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Abstract

In this paper connected operators from mathematical morphology are extended to
a wider class of operators, which are based on connectivities in higher-dimensional
spaces, similar to scale spaces, which will be called attribute spaces. Though some
properties of connected filters are lost, granulometries can be defined under cer-
tain conditions, and pattern spectra in most cases. The advantage of this approach
is that regions can be split into constituent parts before filtering more naturally
than by using partitioning connectivities. Furthermore, the approach allows deal-
ing with overlap, which is impossible in connectivity. A theoretical comparison to
hyperconnectivity suggests the new concept is different. The theoretical results are
illustrated by several examples. These show how attribute-space-connected filters
merge the ability of filtering based on local structure using classical, structuring-
element-based filters to the object-attribute based filtering of connected filters, and
how this differs from similar attempts using second-generation connectivity.

Key words: Mathematical morphology, connectivity, hyperconnectivity,
multi-scale analysis, connected filters, perceptual grouping

1 Introduction

Semantic analysis of images always involves grouping of pixels in some way.
This process is often called perceptual grouping, a concept from Gestalt psy-
chology [1], which has also been used in the field of computer vision be-
fore [2–4]. Filters based on visual cortex models, and in particular grouping
of features have already been developed [5, 6]. However, they are not put in
a morphological framework. In this paper I will present a method to model
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Fig. 1. Overlap in perceptual grouping: the cross (left) is perceived as two bars, one
horizontal (middle) one vertical (right). The centre pixel belongs to both perceptual
groups.

some aspects of perceptual grouping from the perspective of mathematical
morphology, starting out with the simplest form of grouping, which is connec-
tivity [7–9]. Connectivity allows us to group pixels into connected components
or flat-zones in the grey-scale case. In mathematical morphology, connected op-
erators have been developed which perform filtering based on these kinds of
groupings [10–13], including attribute filters, in which filtering is based on
properties (or attributes) of these “perceptual groups.” However, the human
observer may either interpret a single connected component of a binary im-
age as multiple visual entities, or group multiple connected components into
a single visual entity. These properties have to some extent been encoded in
second-generation connectivities [8,9,14–16]. These derived connectivities are
usually obtained by applying some (in general increasing) operator to the im-
age of interest and analysing the resulting connected components. To some
extent this allows a merger of the filtering based on local structure using the
structuring-element-based filters, and the object-attribute-based filtering of
connected filters.

A problem of connected filters is that they cannot deal with overlap. Humans
have no problems in dealing with overlap when perceptually grouping image
regions. A simple example is shown in Fig. 1. The cross is readily grouped
into two bars, with the centre pixel belonging to both groups. Ideally we
would like to allow filtering based on these higher level perceptual groups,
using formalisms similar to those used in connected operators. One solution
to this problem is through hyperconnectivities and hypoconnectivities [9, 17].
The approach presented here is is different, in that it restates the connectivity
relationships in an image in terms of connectivity in higher dimensional spaces,
which I will call attribute spaces.

In this paper I will also demonstrate a problem with partitioning connectivities
when used for second-generation connected attribute filters, due to the large
numbers of singletons they produce in the image. This over-partitioning effect
is shown in Fig. 2. It will be shown that these attribute filters reduce to
performing, e.g., an opening with ball B followed by an application of the
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Fig. 2. Attribute-space compared to regular attribute filtering: (a) original im-
age X; (b) the connected components of X according to Cψ, with ψ an open-
ing by a 3 × 3 structuring element (see Section 3); (c) partitioning of X by at-
tribute space method of Section 5.1; (d) regular attribute thinning ΨT

ψ(X) with

T (C) = (I(C)/A2(C) < 0.5); (e) attribute-space connected attribute thinning
ΨT

A(X) with the same T . T is designed to remove elongated structures. Note that
only the attribute-space method removes the elongated bridge.

attribute filter using the normal (4 or 8) connectivity. The attribute-space
approach presented here does not suffer from this, as can be seen in Fig. 2,
and this leads to a more natural partitioning of the connected component into
two squares and a single bridge. A similar effect is also shown in a 3-D example
in Fig. 9.

This paper is organized as follows. First, connected filters are described for-
mally in section 2, followed by second-generation connectivities in section 3.
Problems with attribute filters using partitioning connectivities are dealt with
in detail in this section. Hyperconnectivities [9] are treated in section 4. After
this, attribute spaces are presented in section 5. After some theoretical prelim-
inaries, three examples of attribute-space connectivities are given: two based
on the local width of the objects in section 5.1 and one based on orientation in
section 5.2. In this latter section it is shown that attribute-space connectivities
are not hyperconnectivities. Finally, in section 6 a discussion of the results is
given.

2 Connectivity and Connected Filters

As is common in mathematical morphology binary images X are subsets of
some universal set E (usually E = Z

n). Let P(E) be the set of all subsets of
E. Connectivity in E can be defined using connectivity classes [8, 9].
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Definition 1 A connectivity class C ⊆ P(E) is a set of sets with the following
three properties:

(1) ∅ ∈ C
(2) {x} ∈ C
(3) for each family {Ci} ⊂ C, ∩Ci 6= ∅ implies ∪Ci ∈ C.

This means that both the empty set and singleton sets are connected, and any
union of connected sets which have a nonempty intersection is connected.

Any image X is composed of a number of connected components or grains
Ci ∈ C, with i from some index set I. For each Ci there is no set C ⊃ Ci such
that C ⊆ X and C ∈ C. If a set C is a grain of X we denote this as C l X.

An equivalent way to view connectivity is through connected openings, some-
times referred to as connectivity openings [8, 16].

Definition 2 The binary connected opening Γx of X at point x ∈ E is given
by

Γx(X) =







Ci : x ∈ Ci ∧ Ci l X if x ∈ X

∅ otherwise.
(1)

Thus Γx extracts the grain Ci to which x belongs, discarding all others.

Salembier and Serra [10] define the general class of connected filters based on
partitions. A partition of E is a set of sets {αi}, with i from some index set
I, such that

(1)
⋃

i αi = E, and
(2) αi ∩ αj = ∅, for all i 6= j.

Given two partitions {αi} and {βj} of E, {βj} is said to be coarser than
{αi}, if for any αi there exists a βj such that αi ⊆ βj. Let P(X) denote the
partition of E consisting of the connected components of binary image X and
its complement.

Definition 3 A filter γ is a connected filter if, for any image X, partition
P(γ(X)) is coarser than partition P(X).

Probably the most important group of connected filters are the attribute fil-
ters, which are dealt with in the next subsection.
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Fig. 3. Binary attribute filters applied to an image of bacteria: (left) original; (mid-
dle) area opening using area threshold λ = 150; (right) elongation thinning using
attribute I/A2 > 0.5.

2.1 Attribute filters

Binary attribute openings [11,12] are based on binary connected openings and
trivial openings. A trivial opening ΓT uses an increasing criterion T to accept
or reject connected sets. A criterion T is increasing if the fact that C satisfies
T implies that D satisfies T for all D ⊇ C. Usually T is of the form

T (C) = (Attr(C) ≥ λ), (2)

with Attr(C) some real-valued attribute of C, and λ the attribute threshold.
A trivial opening is defined as follows ΓT : C → C operating on C ∈ C yields C
if T (C) is true, and ∅ otherwise. Note that ΓT (∅) = ∅. Trivial thinnings differ
from trivial openings only in that the criterion T need not be increasing. An
example is the scale-invariant elongation criterion of the form (2), in which
Attr(C) = I(C)/A2(C), with I(C) the moment of inertia of C and A(C) the
area [18]. The binary attribute opening is defined as follows.

Definition 4 The binary attribute opening ΓT of set X with increasing cri-
terion T is given by

ΓT (X) =
⋃

x∈X

ΓT (Γx(X)) (3)

The attribute opening is equivalent to performing a trivial opening on all
grains in the image. Note that if the attribute T is not increasing, we have
an attribute thinning rather than an attribute opening [11,12]. The grey-scale
case can be derived through threshold decomposition [19]. An example in the
binary case is shown in Fig. 3.
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3 Second-Generation Connectivities

Second-generation connectivities are usually defined using an operator ψ which
modifies X, and a base connectivity class C (4 or 8 connectivity) [8,9,16]. The
resulting connectivity class is referred to as Cψ. If ψ is extensive Cψ is said to be
clustering, if ψ is anti-extensive Cψ is partitioning. In the general case, for any
x ∈ E three cases must be considered: (i) x ∈ X∩ψ(X), (ii) x ∈ X\ψ(X), and
(iii) x 6∈ X. In the first case, the grain to which x belongs in ψ(X) is computed
according to C, after which the intersection with X is taken to ensure that all
grains Ci ⊆ X. In the second case, x is considered to be a singleton grain. In
the third case the connected opening returns ∅ as before.

Definition 5 The connected opening Γψ
x for a second-generation connectivity

based on ψ of image X is

Γψ
x (X) =















Γx(ψ(X)) ∩ X if x ∈ X ∩ ψ(X)

{x} if x ∈ X \ ψ(X)

∅ otherwise,

(4)

in which Γx is the connected opening based on C.

If X ⊂ ψ(X) the second case of (4) never occurs. Conversely, if ψ(X) ⊂ X we
have ψ(X)∩X = ψ(X), simplifying the first condition in (4). In the clustering
case, ψ may be a structural closing or dilation, in the partitioning case ψ may
be a structural opening, but not an erosion, because the resulting connected
opening would not be idempotent. An extensive discussion is given in [8,9,16].

3.1 Attribute operators

Attribute operators can readily be defined for second-generation connectivities
by replacing the standard connected opening Γx by Γψ

x in Definition 4.

Definition 6 The binary attribute opening ΓT
ψ of set X with increasing cri-

terion T , and connectivity class Cψ is given by

ΓT
ψ(X) =

⋃

x∈X

ΓT (Γψ
x (X)) (5)

Though useful filters can be constructed in clustering case, and partition of
grains in soil samples for computation of area pattern spectra has been used
[15,20], a problem emerges in the partitioning case.
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Proposition 1 For partitioning connectivities based on ψ the attribute open-
ing ΓT

ψ with increasing, shift invariant criterion T is

ΓT
ψ(X) =







X if T ({x}) is true for any x ∈ E

ΓT (ψ(X)) otherwise
(6)

with ΓT the underlying attribute opening from Definition 4.

Proof If T ({x}) is true for any x, all x ∈ X \ ψ(X) are preserved by ΓT
ψ ,

because T is shift invariant so that Γψ
x (X) = {x} for those pixels. Because T

is increasing and shift invariant, we have that T ({x}) ⇒ T (C) for any C ∈ C
with C 6= ∅. Thus, if T ({x}) is true for any x, all x ∈ ψ(X) are also preserved,
because Γx(ψ(X)) ∈ C and Γx(ψ(X)) 6= ∅ for those x. In other words if T ({x})
is true,

ΓT
ψ(X) = X, (7)

which proves (6) in the case that T ({x}) is true.

Conversely, if T ({x}) is false for any x, all x ∈ X \ ψ(X) are rejected due to
shift-invariance of T , i.e. ΓT ({x}) = ∅ for all x ∈ E. Therefore, if T ({x}) is
false

ΓT
ψ(X) =

⋃

x∈ψ(X)

ΓT (Γψ
x (X)). (8)

Because all x ∈ X \ ψ(X) are rejected, Γψ
x (X) can be rewritten as Γx(ψ(X)),

and we have

ΓT
ψ(X) =

⋃

x∈ψ(X)

ΓT (Γx(ψ(X))) = ΓT (ψ(X)). (9)

The right-hand equality derives from Definition 4. 2

Proposition 1 means that an attribute opening using a partitioning connectiv-
ity is equal to performing the standard attribute opening ΓT on ψ(X), unless
the criterion has been set such that ΓT is the identity operator. The reason for
this is the fact that the grains of X \ψ(X) according to the original connectiv-
ity are split up into singletons by Γψ

x , and these singletons are the first to be
rejected as the attribute threshold is increased, for an increasing attribute such
as area. This effect is shown in the grey-scale case in Fig. 4. Part (a) shows
an electron micrograph of Escherichia coli cells interconnected by fimbriae.
Part (b) shows the result of applying a partitioning connectivity operator
(structural opening) on part (a). Part (c) shows the result of the second-
generation connected area opening computed using the dual-input Max-tree
algorithm [21] for second-generation-connected attribute filters, which is iden-
tical to performing the standard area opening [22,23] on part (b) (not shown).
Because of this Fig 4(a) shows clear signs of edge deformation introduced by
ψ(f) not characteristic of classical connected filters. Even if criteria that are
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Fig. 4. Scanning electron micro-graphs of Escherichia coli (left to right): original
image f ; modified image by anti-extensive operator ψ(f) = f ◦ B2 with B2 a disc
with radius 2; second-generation connected area opening γT

ψ (f) with T = A(C) ≥ λ;

(λ = 100). This is identical to a regular area opening γT (ψ(f)) with the same T .
Image size 242 × 158 pixels.

not increasing are used, all structural information contained in the connected
components of X \ ψ(X) is lost, so shape information cannot be captured
meaningfully by any attribute. In Section 5 a comparison with the attribute-
space alternative is given and illustrated in Figs. 2 and 9.

4 Hyperconnectivities

Hyperconnectivities have been proposed by Serra [9] as a means of dealing with
overlap. The idea is to relax the third constraint in Definition 1. Instead of
requiring that any union of connected sets which have a non-empty intersection
is connected, we use some other overlap criterion ⊥ which defines when he
union of hyperconnected sets is connected [17].

Definition 7 An overlap criterion in P(E) is a mapping ⊥ : P(P(E)) →
{false, true} such that ⊥ is decreasing, i.e., for any A,B ⊆ P(E)

A ⊆ B ⇒ ⊥(B) ⇒ ⊥(A). (10)

Any A ⊆ P(E) for which ⊥(A) is true is said to be overlapping, otherwise A
is non-overlapping.

Definition 8 A hyperconnectivity class H ⊆ P(E) is a set of sets with the
following three properties:

(1) ∅ ∈ H
(2) {x} ∈ H
(3) for each family {Ci} ⊂ H, ⊥({Ci}) implies ∪Ci ∈ H.

As before, both the empty set and singleton sets are hyperconnected, but now
any union of hyperconnected sets which are overlapping in the sense of ⊥ is
hyperconnected. In [17] several examples are given to use this framework for
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dealing with overlap. However, hyperconnectivities are not shown to be able
to deal with the over-partitioning problem of Proposition 1.

5 Attribute Spaces and Attribute-Space Filters

As was seen above, connectivities based on partitioning operators yield rather
poor results in the attribute-filter case. To avoid this, I propose to transform
the binary image X ⊂ E into a higher-dimensional attribute space E × A in
which A is some space encoding the local properties or attributes of pixels
in any image. Scale spaces are an examples of attribute spaces, but other
attribute spaces will be explored here. To embed the image in E × A we use
an operator Ω : P(E) → P(E × A), which means Ω(X) is a binary image in
E × A. Typically A ⊆ R or Z, although the theory presented here extends to
cases such as A ⊆ R

n. The inverse operator Ω−1 : P(E×A) → P(E), projects
Ω(X) back onto X, i.e. Ω−1(Ω(X)) = X for all X ∈ P(E). Furthermore, Ω−1

must be increasing: Y1 ⊆ Y2 ⇒ Ω−1(Y1) ⊆ Ω−1(Y2) for all Y1, Y2 ∈ P(E × A).
Summarizing we have:

Definition 9 An attribute-space transform pair (Ω, Ω−1) from E ↔ E × A,
is a pair of operators such that:

(1) Ω : P(E) → P(E × A) is a mapping such that for any X ∈ P(E), each
point x ∈ X has at least one corresponding point (x, a) ∈ Ω(X), with
a ∈ A,

(2) Ω(∅) = ∅,
(3) Ω({x}) ∈ CE×A for all x ∈ E,
(4) Ω−1 : P(E ×A) → P(E) is a mapping such that for any Y ∈ P(E ×A),

every (x, a) ∈ Y is projected to x ∈ Ω−1(Y ),
(5) Ω−1(Ω(X)) = X for all X ∈ P(E),
(6) Ω−1 is increasing.

Note that CE×A is the connectivity class used in E × A. Furthermore, even
though Ω−1(Ω(X)) = X for all X ∈ P(E), Ω(Ω−1(Y )) = Y will not in general
hold for all Y ∈ P(E×A). It is trivial to construct a connected set Y ⊆ E×A
such that its projection Ω−1(Y ) onto E is equal Fig 5(d). However, mapping
this back into E ×A using Ω used in Fig 5 yields a disconnected set in E ×A,
as shown in Fig 5(f). Therefore, Ω(Ω−1(Y )) 6= Y in this case.

Using the above we can define the notion of attribute-space-connectivity class.

Definition 10 An attribute-space-connectivity class A ⊆ P(E) on universal
set E generated by an attribute-space transform pair (Ω, Ω−1) and connectivity
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class CE×A on E × A, is defined as

A = {C ∈ P(E)|Ω(C) ∈ CE×A} (11)

Note that properties 2 and 3 in Definition 9 mean that singletons and the
empty set are members of A, as in the case of (hyper)connectivities. Attribute-
space connected filters can now be defined as follows.

Definition 11 An attribute-space connected filter ΨA : P(E) → P(E) is
defined as

ΨA(X) = Ω−1(Ψ(Ω(X))) (12)

with X ∈ P(E) and Ψ : P(E×A) → P(E×A) a connected filter, and (Ω, Ω−1)
an attribute-space transform pair.

Thus attribute-space connected filters work by first mapping the image to a
higher dimensional space, applying a connected filter and projecting the result
back. Note that the connected filter Ψ may use second-generation connectivity
rather the underlying connectivity in E×A (e.g. 26-connectivity in 3D). Note
that if Ψ is anti-extensive (or extensive), so is ΨA due to the increasingness
of Ω−1. However, if Ψ is increasing, this property does not necessarily hold
for ΨA, as will be shown in section 5.1 and following and Fig. 7. Similarly,
idempotence of Ψ does not imply idempotence of ΨA. However, if

Ψ(Ω(X)) = Ω(ΨA(X)) = Ω(Ω−1(Ψ(Ω(X)))), (13)

for all X ∈ P(E), idempotence of Ψ does imply idempotence of ΨA, because
Ω maps ΨA(X) exactly back onto Ψ(Ω(X)). Eqn. (13) obviously holds when
Ω(Ω−1(Y )) = Y for all Y ∈ P(E × A), but (13) is slightly more general.

5.1 Width-based attribute spaces

In the following E = Z
2. As an example of mapping of a binary image X ∈

P(E) to binary image Y ∈ P(E×A) we can use local width as an attribute to
be assigned to each pixel x ∈ X. In this case A = Z

+. We can implement this
mapping using an opening transform defined by granulometry {βr}, in which
each operator βr : E → E is an opening with a structuring elements Br. An
opening transform is defined as

Definition 12 The opening transform ΩX of a binary image X for a granu-
lometry {βr} is

ΩX(x) = max{r ∈ A|x ∈ βr(X)}. (14)

In the case that βr(X) = X ◦ Br with ◦ denoting structural openings and
Br ball-shaped structuring elements of radius r, an opening transform assigns
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(a) X (b) ΩX (c)

(d) Y (e) ΩY (f)

Fig. 5. Attribute-space partitioning of two binary sets: (a) and (d) binary images
X and Y each containing a single (classical) connected component (b) and (e)
their respective opening transforms; (c) and (f) partitioning of X and Y using edge
strength threshold r = 1. X is considered as one component due to the slow change
in attribute value, whereas the abrupt change in width causes a split in Y .

the radius of the largest ball such that x ∈ X ◦ Br. An example is shown
in Fig. 5. We can now devise a width-based attribute space by the mapping
Ωw : P(E) → P(E × Z) as

Ωw(X) = {(x, ΩX(x))|x ∈ X} (15)

The inverse is simply

Ω−1
w (Y ) = {x ∈ E|(x, y) ∈ Y } (16)

with Y ∈ P(E × Z).

Let {Ci} ⊂ E × A be the set of connected components of Ωw(X) with i from
some index set. Because a single attribute value is assigned to each pixel by
ΩX , it is obvious that the projections onto E of these sets Cw

i = Ω−1
w (Ci)

are disjoint as well. Thus they form a partition of the image plane in much
the same way as classical connected components would do, as can be seen
in Fig. 5. In this example we can work in a 2-D grey-scale image, rather
than a 3-D binary image, for convenience. Connectivity in the attribute space
is now partly encoded in the grey-level differences of adjacent flat zones in
these images. In the simplest case, corresponding to 26-connectivity in the
3-D binary image, a grey-level difference of 1 means adjacent flat-zones are
connected in attribute space. More generally, we can use some threshold r on
the grey level difference between adjacent flat zones. This corresponds to a
second-generation connectivity Cψr with ψr a dilation in Z

3, with structuring
element {(0, 0,−r), (0, 0,−r + 1), . . . , (0, 0, r)}. The effect of this can be seen
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(a) X (b) X1 (c) X2

(d) (e)

Fig. 6. Attribute-space connectivity is not connectivity: (a) binary image X is the
union of two overlapping sets X1 (b) and X2 (c) each of which are considered
connected in attribute space; however, X is partitioned into two sets (d) by the same
attribute-space connectivity; (e) any partitioning connectivity which separates the
square from the elongated part of X splits the elongated part into 14 singletons.

in Fig. 5(f), in which abrupt changes in width lead to splitting of a connected
component into two parts. Fig. 6 demonstrates that this splitting is different
from any caused by a partitioning connectivity. Fig. 7 shows that an attribute-
space area operator ΨA based on an area opening Ψ in E×A is not increasing.
This effect occurs due to the fact that overlap of X1 and X2 in E does not
imply overlap of Ωw(X1) and Ωw(X2) in E × A.

A slightly different partitioning is obtained if we change (15) to

Ωlog w(X) = {(x, 1 + log(ΩX(x)))|x ∈ X} (17)

with Ω−1
log w = Ω−1

w . Note that one is added to the logarithm of the width to
separate bridges of unity width from the background. Though very similar
in behaviour to the attribute-space connectivity using Ωw, attribute-space
connectivity based on Cψr is now scale-invariant, as is shown in Fig. 8. None of
the second-generation connectivities in E proposed in [8,9,16] can achieve this,
because they are all based on increasing operators based on fixed structuring
elements, which are not scale-invariant.

Any nonlinear transformation on the attribute can be used to obtain differ-
ent results, depending on the application. A simple method is to threshold the
opening transform ΩX assigning foreground pixels to different classes, denoted
by Ωt

X , allowing connectivity only within a class. A simple two-class classifi-
cation is shown in Fig. 9, in which a second-generation connected attribute
filter is compared to the corresponding two-class pixel classification method.
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(a) X (b) Y (c)

(d) (e) ΨA(X) (f) ΨA(Y )

Fig. 7. ΨA is not necessarily increasing for increasing Ψ: (a) and (d) binary images
X and Y , with X ⊆ Y ; (b) and (e) partitions of X and Y in attribute space
projection of Ωw; (c) and (f) ΨA(X) and ΨA(Y ), using for Ψ an area opening with
area threshold 10. Clearly ΨA(X) 6⊆ ΨA(Y ), even though Ψ is increasing

(a) (b) (c)

Fig. 8. Scale invariant partitioning using 26-connectivity in 3-D: (a) Binary image in
which the large and the bottom small connected component have identical shapes;
(b) partitioning using Ωw; (c) scale-invariant partitioning using Ωlog w, which splits
the top small connected component, but regards the other two as single entities.

Only the attribute-space method distinguishes the normal vessels from the
aneurysm properly. Note that this does not represent an optimal, real-world
application of attribute-space-connected attribute filtering, rather, it serves
to show what the difference is between the way second-generation connec-
tivity merges the use of anti-extensive, structuring-element-based filters with
attribute filtering and the way this is done by attribute-space connectivity. In
essence the “hard work” of splitting the normal vessels from the aneurysm by
the structural opening used, after which the attribute-space-connected filter
extracts image features based on the attributes of the “perceptual groups” it
obtains.
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(a) X (b) Ωw(X) (c) Ωt
X

(d)ΨA(X) (e) ΓT
ψ(X)

Fig. 9. Elongation filtering and aneurysm detection: (a) ray-cast of a CT angiogram
containing an aneurysm; (b) maximum-intensity projection (MIP) of grey-scale rep-
resentation of width-space transformation Ωw(X); (c) same as (b) but for Ωt

X using
t = 6; (d) result of elongation filtering rejecting features with elongation measure
I/V 5/3 > 0.5 (e) Second-generation connected filter result ΓT

ψ , using same criterium
and connectivity based on opening by a B6: because all voxels in vessels are consid-
ered singletons, they are all considered to be compact.

5.2 Orientation-based attribute spaces

Width is not the only attribute which can be used to subdivide a connected
component. In this section orientation is used to create attribute spaces which
can deal with overlap as in Fig. 1. Orientation can be measured in a variety of
ways [24–26], any of which might be applicable in this framework. Formally,
let A = [0, π) and E × A be our attribute space, with toroidal topology in
the A dimension (i.e. orientation α = 0 is equivalent to α = π). The operator
Ωα : P(E) → P(E×A) assigns one or more orientation values αi ∈ A to every
pixel in X. In this case the following method is used:

(1) Compute a series of opening transforms Ωα
X using linear structuring ele-

ments with orientation α.
(2) This yields a grey-level function f(x, α) over the domain E × A.
(3) For each pixel in X, find the minimum value fmin(x) = minα∈A f(x, α).
(4) For each pixel in X, find the maximum value fmax(x) = maxα∈A f(x, α).
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X f(x, 0) f(x, π/4) f(x, π/2)

Ωα(X)(x, 0) Ωα(X)(x, π/4) Ωα(X)(x, π/2)

Fig. 10. Orientation-based attribute spaces, a binary image X, the opening trans-
forms f(x, α) = Ωα

X with linear structuring elements at orientations α = 0, α = π/4,
and α = π/2, and the slices in attribute space Ωα(X) for the same values of α.

(5) Compute Ωα(X) as

Ωα(X) = {x ∈ X,α ∈ A|f(x, α) > λfmin(x) ∨ f(x, α) = fmax(x)} (18)

with λ > 1 a tunable parameter to select how strict we will be in orien-
tation selectivity.

Two comments must be made: (i) including all points in in X × A for which
f(x, α) = fmax(x) ensures all points in X are assigned at least one α-value, and
(ii) circular objects will show up at any orientation. This orientation space will
therefore not separate compact objects with elongated structures attached to
them. An example is shown in Fig. 10.

In this case the components of the attribute-space embedding of an image
form a cover of the image domain rather than a partition, as is required for
connected filters in Definition 3 [10]. A cover {βj} ⊂ P(E) is a collection of
sets such that

⋃

j

βj = E. (19)

The sets βi and βj need not be disjoint if i 6= j. Therefore, for any pixel x there
exists at least one j such that x ∈ βj. Restricting ourselves to the connected
foreground components, each component Cj lΩα(X) in attribute space E×A
will result in one element of cover {βj} by back projection through Ω−1

α , such
that

βj = Ω−1
α (Cj). (20)
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A pixel x is only removed by attribute operator ΨA if all sets βj such that
x ∈ βj are removed. An example of filtering based on such an attribute space
is given in Fig. 11.

This figure also illustrates the that we can define attribute-space granulome-
tries attribute-space shape or size granulometries and spectra in analogy to
connected shape or size granulometries [11, 18]. A granulometry is defined as
a family {αr} of filters with r from some totally ordered set with the following
properties:

(1) αr(X) ⊆ X
(2) X ⊆ Y ⇒ αr(X) ⊆ αr(Y )
(3) αs(αr(X)) = αmax(r,s)(X)

Because the latter condition implies idempotence it is easily seen that all αr are
openings. Let {αr} be a granulometry, with each αr : P(E ×A) → P(E ×A)
a connected filter, with r from some ordered set Λ.

Definition 13 An attribute-space connected granulometry is a set of attribute-
space connected filters {αA

r } defined as

αA
r = Ω−1(αr(Ω(X))), (21)

with {αr} a granulometry on P(E × A) consisting of connected filters; {αA
r }

has the following properties

αA
r (X) ⊆ X, (22)

s ≤ r ⇒ αA
r (X) ⊆ αA

s (X) (23)

for all X ⊆ E.

Note that the stronger nesting property of granulometries, i.e.

αA
r (αA

s (X)) = αA
max(r,s)(X) (24)

only holds if the condition on idempotence in (13) is true for all αr in the
granulometry. However, property (23) does lead to a nesting of the resulting
images αA

r (X) as a function of r, so pattern spectra fA
X based on these filters

can be defined as

fA
X(r) =







µ(X \ αA
r (X)) if r = 1

µ(αr−1(X) \ αA
r (X)) if r > 1

(25)

with µ the Lebesgue measure in E (area in 2-D), and Λ = 1, 2, . . . , N , similar
to [27]. We can safely use the Lebesgue measure in real images, because they
are always measurable. Finally, note that connected filters form a special case
of attribute-space connected filters, in which Ω = Ω−1 = I, with I the identity
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X ΓA
9 (X) ΓA

30(X) ΓA
150(X)

Fig. 11. Orientation-based attribute-space connected area granulometry: Parts of
the original image are systematically removed by using a sequence of attribute-space
area filters, using the same attribute space as in Fig. 10. Filters ΓA

λ removes all
components of Ωα(X) the projected area of which is smaller than λ.

operator. Fig. 11 shows how features are removed by an attribute-space gran-
ulometry based on area. As the area threshold is increased, larger structures
are removed.

Note that the fact that this attribute-space connectivity supports overlap does
not by itself mean that it is a hyperconnectivity. For this the third property in
Definition 8 must be satisfied. Before this can be done, we need to investigate
whether it is possible to formulate an overlap criterion ⊥ in the sense of
Definition 7. One way is which to do this is to use Definition 10, to formulate
the following “overlap criterion.” Let {Ci} ⊆ Aα, with Aα the attribute-
space-connectivity class associated with (Ωα, Ω−1

α ) and CE×A defining regular
6-connectivity in E × A. An overlap criterion ⊥α which generates Aα is

⊥α({Ci}) =







true if Ωα(
⋃

i Ci) ∈ CE×A

false otherwise.
(26)

However, consider the case of a set {Ci} of n approximations of line seg-
ments of length 2r centred on the origin in Z

2, at discrete angles iπ/n for
i = 0, 1, . . . , n − 1. For n sufficiently large, the union is equal to a disc of
radius r. Therefore

Ωα(
⋃

i

Ci) ∈ CE×A ⇒ ⊥α({Ci}) = true. (27)

However, we have already seen that for {C0, Cn/2}

Ωα(C0 ∪ Cn/2) /∈ CE×A ⇒ ⊥α({C0, Cn/2}) = false. (28)

Clearly {C0, Cn/2} ⊆ {Ci}, but ⊥α({Ci}) 6⇒ ⊥α({C0, Cn/2}). This violates
property (10) in Definition 7.

There may of course be some other overlap criterion which does yield a
hyperconnectivity equivalent to Aα, but in general hyperconnectivities and
attribute-space connectivities appear to be different.
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6 Discussion

Two features determine the success or failure of attribute filters in image pro-
cessing tasks: (i) determination of suitable properties (attributes) to determine
whether a particular image feature is to be rejected or retained, and (ii) the
grouping method to determine what constitutes an image feature. Attribute-
space morphology focusses on the latter part, and solves the problems with
attribute filters using partitioning connectivities as noted in Proposition 1. The
fragmentation caused by splitting parts of connected components into single-
tons is absent. This means that attribute-space attribute filters are more than
just applying a standard attribute filter to a preprocessed image. The price
we pay for this is loss of the increasingness property, and increased computa-
tional complexity. In return we may achieve scale invariance, combined with
a more intuitive response to, e.g., elongation-based attribute filters, as is seen
in Figs. 2 and 9. Note that the over-partitioning problem can also be solved
within the framework of connectivity, by using second-generation connectiv-
ity based on maps, or marker images, rather an operator, and changing the
second case in (4) [28].

The attribute-space connectivities Ωw and Ωlog w from section 5.1 have a scale
parameter, or rather a scale-difference or scale-ratio parameter. Increasing r
in the attribute-space connectivities generated by Ωw or Ωlog w combined with
Cψr yields a hierarchy, in which the partitioning of E × A becomes coarser
as r is increased. This means we could develop multi-scale attribute-space
connectivity or perhaps more properly multi-level attribute-space in analogy
to the well-defined multi-scale connectivities [15,16] in the future.

In the examples given here A was one-dimensional. In theory it is possible
to use multiple dimensions, to represent, e.g., width and orientation. Each
dimension could be thought of as analogous to the different sets of neurons in
the visual cortex which process different orientations, and different scales [29].

An important feature of this framework is its ability to deal with overlap.
No connectivity does this, and the key difference is that attribute-space con-
nected filters rely on covers of the image domain rather than partitions. It
may be possible to develop an even more general framework based on covers,
rather than partitions. Future research will focus on grey-scale generalizations
and efficient algorithms for these operators. Finally, the relationship to other
extensions of connectivity, such as hyperconnectivities and hypoconnectivi-
ties [9] needs to be studied further. However, given the fact that set union in
the image domain can causes large shifts of subsets of the image X in the at-
tribute space embedding Ω(X), I do not think it is likely that attribute-space
connectivity and hyperconnectivity are the same. There is of course a trivial
case of overlap: regular connectivities are special cases of both hyperconnectiv-
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ities [9] and attribute-space connectivities. Whether any other attribute-space
connectivities coincide with hyperconnectivities remains an open question.
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