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• Asymmetric games: Bimatrix models

• Adaptive dynamics

• Evolution of cooperation

• Iterated Prisoner’s Dilemma.

– Theory,
– Different strategies
– Experimental results
– Links to real world?
– Implementation in C
– The practical assignment.
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• In the previous cases we have looked at symmetric games:

– If moves are interchanged from player to player, so are the payoffs
– Modelling is done using a single payoff matrix

• In practice, games between players may be asymmetric

• The goals may be different to players

• The values of resources may be different to different players: why is a hare faster
than a fox? A hare runs for his life, a fox for his meal!

• The roles may be different (e.g. parent – child)

• To model such games we use two payoff matrices, or a bimatrix.
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• A classic example for a bimatrix game is the battle of the sexes, which concerns
parental investment in the offspring

• For males who abandon the females after mating can go on to mate with other
females.

• Females could prevent this by being “coy”, demanding an investment E from the
male before mating, during a so-called “engagement” period.

• After such an investment, it would pay more for a male to help raise his young
(because he is now relatively sure they are his), rather than find another mate (by
which time the mating season may be over).

• However, once all males have been selected for faithfulness, a “fast” female, who
will mate without engagement cost will gain

• This in turn leads to the appearance of “philandering” males, who will mate and
desert the females to mate with another
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• We can formalize this:

– If a coy female mates with a faithful male, they both win gain G and share the
cost of upbringing C, and both pay E, so each wins G− C/2− E.

– If a fast female mates with a faithful male, they both win gain G and share the
cost of upbringing C, without the cost E, so each wins G− C/2.

– If a fast female meets a philandering male, she gets G− C, whereas he gets G.
– If a coy female encounters a philandering male, she refuses to mate, so both

receive 0

• In terms of payoff matrices we have

A =
[

0 G
G− C

2 − E G− C
2

]
B =

[
0 G− C

2 − E
G− C G− C

2

]
(1)

with A the matrix for males and B the matrix for females

• It turns out there is no stable equilibrium for this case.
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• In the previous models we only look at single encounters

• Strategies change in a population through competition or copying

• Each strategy consists of a fixed set of probabilities for each move

• Unless mutations are allowed, no new strategies are developed

• In reality, players may change their strategy, depending on previous experience.

• Adaptive strategies are formulated differently;

– The set of probabilities for moves is a function of the state of the player
– The state of a player depends on previous games, either of the player himself, or

those of others.

• The resulting adaptive dynamics can be highly complex
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• One field in which adaptive dynamics are important is that of the emergence of
cooperation

• This emergence might concerns the evolution of cooperative behaviour in animals
(not just the lack of aggression as in the Hawk-Dove game)

• It might also be the cooperation in economics and sociology: formation of
coalitions, companies, etc.

• The core question is always: Why, when faced with an easy quick win at the
expense of another, do many people or animals take a lower profit which does not
harm the other.

• Another way of looking at the problem might be: why do we have such a strong
feeling of fairness? Why do we get angry seeing someone cheat another when he
should have shared?

• It turns out that single encounter games cannot solve this problem
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• Iterated prisoner’s dilemma is the classic example for adaptive strategies and the
evolution of cooperation

• Prisoner’s dilemma is a simple two player game in which there are two possible
moves: cooperate (C) or defect (D)

• If both players cooperate, they receive a reward R

• If both players defect, they receive a punishment P

• If a player defects, but the other cooperates, he receives a temptation T

• If a player cooperates and the opponent defects, he receives the sucker’s reward S

• In all cases we assume

T > R > P > S and 2R > T + S (2)
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• The payoff matrix is

C D
C R S

D T P

• If the game is played once: the best strategy is always defect (AllD):

– If the other cooperates, cooperating gets you R.
– If the other cooperates, defecting gets you T > R.
– If the other defects, cooperating gets you S.
– If the other defects, defecting yourself gets you P > S.

Therefore, you are always better off defecting

• This basically formalizes the selfishness problem
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• Now consider the case when you will encounter the same player again, with a
probability w.

• Let An denote the payoff in the n-th round, the total expected payoff is given by

A =
∞∑
n=0

Anw
n (3)

• In the limiting case of w = 1, this diverges, so instead we take the limit of the mean

A = lim
n←∞

∑N
n=0Anw

n

N + 1
(4)

• Obviously, if w is very small, each player should still just defect, since the
possibilities for revenge are small.
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• Strategies in IPD are programs which tell you which move to make in each round.

• Strategies are sometimes classified as:

Nice: Does not defect first
Retaliatory: Punishes defection
Forgiving: Returns to cooperation following cooperation of opponent
Suspicious: Does not cooperate until the other cooperates
Generous: Does not always retaliate at a first defection

• No best strategy exist, it all depends on the opponent
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• If the opponent is an AllC player, AllD is best, because its payoff will be

A =
∞∑
n=0

Twn =
T

1− w
(5)

• However, if the opponent is Grim, who is nice, retaliatory and totally unforgiving, the
payoff after your first defection will be

A =
∞∑
n=0

Pwn =
P

1− w
(6)

at best!

• This means AllC would perform better (A = R/(1− w)), provided

w >
T −R
T − P

(7)

Modelling and Simulation 11



Mathematics

Computing Science

&&
tics IPD VI: Tit-For-Tat

• A simple strategy which does very well in round-robin tournaments (each player
competes in turn with each other player) is Tit-For-Tat (TFT).

• Curiously, TFT never gets more points per game than its opponent.

• It starts of with C, so it is nice

• It then copies the opponents last move

• This behaviour makes it retaliatory, because a defection will be repayed by a
defection

• It is also forgiving, because it will return to playing C if the opponent returns to C

• It can outcompete a population of AllD and gain dominance if

w ≥ max
(
T −R
T − P

,
T −R
R− S

)
(8)
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• TFT has two weaknesses:
1. It is sensitive to noise: if there is a small probability of a message (C or D) being

misinterpreted, two TFT players enter into a round of mutual retaliations
2. It is sensitive to invasion by other strategies such as Pavlov, or any nice strategy.

• Pavlov takes both his own and the opponents last move into account to compute
the next

• This can be formalized as a function of the last reward
– If the last reward is R, play C
– If the last reward is P , play C
– If the last reward is S, play D
– If the last reward is T , play D

• In effect, Pavlov retains his strategy after high payoff (T or R) and changes strategy
after low payoff (S or P ).

• It can correct for occasional mistakes

• Strict cooperators cannot invade
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• The success of TFT resulted in the development of some variants

• Tit-For-Two-Tats (TF2T), which retaliates only after two Ds.

– More generous
– More tolerant for errors
– Co-exists with TFT

• Suspicious-Tit-For-Tat (STFT) which starts with D instead of C, so it is not nice
(gets on with TFT like a house on fire).

• Observer Tit-For-Tat Uses observations of potential opponents in other games to
decide whether to start with D or C.

– Requires the possibility of observations
– Suppresses “Roving” strategies (AllD strategies which try to reduce w by

selecting new opponents)
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• Rather than using strict strategies, we can define probabilities with which strategies
are used.

• This models:

– Noise in the communications process
– Faulty memory

• It also has the advantage that the importance of the initial move is lost after a
sufficient number of moves.

• One way to define stochastic strategies is by defining 2-tuples (p, q) which denote
the probabilities of a C after an opponent’s C or D (respectively).

• Nowak and Sigmund (1992) found that generous TFT with p = 1 and

q = min
(

1− T −R
R− S

,
R− P
T − P

)
(9)

was the optimum in the case of w = 1.
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• Note that Grim cannot be modelled using the 2-tuple approach

• The above stochastic model can be extend to include more strategies.

• By setting the probability of cooperation after receiving a reward R, S, T,orP we
can devise a large space of possible strategies, including

– TFT: (1, 0, 1, 0)
– Pavlov : (1, 0, 0, 1)
– Grim: (1, 0, 0, 0)
– AllD: (0, 0, 0, 0)
– AllC: (1, 1, 1, 1)

• Strictly speaking, we should also add a fifth probability, i.e. the probability for C on
the first move.
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• Using 100 random starting points in the 2-tuples-models, and a genetic algorithm
using payoff as fitness function was implemented.

• Initially AllD-like strategies increased rapidly and AllC-like “suckers” were removed.

• Then, if sufficient TFT-like strategies were in the initial population, they eradicated
the AllD-like strategies

• After this GTFT appeared and started to dominate.

• Similar results were obtained using the 4-tuple approach, but here Pavlov could
appear, and did so (it was discovered this way).
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• The C-implementation of the 5-tuple approach is simple, in particular if we choose

R = 3, S = 1, T = 4, P = 2 (10)

• These values are stored in a payoff matrix, which is a an array of integers:

typedef int payOffMatrix[2][2]

we define DEFECT as 0 and COOPERATE as 1.

• We can then store the strategy in an array strat of floating point numbers of length
5, which has indexes running from 0 to 4.

• We store the probability for a C in the first move in strat[0]

• We store the probability for a C after a previous payoff of lastPayOff in
strat[lastPayOff]
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• A player can be defined as

typedef struct{
int totalPayOff,

lastPayOff;
float strat[5];

} player;

• The fields totalPayOff and lastPayOff must be initialized at 0.

• The function genMove is simply:

int genMove(player p)
{ return randomdbl() < p.strat[p.lastPayOff];
}

with randomdbl the random number generator used previously.
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• One round of the game is implemented as

void playRound(player *p1, player *p2,
payOffMatrix mat )

{
int move1 = genMove(*p1), /* compute moves */

move2 = genMove(*p2);

p1->lastPayOff = mat[move1][move2]; /* compute new payoffs */
p2->lastPayOff = mat[move2][move1];

p1->totalPayOff += p1->lastPayOff; /* add last payoffs */
p2->totalPayOff += p2->lastPayOff; /* to totals */

}

• At the end of this, the scores are updated and the players are ready for the next
round.

Modelling and Simulation 20



Mathematics

Computing Science

&&
tics Assignment

• A file ipd.c is available on the web-site

• Work out at which w you should use in order for TFT to beat AllD.

• What is then the expected number of rounds N two player would meet, given w?

• Implement players for the following strategies: TFT, STFT, Grim, AllD, AllC, Pavlov.

• Adapt the program to run a round-robin tournament

• Put the results for each match in a table and compute the winner.

• Discuss your results

• Change the deterministic TFT into GTFT, and Pavlov into a stochastic version,
exchanging 1 for 0.99 and 0 for 0.01

• Rerun against each other, and against AllD and the original TFT.

• Again, discuss your results

• If time allows, try to devise other strategies, to see if you can do better.
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