
Mathematics

Computing Science

&&
tics

Game Theoretical Approaches to Modelling and
Simulation II

Michael H. F. Wilkinson

Institute for Mathematics and Computing Science
University of Groningen

The Netherlands

January 2003

Modelling and Simulation



Mathematics

Computing Science

&&
tics This Week

• Asymmetric games: Bimatrix models

• Adaptive dynamics

• Evolution of cooperation

• Iterated Prisoner’s Dilemma.

– Theory,
– Different strategies
– Experimental results
– Links to real world?
– Implementation in C
– The practical assignment.

Modelling and Simulation 1



Mathematics

Computing Science

&&
tics Asymmetric games: Bimatrix models

• In the previous cases we have looked at symmetric games:

– If moves are interchanged from player to player, so are the payoffs
– Modelling is done using a single payoff matrix

• In practice, games between players may be asymmetric

• The goals may be different to players

• The values of resources may be different to different players: why is a hare faster
than a fox? A hare runs for his life, a fox for his meal!

• The roles may be different (e.g. parent – child)

• To model such games we use two payoff matrices, or a bimatrix.

Modelling and Simulation 2



Mathematics

Computing Science

&&
tics Bimatrix models: Battle of the Sexes I

• A classic example for a bimatrix game is the battle of the sexes, which concerns
parental investment in the offspring

• For males who abandon the females after mating can go on to mate with other
females.

• Females could prevent this by being “coy”, demanding an investment E from the
male before mating, during a so-called “engagement” period.

• After such an investment, it would pay more for a male to help raise his young
(because he is now relatively sure they are his), rather than find another mate (by
which time the mating season may be over).

• However, once all males have been selected for faithfulness, a “fast” female, who
will mate without engagement cost will gain

• This in turn leads to the appearance of “philandering” males, who will mate and
desert the females to mate with another

Modelling and Simulation 3



Mathematics

Computing Science

&&
tics Bimatrix models: Battle of the Sexes II

• We can formalize this:

– If a coy female mates with a faithful male, they both win gain G and share the
cost of upbringing C, and both pay E, so each wins G− C/2− E.

– If a fast female mates with a faithful male, they both win gain G and share the
cost of upbringing C, without the cost E, so each wins G− C/2.

– If a fast female meets a philandering male, she gets G− C, whereas he gets G.
– If a coy female encounters a philandering male, she refuses to mate, so both

receive 0

• In terms of payoff matrices we have

A =
[

0 G
G− C

2 − E G− C
2

]
B =

[
0 G− C

2 − E
G− C G− C

2

]
(1)

with A the matrix for males and B the matrix for females

• It turns out there is no stable equilibrium for this case.
Modelling and Simulation 4



Mathematics

Computing Science

&&
tics Adaptive dynamics

• In the previous models we only look at single encounters

• Strategies change in a population through competition or copying

• Each strategy consists of a fixed set of probabilities for each move

• Unless mutations are allowed, no new strategies are developed

• In reality, players may change their strategy, depending on previous experience.

• Adaptive strategies are formulated differently;

– The set of probabilities for moves is a function of the state of the player
– The state of a player depends on previous games, either of the player himself, or

those of others.

• The resulting adaptive dynamics can be highly complex

Modelling and Simulation 5



Mathematics

Computing Science

&&
tics Evolution of Cooperation

• One field in which adaptive dynamics are important is that of the emergence of
cooperation

• This emergence might concerns the evolution of cooperative behaviour in animals
(not just the lack of aggression as in the Hawk-Dove game)

• It might also be the cooperation in economics and sociology: formation of
coalitions, companies, etc.

• The core question is always: Why, when faced with an easy quick win at the
expense of another, do many people or animals take a lower profit which does not
harm the other.

• Another way of looking at the problem might be: why do we have such a strong
feeling of fairness? Why do we get angry seeing someone cheat another when he
should have shared?

• It turns out that single encounter games cannot solve this problem

Modelling and Simulation 6



Mathematics

Computing Science

&&
tics Iterated Prisoner’s Dilemma (IPD) I

• Iterated prisoner’s dilemma is the classic example for adaptive strategies and the
evolution of cooperation

• Prisoner’s dilemma is a simple two player game in which there are two possible
moves: cooperate (C) or defect (D)

• If both players cooperate, they receive a reward R

• If both players defect, they receive a punishment P

• If a player defects, but the other cooperates, he receives a temptation T

• If a player cooperates and the opponent defects, he receives the sucker’s reward S

• In all cases we assume

T > R > P > S and 2R > T + S (2)

Modelling and Simulation 7



Mathematics

Computing Science

&&
tics IPD II

• The payoff matrix is

C D
C R S

D T P

• If the game is played once: the best strategy is always defect (AllD):

– If the other cooperates, cooperating gets you R.
– If the other cooperates, defecting gets you T > R.
– If the other defects, cooperating gets you S.
– If the other defects, defecting yourself gets you P > S.

Therefore, you are always better off defecting

• This basically formalizes the selfishness problem

Modelling and Simulation 8



Mathematics

Computing Science

&&
tics IPD III

• Now consider the case when you will encounter the same player again, with a
probability w.

• Let An denote the payoff in the n-th round, the total expected payoff is given by

A =
∞∑
n=0

Anw
n (3)

• In the limiting case of w = 1, this diverges, so instead we take the limit of the mean

A = lim
n←∞

∑N
n=0Anw

n

N + 1
(4)

• Obviously, if w is very small, each player should still just defect, since the
possibilities for revenge are small.

Modelling and Simulation 9



Mathematics

Computing Science

&&
tics IPD IV: Classifications of Strategies

• Strategies in IPD are programs which tell you which move to make in each round.

• Strategies are sometimes classified as:

Nice: Does not defect first
Retaliatory: Punishes defection
Forgiving: Returns to cooperation following cooperation of opponent
Suspicious: Does not cooperate until the other cooperates
Generous: Does not always retaliate at a first defection

• No best strategy exist, it all depends on the opponent

Modelling and Simulation 10



Mathematics

Computing Science

&&
tics IPD V

• If the opponent is an AllC player, AllD is best, because its payoff will be

A =
∞∑
n=0

Twn =
T

1− w
(5)

• However, if the opponent is Grim, who is nice, retaliatory and totally unforgiving, the
payoff after your first defection will be

A =
∞∑
n=0

Pwn =
P

1− w
(6)

at best!

• This means AllC would perform better (A = R/(1− w)), provided

w >
T −R
T − P

(7)

Modelling and Simulation 11



Mathematics

Computing Science

&&
tics IPD VI: Tit-For-Tat

• A simple strategy which does very well in round-robin tournaments (each player
competes in turn with each other player) is Tit-For-Tat (TFT).

• Curiously, TFT never gets more points per game than its opponent.

• It starts of with C, so it is nice

• It then copies the opponents last move

• This behaviour makes it retaliatory, because a defection will be repayed by a
defection

• It is also forgiving, because it will return to playing C if the opponent returns to C

• It can outcompete a population of AllD and gain dominance if

w ≥ max
(
T −R
T − P

,
T −R
R− S

)
(8)

Modelling and Simulation 12



Mathematics

Computing Science

&&
tics IPD VII: Pavlov

• TFT has two weaknesses:
1. It is sensitive to noise: if there is a small probability of a message (C or D) being

misinterpreted, two TFT players enter into a round of mutual retaliations
2. It is sensitive to invasion by other strategies such as Pavlov, or any nice strategy.

• Pavlov takes both his own and the opponents last move into account to compute
the next

• This can be formalized as a function of the last reward
– If the last reward is R, play C
– If the last reward is P , play C
– If the last reward is S, play D
– If the last reward is T , play D

• In effect, Pavlov retains his strategy after high payoff (T or R) and changes strategy
after low payoff (S or P ).

• It can correct for occasional mistakes

• Strict cooperators cannot invade
Modelling and Simulation 13



Mathematics

Computing Science

&&
tics IPD VIII: TFT variants

• The success of TFT resulted in the development of some variants

• Tit-For-Two-Tats (TF2T), which retaliates only after two Ds.

– More generous
– More tolerant for errors
– Co-exists with TFT

• Suspicious-Tit-For-Tat (STFT) which starts with D instead of C, so it is not nice
(gets on with TFT like a house on fire).

• Observer Tit-For-Tat Uses observations of potential opponents in other games to
decide whether to start with D or C.

– Requires the possibility of observations
– Suppresses “Roving” strategies (AllD strategies which try to reduce w by

selecting new opponents)

Modelling and Simulation 14



Mathematics

Computing Science

&&
tics IPD IX: Stochastic Strategies

• Rather than using strict strategies, we can define probabilities with which strategies
are used.

• This models:

– Noise in the communications process
– Faulty memory

• It also has the advantage that the importance of the initial move is lost after a
sufficient number of moves.

• One way to define stochastic strategies is by defining 2-tuples (p, q) which denote
the probabilities of a C after an opponent’s C or D (respectively).

• Nowak and Sigmund (1992) found that generous TFT with p = 1 and

q = min
(

1− T −R
R− S

,
R− P
T − P

)
(9)

was the optimum in the case of w = 1.
Modelling and Simulation 15



Mathematics

Computing Science

&&
tics IPD X: Stochastic Strategies

• Note that Grim cannot be modelled using the 2-tuple approach

• The above stochastic model can be extend to include more strategies.

• By setting the probability of cooperation after receiving a reward R, S, T,orP we
can devise a large space of possible strategies, including

– TFT: (1, 0, 1, 0)
– Pavlov : (1, 0, 0, 1)
– Grim: (1, 0, 0, 0)
– AllD: (0, 0, 0, 0)
– AllC: (1, 1, 1, 1)

• Strictly speaking, we should also add a fifth probability, i.e. the probability for C on
the first move.

Modelling and Simulation 16



Mathematics

Computing Science

&&
tics IPD XI: Experiments

• Using 100 random starting points in the 2-tuples-models, and a genetic algorithm
using payoff as fitness function was implemented.

• Initially AllD-like strategies increased rapidly and AllC-like “suckers” were removed.

• Then, if sufficient TFT-like strategies were in the initial population, they eradicated
the AllD-like strategies

• After this GTFT appeared and started to dominate.

• Similar results were obtained using the 4-tuple approach, but here Pavlov could
appear, and did so (it was discovered this way).

Modelling and Simulation 17



Mathematics

Computing Science

&&
tics Implementation issues in C I

• The C-implementation of the 5-tuple approach is simple, in particular if we choose

R = 3, S = 1, T = 4, P = 2 (10)

• These values are stored in a payoff matrix, which is a an array of integers:

typedef int payOffMatrix[2][2]

we define DEFECT as 0 and COOPERATE as 1.

• We can then store the strategy in an array strat of floating point numbers of length
5, which has indexes running from 0 to 4.

• We store the probability for a C in the first move in strat[0]

• We store the probability for a C after a previous payoff of lastPayOff in
strat[lastPayOff]

Modelling and Simulation 18



Mathematics

Computing Science

&&
tics Implementation issues in C II

• A player can be defined as

typedef struct{
int totalPayOff,

lastPayOff;
float strat[5];

} player;

• The fields totalPayOff and lastPayOff must be initialized at 0.

• The function genMove is simply:

int genMove(player p)
{ return randomdbl() < p.strat[p.lastPayOff];
}

with randomdbl the random number generator used previously.

Modelling and Simulation 19



Mathematics

Computing Science

&&
tics Implementation issues in C III

• One round of the game is implemented as

void playRound(player *p1, player *p2,
payOffMatrix mat )

{
int move1 = genMove(*p1), /* compute moves */

move2 = genMove(*p2);

p1->lastPayOff = mat[move1][move2]; /* compute new payoffs */
p2->lastPayOff = mat[move2][move1];

p1->totalPayOff += p1->lastPayOff; /* add last payoffs */
p2->totalPayOff += p2->lastPayOff; /* to totals */

}

• At the end of this, the scores are updated and the players are ready for the next
round.

Modelling and Simulation 20



Mathematics

Computing Science

&&
tics Assignment

• A file ipd.c is available on the web-site

• Work out at which w you should use in order for TFT to beat AllD.

• What is then the expected number of rounds N two player would meet, given w?

• Implement players for the following strategies: TFT, STFT, Grim, AllD, AllC, Pavlov.

• Adapt the program to run a round-robin tournament

• Put the results for each match in a table and compute the winner.

• Discuss your results

• Change the deterministic TFT into GTFT, and Pavlov into a stochastic version,
exchanging 1 for 0.99 and 0 for 0.01

• Rerun against each other, and against AllD and the original TFT.

• Again, discuss your results

• If time allows, try to devise other strategies, to see if you can do better.
Modelling and Simulation 21


	This Week
	Asymmetric games: Bimatrix models
	Bimatrix models: Battle of the Sexes I
	Bimatrix models: Battle of the Sexes II
	Adaptive dynamics
	Evolution of Cooperation
	Iterated Prisoner's Dilemma (IPD) I
	IPD II
	IPD III
	IPD IV: Classifications of Strategies
	IPD V
	IPD VI: Tit-For-Tat
	IPD VII: Pavlov
	IPD VIII: TFT variants
	IPD IX: Stochastic Strategies
	IPD X: Stochastic Strategies
	IPD XI: Experiments
	Implementation issues in C I
	Implementation issues in C II
	Implementation issues in C III
	Assignment

