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ABSTRACT

Openings-by-reconstruction are the oldest connected filters, and in-

deed, reconstruction methodology lies at the heart of many con-

nected operators such as levelings. Starting out from the basic re-

construction principle of iterated geodesic dilations, extensions such

as the use of reconstruction criteria, which constrain the reconstruc-

tion process, are discussed. The latter prevent linking distinct ob-

jects connected by narrow bridges during the reconstruction pro-

cess, whilst maintaining as much edge preservation as possible. A

far faster variant of filtering with reconstruction criteria is presented,

which can be implemented in an O(N) algorithm in stead of O(N2).

Index Terms— Mathematical morphology, filtering by recon-

struction, reconstruction criteria.

1. INTRODUCTION

Connected filters [1] are strictly edge preserving morphological fil-

ters. All connected filters act by merging flat zones in images, and

assigning new grey levels to them. Filtering by reconstruction is the

oldest type of connected filter [2]. Reconstruction operators can be

implemented by iterated geodesic dilations of some marker by the

unit ball. In the case of openings-by-reconstruction, the marker is

the result of an opening or erosion by some structuring element. Af-

ter this, all image structures not removed entirely by the opening or

erosion are reconstructed exactly, as shown in Fig. 1.

One problem of filters by reconstruction, and indeed all con-

nected filters is the so-called leakage-problem. Leakage occurs when

spurious thin bridges connect separate image regions, making them

inseparable. This is clearly visible in Fig. 1(c), in which the fine

striping pattern in the clothes is reconstructed, effectively connect-

ing, e.g. the face with the shoulder. To counter this problem, a

variant of reconstruction, using so-called reconstruction criteria, is

described in [3]. This is shown in Fig. 1(d). The problem with this

method is that the fast algorithms developed for ordinary reconstruc-

tion [4] no longer work.

In this paper the basics of reconstruction are first discussed, fol-

lowed by a brief description of levelings, and the use of reconstruc-

tion criteria. After this a new formulation of reconstruction criteria

is presented, leading to a much faster algorithm (up to 1,235 times

on a 3 mega-pixel image). The two formulations are not identical in

their results, but the new method is such a close approximation that

the differences are negligible on all images tested.

2. OPENINGS BY RECONSTRUCTION

The basis of an opening by reconstruction is the reconstruction of

image f from an arbitrary marker g. This is usually defined using

geodesic dilations δ̄f defined as

δ̄
1

f (g) = f ∧ δ(g). (1)

(a) original f (b) marker g = γ21f

(c) reconstruction of f by g (d) reconstruction with criteria

Fig. 1. Grey scale image with marker computed by opening with

Euclidean disc of diameter 21, and its reconstruction, and a recon-

struction with reconstruction criteria.

This operator is used iteratively until stability, to perform the recon-

struction ρ i.e.

ρ(f |g) = lim
n→∞

δ̄
n
f g = δ̄

1

f . . . δ̄
1

f δ̄
1

f| {z }
until stability

(g). (2)

In practice we apply δ̄n
f with n the smallest integer such that

δ̄
n
f g = δ̄

n−1

f g. (3)

What this process does in the binary case is reconstruct any con-

nected component in f which intersects some part of g. An opening

by reconstruction is computed by selecting marker g by

g = γXf, (4)

in which γX denotes an opening of f by structuring element (S.E.)

X . Reconstructing from this marker preserves any connected com-

ponent in which X fits at at least one position.

Computing a reconstruction from markers by direct implemen-

tation of (2) is simple enough, but very slow. It can readily be shown

that its worst-case time complexity is O(N2), with N the number
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(a) original f (b) marker g = G16 ∗ f

(c) leveling of f by g (d) texture image

Fig. 2. Levelings: Part (c) shows leveling of image (a) using marker

obtained by Gaussian smoothing with σ = 16 (b); (d) shows the

texture signal obtained by subtracting (c) from (a).

of pixels. Low-order complexity (effectively linear) algorithms have

been developed, notably by Vincent [4]. These are based on flood-

filling, and should really be used in any implementation of recon-

struction filters.

Closing-by-reconstruction can be defined by duality, i.e. a

closing-by-reconstruction can be computed by inverting the image,

performing the opening-by-reconstruction, and inverting the result.

3. LEVELINGS

Openings-by-reconstructions are anti-extensive, and closings-by-

reconstructions are extensive, removing bright or dark image details

respectively. Meyer [5] proposed levelings as an auto-dual extension

of reconstruction filters. In this case a marker is used which may lie

partly above and partly below the image. In those regions where the

image lies above the marker, the reconstruction proceeds as in the

case of openings by reconstruction. Wherever the marker is above

the original, reconstruction proceeds as in the case of closing-by-

reconstruction, i.e.

(λ(f |g))(x) =

(
(ρ(f |g))(x) if f(x) ≥ g(x)

−(ρ(−f | − g))(x) if f(x) < g(x),
(5)

with λ(f |g) the leveling of f from g. Levelings allow edge-

preserving simplification of images, by simultaneously removing

bright and dark details, as seen in Fig. 2.

One application of levelings is in separating the coarse details

in a “cartoon image” from the fine details in a texture channel [6].

Ideally, all fine detail should be in the texture channel (in Fig. 2(d)),

but as can be seen in Fig. 2(c), leakage causes part of the fine texture

to appear in the cartoon channel.

4. ADDRESSING LEAKAGE

A key problem in all connected filters is that distinct objects which

are connected through spurious narrow bridges caused e.g. by

noise cannot be separated readily. One approach is to use so-called

contraction-based, second-generation connectivity [7]. Focusing on

the binary case, we can rewrite reconstruction as

ρ(X|M) =
[

x∈M

Γx(X), (6)

in which Γx is the connectivity opening at x which simply extracts

the connected component of X containing x, and yields ∅ if x �∈ X ,

using regular (4 or 8) connectivity. Equation (6) states that the re-

construction of X from M is the union of all connected components

of X which have nonempty intersection with M . Second generation

connectivity changes the way we extract connected components. To

counter the leakage problem we use

Γγ
B(X) =

8><
>:

Γx(γBX) if x ∈ γBX

{x} if x ∈ X \ γBX

∅ otherwise

(7)

with γB a structural opening by a ball B. We can simply replace

Γx in (6) by Γγ
x to use the adapted connectivity. This however boils

down to doing a reconstruction of an opening of the image by B [8].

The diameter of B determines the thickness of any bridge which is

considered wide enough for the reconstruction process to proceed.

An alternative is the use of reconstruction criteria [3]. Recon-

struction from markers using reconstruction criteria are based on

a simple adaptation of (2). In this scheme it is possible to intro-

duce a reconstruction criterion, which prevents the flooding process

to “leak” through narrow bridges linking objects together. This is

done by performing an opening by a ball γ between each pair of

conditional dilations, i.e.

ργ(f |g) = lim
n→∞

δ̄
n
f g = δ̄

1

fγB . . . δ̄
1

fγB δ̄
1

fγB| {z }
until stability

(g). (8)

This means that at every step of the iteration, the growing region is

restricted to a union of balls of the diameter of B. Denoted more

compactly we have

ργ(f |g) = (δ̄fγB)n
g. (9)

In contrast to standard reconstruction, no fast algorithm for recon-

struction with reconstruction criteria have been proposed. This is a

serious drawback, as the iterative solution has complexity O(N2).

This is a problem, because the reduced leakage can yield better car-

toon/texture separation, as shown in Fig. 3. Practically, all fine lines

are restricted to the texture channel, unlike in Fig. 2(c) and (d).

Note that this method is not strictly speaking a connected fil-

ter anymore, even though it is closely related. Because it is not a

connected filter, it cannot be expressed in terms of a family of con-

nectivity openings. This can readily be shown, because connected

regions of the image which are reconstructed from different markers

may partially overlap, which is not possible in the connected case.

An example can be seen in Fig. 4

4.1. An approximation

As stated above, the reconstruction using reconstruction criteria re-

stricts the growing region to a union of translated versions of ball B,
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(a) cartoon (b) texture

Fig. 3. Cartoon/texture decomposition using leveling with recon-

struction criteria, with original and marker image as in Fig. 2(a) and

(b), and diameter of B set to 3 pixels.

Fig. 4. Reconstruction using reconstruction criteria may yield over-

lapping results, when starting from different markers: (a) Region f

consisting of two intersecting squares, showing two markers in dif-

ferent shades of grey; (b) Result of reconstruction with criteria using

3× 3 square both for γB and δ̄1

f using upper marker. It can easily be

verified that after reaching the dark grey area, the iteration ceases.

Part (c) same using lower marker.

by the definition of structural openings. One might say the recon-

struction process now “floods” the area to be reconstructed with a

viscous liquid consisting of balls defined by the structuring element

B, similar to the ideas in [9]. We can study the centroids of these

balls by rewriting (9) as

ργ(f |g) = (δ̄fδBεB)n
g. (10)

At each step, the centroids of these balls are obtained immediately

before the dilation by B, i.e. just after the erosion by B. Because

the erosion is applied to a subset of f at each step, we can easily see

that these can only lie in the region defined by the erosion εBf .

Therefore, let us consider an alternative reconstruction method,

which reconstructs the appropriate parts of εBf without reconstruc-

tion criteria, and then corrects this result by performing the last step

of (10) except for the erosion, to correct for the initial erosion of f .

The idea is to effectively change the order of processing, to obtain

an ordinary reconstruction, sandwiched between a few simple struc-

tural operators, instead of the costly iterations in (8) through (10).

This change of processing order does not guarantee that the result

will be the same, but it should be very similar.

Thus, we first erode both the marker g and the image f by B. We

then reconstruct the erosion of f using the erosion of g as marker. It

can easily be verified that the first step in (10) is an erosion of g as

well. Therefore, any parts of a marker removed in this step are also

removed by the original algorithm. The process reconstructs any

(a) ργ(f |g) (b) ρ′γ(f |g)

(c) ργ(f |g) − ρ′γ(f |g)

Fig. 5. Detail of two variants of reconstruction with reconstruction

criteria (a) and (b), with original and marker image as in Fig. 1(a)

and (b), and diameter of B set to 7 pixels. The difference image (c)

has the contrast stretched by a factor of 32.

connected component of εBf intersected by εBg. We now have the

collection of centroids reached by the flooding process. To obtain

the set of balls needed, rather than just the centroids, we now dilate

the reconstructed region, followed by a last conditional dilation. We

can therefore define this approximate operator ρ′γ as

ρ
′

γ(f |g) = δ̄fδBρ(εBf |εBg). (11)

The cost of this operator is that of two erosions, one dilation, one

conditional dilation (all O(N)) and an ordinary reconstruction (also

O(N) in practice).

This approach is only an approximation of reconstruction cri-

teria, and we find minor differences between the two methods, as

shown in Fig. 5. On a number of outdoor scenes, fewer than 1%

of pixels showed any difference, and generally by less than 6 grey

levels. In a few cases some larger grey-level differences were found

along the image edges, possibly because the implementation of the

two algorithms treat image borders differently. A more detailed anal-

ysis is needed to determine the precise differences between the two

approaches.

5. EXPERIMENT

Both algorithms were implemented using the erosion and dilation

algorithm for arbitrary S.E. from [10]. The reconstruction algorithm

used in ρ′γ was based on the Max-Tree algorithm [11], which has

worst-case complexity O(GN) with G the number of grey levels,

but which is effectively linear for most natural images. Timings were

performed on a Core 2 Quad machine running at 2.4 GHz with 2 GB

of RAM. The program used only one core. A series of openings by

Euclidean disks with diameters 11, 21, 41, 81, and 161 pixels, were

computed as markers for the reconstruction. One street scene of 3
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street comet

Fig. 6. The test images.

mega-pixel and one astronomical image (a comet) of the same size

were chosen as test images for the timings (see Fig. 6). Timings

were performed as a function of the diameter of the diameter of the

(Euclidean) ball B used for the reconstruction criterion. Timings are

shown in Fig. 7.

As expected, the new approach was far faster, outperforming the

old method by two to three orders of magnitude, except when the

same S.E. was used for both marker generation and criterion. In the

latter case the method reduces to an ordinary opening followed by a

geodesic dilation. Computing times for the old method went up to

almost 11 minutes, whereas the slowest run on the new method was

about 1 s. The largest speed ratio was 1,235 times. When used on a

fixed marker image, the computing time of the new algorithm rises

approximately linearly with the diameter of B, due to the complex-

ity of dilation and erosions from [10]. If square S.E. are used, this

increase can be avoided by appropriate decomposition. Fluctuations

in the iterative approach depend both on S.E. size as above, but also

on the varying number of iterations needed before convergence. This

is strongly influenced by image content, as can be seen by the differ-

ences in computing time between the “street” (509 s) and “comet”

images (238 s) at ball diameter of 11. The new method does not have

such a strong dependence on image content.

6. CONCLUSION

Reconstruction operators, including levelings are powerful opera-

tors with many applications in image processing. The leakage prob-

lem can be overcome by using reconstruction criteria or contraction-

based connectivity. The method from [3] suffers from the fact that

no fast implementation is available. In this paper a new variant of

reconstruction criteria is proposed, which is practically identical to

the approach of [3], but is orders of magnitude faster. In the future

this method may be used in any application requiring cartoon/texture

decomposition of images.
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