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A Comparison of Algorithms for Connected
Set Openings and Closings

Arnold Meijster and Michael H.F. Wilkinson, Member, IEEE

Abstract—The implementation of morphological connected set operators for image filtering and pattern recognition is discussed. Two
earlier algorithms based on priority queues and hierarchical queues, respectively, are compared to a more recent union-find approach.
Unlike the earlier algorithms which process regional extrema in the image sequentially, the union-find method allows simultaneous
processing of extrema. In the context of area openings, closings, and pattern spectra, the union-find algorithm outperforms the
previous methods on almost all natural and synthetic images tested. Finally, extensions to pattern spectra and the more general class
of attribute operators are presented for all three algorithms, and memory usages are compared.

Index Terms—Mathematical morphology, connected set operators, attribute filters, pattern spectra, multiscale analysis, union-find.

1 INTRODUCTION

IN mathematical morphology, connected set operators [10],
[17] form a versatile class of image operators with a
number of desirable properties, most importantly preserva-
tion of shape. The earliest members of this class were
openings and closings by reconstruction, for which efficient
algorithms have been developed [22]. In the binary case, an
opening by reconstruction first performs an erosion with
some structuring element, and then reconstructs all con-
nected foreground components which were not completely
removed by the erosion. Therefore, openings by reconstruc-
tion (and the corresponding closings) can either remove
image details completely, or leave them intact, but never
alter their shape.

An important development was the introduction of area
openings and closings; a phrase coined by Vincent [21],
though they were introduced by Cheng and Venetsanopou-
los a year earlier [6] as NOP and NCP operators. Vincent’s
algorithm was much more efficient in the gray-scale case
than the earlier method of Cheng and Venetsanopoulos. In
the binary case, area openings remove all connected fore-
ground components with an area smaller than some thresh-
old A. Binary area closings fill all background components
with an area smaller than A. Fig. 1 shows a comparison of
applying binary openings by a 7 x 7 pixel square structur-
ing element, opening by reconstruction by the same
structuring element, and an area opening with A =49 of a
binary image of bacteria, showing the differences in the
action of these filters. An area opening tends to retain long
thin objects more than an opening by reconstruction.
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Area openings and closings were later extended to the
wider class of attribute openings, closings, thickenings, and
thinnings [5], [16]. Breen and Jones [5] extended Vincent’s
priority-queue algorithm for area opening to attribute
openings and thinnings, whereas Salembier et al. [16]
developed a new algorithm based on hierarchical queues.
The latter also introduced a versatile data structure, dubbed
a Max-tree (and its dual the Min-tree), which reduces image
filtering to removing nodes from a tree. Attribute openings
allow the use of size criteria other than width (used by
openings by reconstruction) and area (used by area open-
ings). In the binary case, attribute openings can be made by
computing some increasing attribute (such as moment of
inertia, diagonal of the smallest enclosing rectangle, etc.) of
each connected foreground component and remove the
components for which the attribute is smaller than the
threshold. An attribute A is increasing if and only if for all
sets C'and D with C C D, A(C) < A(D).

Attribute thinnings work on a similar principle, but can
use shape rather than size criteria. In this case, nonincreasing
attributes, such as the ratio of the square of the perimeter to
the area, can be used. This type of filter allows extraction of all
image details of a given shape, regardless of their sizes [19]. A
3D application of this is the extraction of filamentous details
(vessels) from angiograms [25]. An example is shownin Fig. 2.
Other applications of connected set morphology include
filtering [6], [21] and segmentation [7].

Finally, connected set filters are important for multiscale
morphology and, in particular, nonlinear scale spaces.
These cannot be constructed from openings or closings by
structuring elements in more than one dimension, due to
problems with causality [12]. Therefore, Bangham et al. [2],
[3] extended their 1D nonlinear sieves [1], [4], to an
arbitrary number of dimensions using area openings and
closings and their higher-dimensional counterparts, such as
volume openings and closings. They show that because
connected set filters never introduce new edges, they do not
violate causality in any number of dimensions.

The aim of this paper is to review algorithms for
connected set openings and closings and, in particular,
attribute openings and closings. The two best known
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Fig. 1. Area versus structural openings: (a) A binary image of
128 x 128 pixels. (b) Structural opening with 7 x 7 structuring element.
(c) Opening by reconstruction with same structuring element. (d) Area
opening with A = 49. Neither openings by reconstruction nor area
opening change the shapes of connected foreground components, but
the former uses width and the latter area as selection criterion.

algorithms for these image filters are the pixel priority-
queue method introduced by Vincent for area operators [21]
and extended by Breen and Jones to attribute operators [5],
and the Max-tree method of Salembier et al. [16] which uses
hierarchical queues. These two methods will be compared
to an algorithm developed by the authors, which is based
on the classical union-find algorithm presented by Tarjan
[18]. We will focus on the area opening at first since this is
one of the simplest cases. Besides, it can be extended to the
more general case of attribute operators [24] in much the
same way as Breen and Jones extended Vincent’s algorithm
[5]. To demonstrate the versatility of the union-find method,
we will show how the same principles can be applied to
computation of area pattern spectra. The key difference
between the algorithm based on union-find and the earlier
methods of Vincent [21] and Salembier et al. [16] is that we
process multiple maxima simultaneously, rather than
sequentially. We show how this may lead to a parallel
implementation of the algorithm. Both earlier algorithms
are described briefly in this paper, followed by a more
detailed description of the union-find approach. Their
respective performances and memory usages are compared
on a range of images.

2 THEORY

2.1 Connected Set Operators

The distinguishing characteristic of connected set operators
is that they operate on the flat zones of images, rather than
on individual pixels [17]. Let {¢;} be the partition of the
domain M of image I formed by its flat zones a; and {3;}
the partition of M formed by the flat zones j3; of image y([),
with v some image operator. A partition of M is any set of

(b)

Fig. 2. An application of connected set filters (gray-scale attribute
thinning) to filament extraction: (a) Maximum intensity projection of
magnetic resonance angiogram 256° volume data set. (b) Result using
an attribute thinning as shape filter. The attribute used was I/V?/3, with
1 the moment of inertia and V' the volume of a peak component; the
attribute threshold was 2.0.

disjoint sets {S;} (e, S;NS; =0 for any ¢ # j), which
together form the entire set M, i.e.,, US; = M.

The operator v is said to be a connected set operator if
and only if the partition {«;} is finer than {3;}, i.e., for all
sets «; there exists a (3; such that a; C ;. Thus, the only
operations connected filters can perform is merging flat
zones, and assigning new gray levels to them. Because flat
zones of an image are disjoint sets and set-union of these
sets is a key action taken by connected set operators, we
propose to implement connected filters using Tarjan’s
union-find algorithm [18]. This is an efficient algorithm
for maintaining disjoint sets under the set-union operation
and has been adapted to connected component labeling and
flat zone labeling [8], [9], [11]. Other applications of union-
find in image processing include the computation of the
watershed transform [14].

In the next sections, we will focus on how antiextensive
connected set filters, in particular, attribute openings are
implemented in three previously published algorithms. For
the sake of simplicity, we will concentrate on area openings.
These serve as a simple case to compare the efficiencies of
the three approaches.

2.2 Area Openings and Closings

The theory of area operators is given only briefly here. For a
more thorough discussion, the reader is referred to [21]. We
will first discuss binary area openings and closings and
then the extension to the gray-scale case. Binary area
openings are based on binary connected openings. Let the
set X C M denote a binary image with domain M. The
binary connected opening I',(X) of X at point z € M yields
the connected component of X containing z if x € X and §)
otherwise. Thus, I', extracts the connected component to
which z belongs, discarding all others.

The binary area opening can now be defined as:

Definition 1. Let X C M and X > 0. The binary area opening of
X with scale parameter X is given by

I5(X) = {o € XJA(T,(X)) > A}. 1)
The binary area closing can be defined by duality
PRX) = MR (2)
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/* List F contains the local maximum components */
while (F not empty) do
{
extract C from F;
A(C);
curlevel = grey level of component;
while (area < lambda)
{ n = neighbor of C with I[n]
is maximum of all neighbors;
if (I[n] » curlevel)
break:;
else { add n to C;
curlevel =

)

area =

I[n];

}
for all p in C do
{ Ilp] curlevel;
Lipl PROCESSED;

}

}

Fig. 3. The core of Vincent’'s area opening algorithm. The parameter
lambda in the code equals the area threshold X. For closing, the local
minima components are scanned, the minimum neighbor of C' must be
sought, and the test before the break must be I[n] < curlevel.

The definition of an area opening of a gray-scale image f
is usually derived from binary images 7}(f) obtained by
thresholding f at h. These are defined as

T(f) = {= € M|f(z) = h}. 3)

Definition 2. The area opening for a mapping f: M — R is
given by

(W (N))(@) = sup{hlz € T3(Ti(f))}- (4)

The gray-scale area closing ¢! is defined by using a duality
relationship similar to (2)

A = =1 (=1) ()

Thus, the area opening of an image assigns each point
the highest threshold at which it still belongs to a connected
foreground component of area A or larger. The area closing
assigns each point the lowest threshold at which it belongs
to a connected background component of area A or larger.

3 CoMPUTING AREA OPENINGS AND CLOSINGS

Before describing the individual algorithms, we first define
a flat zone Lj at level h of a gray-scale image f as a
connected component of the set of pixels {p € M|f(p) = h}.
A regional maximum M), at level h is a level component no
members of which have neighbors larger than h. A peak
component P, at level h is a connected component of the
thresholded image T)(f). At each level h, there may be
several such components, which will be indexed as Lﬁl, P/,
and M ,’j, respectively, with 4, j, and k from some index set.
Any regional maximum M} is also a peak component but
the reverse is not true.

3.1 The Pixel-Queue Algorithm

The pixel-queue algorithms for morphological area and
attribute operators are given in some detail elsewhere [5],
[20], [21], so we will describe them only briefly here. The
source code of our implementations is available on
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Fig. 4. The Max-tree structure: the peak components Pf of a 1D signal
level image X (left); the corresponding pixels in each Max-tree node Cf
(middle); and the Max-Tree itself (right).

request. The version described here only performs area
openings, but more general attribute openings require little
modification [5].

Briefly, the image is first scanned using a pixel queue to
create a list of all regional maxima M}'. After this, all M} are
processed sequentially. This is done by growing a peak
component P,j“, hy <h around a seed pixel within the
maximum M} using a priority queue. As each pixel is
added to the growing region, its neighbors which do not
(yet) belong to the region are put in the priority queue, from
which they are retrieved in reverse gray-level order (highest
first). The process of adding pixels continues until the area
is larger than A\ or when the next pixel taken from the
priority queue has a gray-level h” larger than the current
level 1'. In the first case, the peak component is large
enough, and should be set to the current gray-level #'. In the
latter case, the region grown so far is not a peak component
P, at level I/. Note that, in this case, the component may be
flooded again later on. In either case, the gray levels of all
pixels p € P}, are set to b’ and M} is removed from the list.
The algorithm terminates when all maxima have been
processed.

The part of the algorithm after the regional maxima have
been found is shown in pseudocode in Fig. 3

3.2 The Max-Tree Approach

Max-trees were introduced by Salembier et al. [16] as a
versatile data structure for antiextensive connected set
operators. A Max-tree is a rooted tree in which each of
the nodes CF corresponds to a peak component PF.
However, C} contains only those pixels in P} which have
gray-level h. In other words, it is the union of all L{L - P,’j
Each node except for the root points towards its parent CY,
with A’ <h. An example of a 1D signal, its peak
components and its Max-tree nodes is shown in Fig. 4. It
can be seen that multiple flat zones may be contained in a
single node, as in the case of C) in this example.
Furthermore, in a given branch, not all gray levels have to
be occupied, as in the case of the branch ending at Cé.

In the case of the area opening, the area of the peak
component PF is stored in the Max-tree structure in node
CF. Once a Max-tree of an image has been computed,
computing an area opening reduces to removing all nodes
which have an area smaller than A from the tree. Because
the area must increase when descending any branch
towards the root, the opening reduces to pruning branches
at the appropriate points and merging the pixels in the
removed nodes with their smallest surviving ancestor.

Salembier etal. [16] use an array STATUS of the same size as
the image to determine to which node a pixel belongs. A pixel
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pwith gray-level hbelongnode Cf if STATUS [p] =k. Initially,
all elements in STATUS are set to NOTPROCESSED(< 0).
Besides this array, the algorithm uses a hierarchical queue of
G levels, with G the number of gray levels. One array of G
integers called NodesAtLevel is used to store the number of
Max-tree nodes detected so far at each gray level. A further
array of G Booleans NodePresent stores at which levels
below the current gray-level nodes have been detected in the
path from current node to root. Finally, we store the Max-tree
itself in an array of N nodes (with N the number of pixels in
the image).

In our implementation, we first compute a histogram of
the image, in order to compute the space needed in each of
the levels of the hierarchical queue and maximum possible
number of nodes in each of the levels of the Max-tree. All
elements of the NodesAtLevel array are set to zero, those
of the NodePresent array to false. Then, the Max-tree is
built by first selecting a pixel with the smallest gray-level
hmin which must belong to the root of the tree and
inserting it at level hmin in the hierarchical queue, and
NodePresent [hmin] is set to true. Using this pixel as a
seed, a recursive flood filling process is started. At each
step, a pixel p at the highest occupied level h in the
hierarchical queue (starting at hmin obviously) is retrieved.
Then STATUS[p] is set to NodesAtLevel[h], which
labels it as a member of C}, and the area in the appropriate
Max-tree node is incremented. Then, all neighbors of p for
which STATUS [n] is NOTPROCESSED are put in the queue
at level T [n], STATUS [n] is set to INTHEQUEUE(< 0), and
NodePresent [I[n]] is set to true. If the neighbor’s gray-
level I[n] is larger than the current level h the flooding
proceeds at level I [n]. If, at a given level h, no more pixels
can be retrieved from the queue at level h, NodePre-
sent [h] is set to false, and the parent node is sought by
finding the element in NodePresent with the highest
index m which is true. Once m has been determined,
the parent node CJ, is found by letting A =m, and
j = NodesAtLevel [m]. The current nodes area is added
to its parent and flooding proceeds at level m. Once all
pixels have been processed, the Max-tree is complete.

The filtering is carried out by visiting all nodes of the tree
once from low gray level to high. We can do this because we
store the nodes sorted per gray level in an array and we
know how many nodes exist at each level. For each node,
we check whether its area is smaller than \. If so, its output
gray level is set to that of its parent (which has already been
assigned the correct gray level). The output image O is made
by visiting all pixels p in the image, determining its node
from I[p] and STATUS[p], and assigning the the output
gray level of that node to O[p].

For details and pseudocode, the reader is referred to [16].

3.3 The Union-Find Method

A key property of the algorithms described above is that
they process the image one peak component at a time.
Furthermore, both use a flooding method. The approach
described in this section can process multiple peak
components simultaneously. Pixels are processed in gray-
level order. During this process, peak components are
created and merged as needed, while keeping track of their

areas. Once a peak component has an area of at least ), it
ceases to grow.

Tarjan’s union-find algorithm for keeping track of
disjoint sets [18] is used to implement merging in an
efficient way. For each set, an arbitrary member is chosen as
representative for that set. The algorithm uses rooted trees
to represent sets in which the root is chosen as the
representative. Each nonroot node in a tree points to its
parent, while the root points to itself. Two objects x and y
are members of the same set if and only if x and y are nodes
of the same tree, which is equivalent to saying that they
share the same root of the tree they are stored in. There are
four basic operations.

e MakeSet (x): Create a new singleton set {x}. This
operation assumes that x is not a member of any
other set.

e FindRoot (x): Return the root of the tree contain-
ing x.

e Union(x,y): Form the union of the two sets that
contain x and y.

e Criterion(x,y): a symmetric criterion which
determines whether x and y belong to the same set.

For flat zone labeling the algorithm becomes:

for all pixels p do
{ MakeSet (p) ;
for all neighbors n<p do
if ( I[n]l==Ilp])
Union(n, p);

}

Note that, in this context, the condition n<p means that n
is a pixel which has been processed before p. In this case,
Criterion(n,p) is true if the image value I[n] equals
I[p]. Union uses FindRoot internally to determine the
root nodes of the trees containing n and p. After this scan, a
second “resolving” scan assigns each root pixel a unique
label and to each nonroot pixel the label of its root.

Before going into the details of the area opening
algorithm itself, we will discuss the general framework
for storing the disjoint sets and the auxiliary functions
needed for attribute openings and closings.

The disjoint sets we have to find are all flat zones
Lj, € T3(Xy(f)), which are not altered by the area opening
74, and, for all other L;, the smallest peak component P}, >

+ which has area \ or more. To store the trees representing
these sets for the entire image, we use an integer array
parent of the same size as the image (i.e.,, V) in which
parent [p] is the parent of pixel p. Pixels are stored as
width*y+x, with x and y the pixel’s « and y coordinates,
and width the image width. If a pixel is a root of a tree, i.e.,
it has no parent, we flag this by setting parent [p] < 0,
rather than letting it point to itself. We could use an
auxiliary array area in which areal[p] (for root nodes)
stores the area of each set. However, for a set of area A with
root node p, we can also set parent [p] to —A, which saves
memory space. We define an active root as a root of a peak
component with area smaller than .

The code for the MakeSet, FindRoot, Criterion, and
Union routines is shown in Fig. 5. In this case, the
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void MakeSet ( int x )
{ parent[x] = -1;
}
int FindRoot ( int x )
{ if ( parent[x] >=0 )
{ parent[x] = FindRoot{ parent[x] );

return parent[x];
}
else return x;

}

boolean Criterion ( int x, int y )
{ return ( (I[x] == Ily]) ||

( -parent[x] < lambda ) )
}

void Union ( int n, int p )
{ int r=FindRoot (n);
if ( r 1= p )
{ if ( Criterion(r, p) )

{ parent(p] parent[p] + parent(r];
parent [r] D
}
else
parent [p] = -lambda;

Fig. 5. Implementation of the basic operations for area openings and
closings. Note that the areas of components are stored as negative
numbers in the corresponding roots. The variable 1ambda is equal to the
parameter \. The parameters for Criterion must be root nodes.

Criterion and Union routines are asymmetrical. This is
done to ensure that, if the set we are dealing with is a peak
component P, at level h, the root element r has a gray-level
I[r]= h. Therefore, we process the pixels in decreasing
gray-level order, and always make the last pixel processed
the root of the new tree. We do this by sorting the pixels
using counting-sort and storing the coordinates in an array
SortPixels of length N. Pixels of the same gray level are
processed in scan line order. Scanning of peak components
from high to low gray levels is guaranteed, without finding
regional maxima explicitly.

As each pixel p is processed, the MakeSet routine labels
p as a singleton set, setting parent [p] to -1. The Union
procedure is now called for each neighbor n which has
already been processed. We briefly describe this procedure
here. Since p is always a root, FindRoot is only called to
find the root pixel r of n. If r equals p nothing needs to be
done, because n and p are already in the same set.
Otherwise, Criterion is called with r and p as para-
meters. If the gray-level I [r] of r is equal to that of p or if r
is an active root, Criterion returns “true” and the two
trees are merged. Merging is done by adding the area of r
to that of p, and making p the parent of r. If Criterion
returns “false”, a neighbor has a root gray level higher than
I[p]l and has a sufficiently large area and, therefore,
p € L, CTY(X,(f)). In this case, p is made inactive by
setting parent [p] to —A.

Note that the FindRoot routine, apart from finding the
root of a tree, also performs path compression. This is a
technique that was used by Tarjan to reduce the average
cost of FindRoot. It does this by setting the parent pointer

/* array S contains sorted pixel list */
for (p=0; p<Length(8); p++)
{
pix = Sipl;
MakeSet (pix) ;
for all neighbors nb of pix do
if ((Ilpix] < I[nbl) ||
((I[pix] == I[nbl) && (nb<pix)))
Union (nb,pix) ;
}

/* Resolving phase in reverse sort order */

for (p=Length(S)-1; p>=0; p--)
{
pix = Sipl;
if (parent[pix] >= 0)
parent [pix] = parent [parent [pix]];
else
parent [pix] = I[pix];

}

Fig. 6. Code showing how to perform an area opening using the
operations of Fig. 5.

directly to the root for all pixels visited along the path to
the root.

At the end of this part of the algorithm, we have found two
kinds of disjoint sets: 1) those with constant gray level, which
are level components Lj C I'{(X,(f)) and 2) those with
varying gray level, which are peak components P/, with h the
maximum gray value for which the area criterion is satisfied.
Because the root r of these peak components is always the
last pixel processed, its gray level in the input image satisfies
f(r) = h.Therefore, if we set the gray level of each pixel in the
output image to that of its root in the input image, all L C
I'Y(X,(f)) remain unchanged, whereas all P/ are filled
uniformly with a gray level of h. This can be done in linear
time. The most memory efficient approach is to store the
output image in the parent array, which is possible because
we can visit the pixels in reverse processing order. For each
pixel p, we inspect its parent. If parent [p] isnegative, pisa
root, and I [p] is the correct gray level for the component. If
parent [p] is nonnegative, then it is pointing to a pixel in
parent which has already been resolved, and already has
been assigned the correct root gray level. In Fig. 6, the above
described algorithm is listed.

For area closings, we must change each test for gray level
in the main loop of the routine to a test for smaller than. The
FindRoot and Criterion procedures and the resolving
stage need not be changed.

4 PERFORMANCE TESTING AND RESULTS

The three algorithms were implemented in C. For efficiency
reasons the tail recursion in FindRoot was removed and
all procedures in Fig. 5 were inlined. The code is available
on request. The algorithms were tested on a range of
synthetic images with different sizes and numbers of
extrema. Furthermore, a number of natural images at
various sizes was used. Mean CPU times over multiple
runs on HPPA RISC-processor-based machines were
determined for each image and for different values of A.

Three-dimensional versions of the algorithms for volume
openings were also implemented and tested on a number of
angiograms.
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Fig. 7. Timing results for distance map images. CPU timing for the
priority-queue algorithm (dashed), the union-find method (solid), and
the Max-tree algorithm as a function of area (\) of the closing for
512 x 512 distance map images for different numbers N, of local
minima: (a) Npin = 2; (b) N = 2000. Note the strong dependence
of the timings of the priority-queue algorithm on both image content
(Nmin) @and A. The timings for the union-find and Max-tree methods
are practically independent of A\, and only slightly dependent on N,;,.

4.1 Synthetic Images

To test the sensitivity of the algorithm to the image
complexity in a controlled manner, synthetic images were
used. To generate these, INV,,;, randomly placed dots on a
black background were generated. After this, Euclidean
distance maps were generated from these random dot
images. These distance map images allow controlled testing
of the performance of each algorithm as a function of the
number of extrema (minima) of roughly circular shape.
Because the distance map images contain controllable
numbers of minima, we decided to perform the timings
on closings rather than openings. However, we could in
principle have inverted these images and done the timings
on openings, obtaining the same results.

The CPU times for area closings with increasing A for 512 x
512 distance map images with different numbers of local
minima M are shown in Fig. 7. Quite clearly, the CPU times
for the priority-queue algorithm depend strongly on both A
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Fig. 8. Image size dependence of computing times for distance map
images for the pixel-queue (dashed), Max-tree (dash-dot), and union-
find (solid) algorithm for A = 256 and different values of the density « of
local minima: (top) a = 1/1,024, (bottom) « = 100/1, 024.

and N,,;,, unlike either the union-find method or the Max-
tree method. In all cases, the union-find method out-
performed the priority-queue algorithm, by a factor ranging
from 2.4 for small ), to about seven for A = 131,072 and
Npin =2,000. The X dependency of the priority queue
algorithm is clearly nonlinear for smaller A. By contrast, the
A dependence of the modified Tarjan method is very weak,
rising by at most 17 percent over A ranging from 2 to 131,072.
The Max-tree algorithm has no significant A-dependence.
However, itis slower than the union-find approach by a factor
of 2.1 atsmall A and 1.65 at A = 131,072 for N,,;, = 2, 000. For
the union-find method timings range from 0.200 s to 0.244 s
from Ny, = 2 to Ny = 2,000, or an 22 percent increase for
A =131,072. The Max-tree method shows no significant
change over the same range. For A = 131,072, Vincent’s
algorithm shows an increase in CPU time from 0.786 s to
1.704 s, or a 117 percent increase, over the same range of N,,;,.

To measure dependence of CPU times on the image size
N, distance map images of different sizes with the same
density o of minima (« = Ny, /N = constant) were used.
The results are shown in Fig. 8. All three methods appear to
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Fig. 9. Some natural images used for performance testing algorithms for
area closings and the corresponding results for the Max-tree algorithm
(dash-dot), priority-queue (dashed), and the union-find approach (solid):
(a) face, (b) red spot, and (c) bacteria.

be linear in N for all practical purposes. On certain
machines, deviations were observed for very small images,
probably due to caching.

4.2 Natural Images and Volume Openings

A selection of 40 natural images with different image
characteristics was used to assess the performance under
more realistic conditions. The images include images of
faces, a house, landscapes, airplanes, an aerial photograph
of a city, various astronomical images, and microscopic
images of diatoms, bacteria and skin tissue. Some of these
images are shown in Fig. 9.

The results are similar to those for synthetic images.
CPU times for the union-find and Max-tree methods
depend mainly on image size, and only slightly on image
content or A. By contrast, CPU times for the priority-queue
algorithm depend strongly on both image content and .
The image of Jupiter’s red spot in Fig. 9b shows a very
strong A-dependence at all scales. This may be caused by the
many nested structures in this image.

In certain images, such as the image of bacteria in Fig. 9c,
the dependence of CPU time on A is only slight. Indeed, based
on this image alone there would be little reason to prefer any
algorithm. However, even here, the union-find method is
faster than the others for all A > 8. In this case alone, it is the
Max-tree method which is slowest, except for A > 16, 384.

The volume openings yielded slightly different results.
On a 128 x 128 x 62 volume, the union-find method (CPU
time 1.29 s) is 3.5 times faster than the Max-tree (4.51 s), and
3.3 times faster than the priority-queue method (4.26 s),
both for A = 256. At A = 131,072, the union-find method
takes 1.34 s, Max-tree algorithm 4.53 s, and the priority-
queue method falls far behind with 72 s. We performed the
same tests on the 256 x 256 x 256 volume of Fig. 2 on a
Pentium II at 400 MHz, with 640 MB RAM. At A\ = 256 and
A = 131,072, respectively, the union-find method needs
6.35 s and 6.68 s, the Max-tree algorithm needs 20.37 s and
20.47 s, and the priority-queue method needs 19.01 s and
108 s. Apparently, the advantage of the union-find algo-
rithm is greater in these 3D data sets. This is probably due
to its smaller memory requirements, especially given the
limited bandwidth of the memory bus of personal compu-
ters, as is discussed in the next section.

5 COMPUTATIONAL COMPLEXITY AND
MEemMoRY USE

In the case of the union-find approach, complexity analysis is
straightforward if we assume that the union-find part is the
most costly. This is the case when we can use a linear time
sorting algorithm as counting-sort, which only works well
for 8-16 bit integers. Even though O(N) sorting algorithms
exist for floating point numbers or larger integer ranges (e.g.,
radix-sort), it may be quicker to use one of many O(N log N)
methods such as heap-sort. For an image of N pixels, using
C-connectivity, we perform N MakeSets and at most NC/2
FindRoots. This is because for all pixels we do a FindRoot
on those of the C neighbors which have been processed
before the current pixel. Disregarding image edge effects,
one half of the neighbors of each pixel will have been
processed beforehand on average. For these numbers of
FindRoots and MakesSets, Tarjan [18] derives a worst case
complexity of ©(NClog; ¢/, N), or O(NlogN) for fixed
connectivity, when path compression is used, as is the case in
our algorithm. In our measurements, CPU-time was a linear
function of image size N, though an Nlog N relationship
cannot be ruled out from the data.

Explicitly including the connectivity in the computa-
tional complexity is particularly necessary when contem-
plating extension to more than two dimensions. Extension
to three dimensional images is straightforward, since all
that has to be changed is the way pixel coordinates are
stored in integers, and 6, 18, or 26 connectivity must be
used. This does increase the computing time somewhat, but
not prohibitively.

The computational complexity of the priority-queue
algorithm is O(NAlog)), which becomes O(N?logN) if
A= N. The latter is the case when computing pattern
spectra (see Section 7). An example of this O(N?log N)
behavior is seen when the number M of regional maxima in
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an image is maximal. In the case of 4-connectivity, we have
M = N/2 points in a checkerboard pattern. Suppose all
these points have the maximum gray level, that the
nonregional maximum pixels are assigned strictly descend-
ing gray levels in scan-line order and that A = N. As each of
the N/2 maxima is processed, all the previously processed
pixels are flooded, before the algorithm encounters the next
regional maximum, and stops the flooding process. There-
fore, on average, a region of N/2 pixels is flooded for each
of the N/2 maxima. Each visit to a pixel bears a cost of
O(log N) due to the use of a priority queue. Therefore, CPU
times are expected to increase proportional to N?log N in
this case. This has been verified experimentally [24].

The computational cost of the Max-tree algorithm is
dominated by the flood filling process which is inherently
linear in both the number of pixels and in the connectivity.
Pruning the Max-tree requires visiting all nodes in the tree
at most twice, so it is also O(N). Computing the output
image is also linear in the number of pixels.

One somewhat peculiar feature in the computational
complexity of the Max-tree algorithm is its dependency on the
number of unoccupied gray levels between parent and child
nodes. As stated, the flood filling procedure uses an array of
Booleans to store which levels below the current are occupied.
Insertion into this array is done in constant time, but retrieval
of the highest gray level below the current takes a time
proportional to the number of unoccupied levels between
Max-tree nodes in the same branch. Thus, a contrast stretch
followed by a Max-tree filter is slower than the reverse order.
We tested this in a particular bad case: A checkerboard
pattern consisting of alternating pixels either of gray levels 0
and 1 or of 0 and 255. In this case, N/2 maxima must be
processed. For each maximum there are four insertions into
the array, followed by one retrieval. In the first case, the
retrieval needed to inspect only one element, in the second
255 elements. For a 256 x 256 image, the first case took 80 ms,
the second 222 ms. The other two algorithms show no
differences in CPU times, as expected. It is possible to replace
the Boolean array by other data structures in which retrieval is
cheaper, such as a heap (logn), but only at the expense of
higher insertion cost. Since the number of insertions is at least
C times greater than the number of retrievals, the original
choice appears to be the best.

Apart from computational complexity, memory use must
be taken into account, not just to estimate whether enough
resources are available for a given image size, but also
because memory bandwidth may actually limit the proces-
sing speed if large (volume) data sets are used. Apart from
the original image, the priority-queue method requires a
queue for detection of the regional maxima, which in our
implementation requires N integers (with IV the image size),
a priority queue of either 2\ or N integers, depending on
which value is the smaller, a label image of N integers, a fill
list of X (worst case V) integers to store the pixels belonging
to the current maximum, and optionally an output image
(the standard implementation overwrites the original image,
which may not be desirable). The union-find method uses
only the parent array (which becomes the output image) of
N integers and the sorted pixel array (also N integers), apart
from the input image. Therefore, it yields a memory saving

of at least 2N integers with respect to the priority-queue
method and possibly an image of N pixels, as well, if a
separate output image is used in the priority-queue
approach. The Max-tree approach is the most costly,
memory-wise. The hierarchical queue and status arrays each
require N integers. The Max-tree itself may have N nodes
(worst case), each of which contains its area, pointer to its
parent, and the output gray level, or 2N integers and
N pixels. An output image may also be required, if the input
image may not be overwritten. The savings obtained by
using the union-find approach compared to the Max-tree
method is 2N integers and N pixels (or 2N pixels if a
separate output image is used).

These differences in memory use are particularly impor-
tant for 3D analysis. In the case of the 128 x 128 x 62 volume,
the total memory use of the Max-tree method was 57.5 MB,
priority-queue methods needed 45 MB, whereas the union-
find algorithm required only 25 MB.

6 EXTENSION TO ATTRIBUTE OPENINGS

All three algorithms can be extended to compute other
attribute openings and closings. The priority-queue approach
has been extended by Breen and Jones [5], and a union-find
algorithm based on the area opening version described here
has alsobeen published [24]. The original Max-tree algorithm
can be used for not just attribute openings and closings, but
also for thinnings and thickenings [16].

Unlike the area of a set, many attributes cannot be
computed “on the fly.” Therefore, the versions for attribute
openings of all three algorithms rely on auxiliary data sets
per peak component which has been processed partially. The
auxiliary data are chosen in such a way that they can be
updated pixel by pixel easily and that the desired attribute
can be computed efficiently. In the case of the union-find and
Max-tree approaches, easy merging of auxiliary data sets of
different connected sets of pixels must also be possible. For
example, consider the opening using the moment of inertia
I(C) of connected set C, which is defined in 2D as

Yo @)+ (-9’ (6)

(zy)eC

1(C) =

with = and y the pixel coordinates and = and ¥ their mean
values. In this case, it can be shown that the area A(C), >_ z,
Yy, S 2%, and > ¢ as auxiliary data are sufficient. As
pixels are added to the set, the sums and area are updated
in constant time. Merging two data sets reduces to adding
the area and sums.

A number of adaptations to data structures and algorithms
are needed in both the priority-queue and union-find
approaches. First of all, in both cases the attributes are only
computed when a peak component has completely been
processed, i.e., when a gray-level boundary is crossed. In the
pixel-queue approach, this occurs when a pixel with lower
gray levelis retrieved from the priority queue. The attribute is
computed, compared to A and if it is smaller the flooding
proceeds, otherwise, the component is filled with the current
gray level. Because the priority queue algorithm processes
one peak component at a time, only one auxiliary data set is
needed. Memory-wise this is the optimal solution.
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Breen and Jones [5] use a single “driver” routine with
function pointers as arguments to be able to compute any
attribute opening, without code duplication. Their method
requires functions to create, destroy, add a pixel to an
auxiliary data set, and computing the attribute value. The
union-find version uses a similar approach, but a merge
function is also needed.

In the union find case, we need some more adaptations.
Firstofall, itisnolonger possible to store the attribute value as
a negative number in the root node parent array itself.
Instead, negative values (ACTIVE and INACTIVE)are used to
flag active and inactive root nodes of sets. A second array
auxdata is used to store pointers to auxiliary data sets. Only
active root nodes have valid auxiliary data sets assigned to
them. Because multiple peak components are processed
simultaneously, N/2 auxiliary data sets are needed in the
worst case. Computing attributes is done when the next pixel
in the sorted pixel array has a lower gray level than the
current. In that case, all attributes of all active peak
components at the current gray level are computed and
compared to A. All peak components which have attribute
larger than lambda are set to inactive. For details, see [24].

In the Max-tree case, similar adaptations are needed with
respect to the area opening algorithm presented here. In this
case, though only a single peak component is flooded at a
time, it may have collected data at multiple gray levels. In
the worst case, G sets (with G the number of gray levels) are
needed. Though still worse than the priority-queue method,
this is considerably less than the worst case in the union-
find approach. In this scheme, a Max-tree node stores a
pointer to its parent, the attribute value, and gray level in
the output image as before. It does not need a pointer to its
auxiliary data, because we can store these in an array of
length G, and use the current gray level of the node to
reference the correct data set.

We have performed timings of the three algorithms for
the moment-of-inertia opening, and the relative results are
very similar to those obtained with the area opening. On
256 x 256 natural images, the union-find method took some
155 ms, compared to 33 ms for the area opening. The Max-
tree approach took some 200 ms, and the priority-queue
approach 540 ms at A = 32, 768.

7 EXTENSION TO PATTERN SPECTRA

All three algorithms can readily be adapted to computing
area opening and closing pattern spectra efficiently. For the
priority-queue method, this has been done by Breen and
Jones [5] and a similar extension has been done for the
union-find case [15].

Let f and g be gray-scale images. A size distribution or
granulometry is a set of operators {a,} with r from some
totally ordered set A (usually A CIR or Z), with the
following three properties [13], [23]:

ar(f) < f (7)
f<g= a(f) <alg) (®)
ar(as(f)) = ama‘x(r‘s)(f) (9)

for all 7, s € A. Since (9) implies idempotence, it can be seen
that size distributions are openings. The pattern spectrum

S§ obtained by applying a size distribution o, to gray-scale
image f can be defined as the integral of the gray level of
a,(f) over the image domain. In the discrete case, we have:

SHr) =Y (o) (@).

zeM

(10)

A trivial algorithm for computation of area pattern spectra
consists of performing area openings at N, < N scales,
ranging from A = 1 to A = N, and computing the sum of gray
levels of the resulting image at each scale and storing the
results in an array of N, bins. This method yields a worst-case
computational complexity of O(N,N?log N) for the priority-
queue algorithm and O(N;Nlog N) for the union-find
approach. In both cases, it is possible to reduce the
computational cost by a factor of N, by effectively perform-
ing an area opening with A = N, which will merge all flat-
zones of the image. During the merging process, the spectrum
is updated as each peak component is merged with flat zones
at a lower gray level (for details, see [5], [15]). If a peak
componentof area Ais merged with a setatalower graylevel,
a function Bin is used to map the area to the range of bin
numbers in the spectrum (0, 1, . . ., N;). These adaptations can
be seen in Fig. 10 for the union-find case. It has been
demonstrated that it is indeed possible to compute an area
pattern spectrum in the time needed for a single area opening.
A pattern spectrum version of the Max-tree algorithm is also
trivial to implement. In this case, the tree-traversal used for
computing the gray levels of the output image is used to
update the pattern spectrum as above.

The three algorithms have been implemented and yield
CPU times indistinguishable from performing a single area
opening with the same method with A =N in all cases
tested (data not shown).

8 CONCLUSIONS

The Max-tree and union-find algorithms for computation of
area openings and closings have clear advantages over the
priority-queue algorithm in terms of computing time,
especially when using large values of A. Furthermore, the
strong dependence of computing time on image content
seen in the priority-queue algorithm is lacking in both.
Though theoretically less computationally efficient, the
union-find approach outperforms the Max-tree method,
especially in large (3D) data sets. This may be caused by the
much larger memory requirements of the Max-tree
approach, and its less regular access of memory due to
the flooding process.

In the case of the area opening, the union-find is also the
most efficient in terms of memory usage, especially if the
original image may not be overwritten. In that case, it uses
between 2.3 and 3 times less memory than the Max-tree
approach, and about 40-50 percent less than the priority-
queue method (depending slightly on the size of a pixel).
However, in the more general case of attribute operators, the
union-find approach requires more space for auxiliary data
sets in the worst case. If auxiliary data sets required to
compute the attributes are large, the priority-queue method
in particular may be more efficient in terms of memory usage.

The union-find algorithm is suitable for parallel im-
plementation on shared-memory systems, since it processes
extrema concurrently, while the other algorithms process
extrema sequentially. Besides, the algorithm does not use a
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void Union ( int n,

{ int r=FindRoot (n);
if {((r I=p)

{ if ( Ilpl!=I[r]

(Ilr]-Ilpl)

}
parent[p]
parent([r]

}

i<

int p )

{ spec[Bin(-parent[r])] -=
* parent[r];

parent [p]

+ parent(r];

for (1=0;1<Ns;i++)
spec[1]=0;
greysum=0;
for (p=0;
{
pix = slpl;
greysum += I[pl;
MakeSet (pix) ;

p<Length(8) ;

if ((I[pix]
((Ilpix] ==

Union (nb,pix) ;

for (i=0;1i<Ns;i++)

greysum = specl[i];

/* array S contains sorted pixel list */

p++)

for all neighbors nb of pix do
< Ilnbl)
I[nbl) &&

{ spec[i] = greysum - specli];

(nb<pix)))

Fig. 10. Pseudocode showing how to compute an area opening pattern spectrum: (top) modified Union procedure, in with the function Bin maps the
range of areas to the range of bins; (bottom) code of the area pattern spectrum algorithm itself. The FindRoot procedure is left unchanged (see Fig. 5).

queue based flooding process, which is particularly difficult
to parallelize. It is not hard to augment the union-find
algorithm with locking-primitives to avoid concurrent
accesses to shared memory locations, as in the case of
connected component labeling [11].

Unlike the current implementations of the priority-queue
and union-find algorithms, the Max-tree method can be used
for attribute thinnings as well. The separation of Max-tree
construction, Max-tree filtering and image restitution is
elegant and very versatile. However, there is no particular
reason to use a flooding approach to construct the Max-tree.
Indeed, it is slightly impractical, because merging two sets of
pixels belonging two different nodes requires reflooding one
of the sets and setting all gray levels and STATUS values
correctly. Therefore, we are working on a union-find
approach to building and filtering Max-trees, in which
merging nodes can be done in constant time. This algorithm
will also be designed for parallel execution on shared-
memory systems.

Finally, the disjoint set approach discussed here could be
generalized to other and possibly all connected filters. The
reason for this is that all connected filters operate on the flat
zones of an image, merging them, or changing their
intensities, but never splitting them. Tarjan’s union-find
method provides an efficient means to perform such
operations.
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