshold decomposition:

φ~τ~r,ε(f) = sup{h| T ~τ~r,ε(Γx(Xh(f)))}, (58)

where threshold set Xh(f) is defined as: Xh(f) = {x ∈M|f(x) ≥ h}. Example:
removing letters from image f consisting of nested versions of the letters A, B, and
C.

f φ~τSA,ε(f) φ~τSB,ε(f) φ~τSC,ε(f)
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Shape Description using Moments

(Central) moments up to some order (p+ q) are computed:

Moments: mpq =
∫∫

R2
xpyqf(x, y) dx dy (59)

Central moments: µpq =
∫∫

R2
(x− x̄)p(y − ȳ)qf(x, y) dx dy (60)

where x̄ =
m10

m00
and ȳ =

m01

m00
(61)

Normalized central moments: ηpq =
µpq
µγ00

(62)

where γ =
p+ q

2
+ 1 (63)

(64)

ASCI Course Advanced Morphological Filters, 21-25 June 2010 51 of 71



Hu’s Moment Invariants

Hu’s set of seven moment invariants is defined as:

φ1=η20 + η02 (65)

φ2=(η20 − η02)2 + 4η2
11 (66)

φ3=(η30 − 3η12)2 + (3η21 − η03)2 (67)

φ4=(η30 + η12)2 + (η21 + η03)2 (68)

φ5=(η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2] (69)

φ6=(η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03) (70)

φ7=(3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η12 − η30)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2] (71)

Note that these seven moment invariants are computed using central moments
up-to(and including) order 3.
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Filtering using Hu’s Moment Invariants

Using vector-attribute thinning with Hu’s set of 7 moment invariants as
vector-attribute to remove from image X the letters A, B, and C respectively.

X Φ~τSA,0.010(X) Φ~τSB,0.013(X) Φ~τSC,0.010(X)

X − Φ~τSA,ε(X) X − Φ~τSB,ε(X) X − Φ~τSC,ε(X)
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Vector Images

All Max-Tree, Min-Tree, and level-line trees rely on a total order of the pixel values

Max-Trees for vectorial images can be built using a total preorder

Definition 4. A total preorder on T is any binary relation ≤ which is

1. reflexive: a ≤ a is true

2. transitive: a ≤ b ∧ b ≤ c⇒ a ≤ c

3. total: (a ≤ b) ∨ (b ≤ a) is true

To become a total order an extra property is needed

4. antisymmetric: (a ≤ b) ∧ (b ≤ a)⇒ a = b
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Marginal Processing Results

Lenna with noise Marginal processing
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Color Max-Tree Results

“All nodes mean” “Only change filtered”
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Binary Partition Trees

Avoid the problem of total order by focusing on differences

Start with homogenous regions as their leaves

Simplest form: vector flat zones F~h containing point x can be defined as

Fx(~f) = Γx(L~f(x)) (72)

with vector “level set” L~h defined as

L~h = {x ∈ E|~f(x) = ~h}. (73)

Nodes at coarser levels are formed by hierarchical merger based on homogeneity
criterion
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Binary Partition Trees II

Original frame

C

A
B

D

Merged based on color homogeneity criterion
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Binary Partition Trees III

E

Merged based on motion and color homogeneity criterion
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Reconstruction Criteria

One way to deal with leakage is to change the notion of connectivity

An alternative to use reconstruction criteria (Terol-Villalobos and Vargas-Vázquez,
J. Electron. Imag. 2005)

This is implemented by performing an opening by a ball γ between each pair of
conditional dilations, i.e.

ργ(f |g) = lim
n→∞

δ̄nf g = δ̄1fγB . . . δ̄
1
fγBδ̄

1
fγB︸ ︷︷ ︸

until stability

(g). (74)

This means that at every step of the iteration, the growing region is restricted to
a union of balls of the diameter of B.

Denoted more compactly we have

ργ(f |g) = (δ̄fγB)ng. (75)

This scheme has only been implemented in an iterative way.
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Example: Cartoons with Criteria

original cartoon texture channel

Leveling cartoons for texture/cartoon decomposition are far better using criteria.
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Complexity

A key problem with the iterative approach is its computational complexity.

Usually, very many iterations are required before stability.

It is possible to construct an image in which 50% of the N pixels must be
reconstructed, and

in which at each iteration only one pixel is assigned its final value.

Each iteration is O(N), so if N/2 iterations are needed, the algorithm is O(N2).

For regular reconstruction, fast algorithms which are O(N) in practice exist
(Vincent, IEEE Trans. Image Proc. 1993).

When using reconstruction criteria these algorithms do not work.
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Viscous Reconstruction

We can consider the reconstruction criteria as using a viscous fluid modelled by
balls B.

We can study the centroids of these balls by rewriting (75) as

ργ(f |g) = (δ̄fγB)ng = (δ̄fδBεB)ng. (76)

At each step, the centroids of these balls are obtained just after the erosion by B.

Because the erosion is applied to a subset of f at each step, these can only lie in
the region defined by the erosion εBf .

So as an alternative, we might reconstruct εBf from an appropriate marker.

We follow this by a dilation by B and a conditional dilation δ̄f as post-processing.

This change in processing order does not guarantee an identical result.
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Viscous Reconstruction II

We poceed as follows:

First erode both the marker g and the image f by B.

Then reconstruct the erosion of f using the erosion of g as marker.

The process reconstructs any connected component of εBf intersected by εBg.

We now have the collection of centroids reached by the flooding process.

Dilate the reconstructed region to obtain the balls themselves,

Follow by a last conditional dilation.

We can therefore define this approximate operator ρ′γ as

ρ′γ(f |g) = δ̄fδBρ(εBf |εBg). (77)

The cost of this operator is that of two erosions, one dilation, one conditional
dilation (all O(N)) and an ordinary reconstruction (also O(N) in practice).
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But is it the same?

ργ(f |g) ρ′γ(f |g) difference

A comparison. Note that the difference image is contrast-stretched (32×).
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An Experiment

To measure the speed difference two test images were chosen: a street scene and
an image of a comet (both 3 megapixel).

For each image, markers were created by performing opeings with Euclidean discs
of diameters ranging from 11 to 161 pixels

Reconstruction with reconstruction criteria were computed using balls ranging
from 3 pixels to 45 pixels diameter.

For all S.E. opperations the algorithms of Urbach and Wilkinson (IEEE Trans.
Image Proc. 2008) were used.

A Max-tree based reconstruction method was used for ρ′γ(f |g)

Timings were performed on a Core 2 Quad machine running at 2.4 GHz with 2
GB of RAM.
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Test Images

street comet

The two 3-megapixel test images
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Timings: ργ(f |g) vs ρ′γ(f |g)
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The computing times for a criterion using a ball of diameter 11 as a function of
the S.E. diameter used to obtain the marker.
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Timings: ργ(f |g) vs ρ′γ(f |g)
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The computing times for a fixed marker (obtained with and S.E. of 161 pixels
diameter) as a function of the diameter of the ball B used for the criterion.
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Other work

Morphological connected hat scale-spaces based on Max-trees have been
constructed for contour and texture analysis.

The C-trees for multi-scale connectivity analysis of binary images as suggested by
Tzafestas & Maragos (2003) can be implemented rapidly as Max-trees of opening
transforms.

Derived connectivities (i.e. using openings or closings) can be incorporated into
the Max-tree by constructing the tree not from one, but from two images. The
second image encodes the altered connectivity.

Extending the attributes for shape filtering.

Making shape filters trainable by examples.

Other vector approaches are being developed

Parallel algorithms for the Max-tree have been developed
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Questions

?
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