
Game Theoretical Approaches to Modelling and
Simulation

Michael H. F. Wilkinson

Institute for Mathematics and Computing Science
University of Groningen

The Netherlands

November 2004

Introduction to Computational Science

Overview

Context

A Classic: Hawks vs. Doves

Pay-off matrices

Nash-equilibria and Evolutionary Stable Strategies

Pure vs. Mixed Strategies

Population Games

Replicator dynamics

Asymmetric games: Bimatrix models

Adaptive dynamics

Evolution of cooperation

Introduction to Computational Science

Context

Game theoretical models are commonly used in three contexts:

1. Evolutionary theory
2. Economics
3. Sociology

Less-known fields are e.g. in A.I. (deciding optimal strategies) and in computer
games.

The games involved are usually very simple: two players, only a few types of
moves.

Introduction to Computational Science

Hawks vs. Doves I

The Hawks vs. Doves game tries to explain ritualized “fighting” behaviour in many
animals.

Many animal species rarely cause real damage during conflicts:

King-cobra males try to push each-other’s heads to the ground rather than biting
Stags have roaring matches, walk parallel, and sometimes lock horns and push
rather than trying to kill each-other
When cats fight they scream more than they actually fight

The more dangerous the species, the more ritual the fight becomes.

Naive reasoning using “survival of the fittest” suggest that killing rivals when an
opportunity arises would be common

Introduction to Computational Science

Hawks vs. Doves II

Suppose two rivals of the same species meet at the location of some resource with
value G.

Suppose there are two “pure” strategies:

1. Hawk: you always escalate the conflict until either the other withdraws, or you
are badly hurt.

2. Dove: you posture until the other withdraws, but you withdraw if the other
escalates or seems too strong.

If two hawks meet, one wins G but the other loses cost C, with G < C.

If two doves meet, one withdraws and loses nothing, and the other wins G.

If a hawk meets a dove, the dove loses nothing and the hawk wins G.

Introduction to Computational Science

Hawks vs. Doves III

We can formalize this in a payoff matrix :

if it meets a hawk if it meets a dove

a hawk receives G−C
2 G

a dove receives 0 G
2

In each cell the average payoff is listed for a given pair of strategies.

We can now study the optimal behaviour, which depends on the population
structure:

If doves dominate, it pays to be a hawk, because you almost always win G, vs. G
2

for doves.
If hawks dominate, it pays to be a dove, because you almost always win 0 > G−C

2 .

Introduction to Computational Science

Hawks vs. Doves IV

For a given population with fraction p of hawks and 1− p of doves, the payoff for
hawks Ph becomes:

Ph =
G− C

2
p + (1− p)G (1)

Under the same assumptions, the payoff for doves Pd is

Pd = (1− p)
G

2
(2)

The population reaches stability when Ph = Pd or

(1− p)
G

2
=

G− C

2
p + (1− p)G ⇒ p =

G

C
(3)

So if the cost C is high (the animals are dangerous) hawks becomes rare.

Introduction to Computational Science

Hawks vs. Doves V

Let us introduce two new strategies:

1. bullies: Simulate escalation but run away if the other fights back.
2. retaliators: behaves like dove unless the other escalates, then it fights back.

The payoff matrix becomes:
if it meets a hawk a dove a bully a retaliator

a hawk receives G−C
2 G G G−C

2

a dove receives 0 G
2 0 G

2

a bully receives 0 G G
2 0

a retaliator receives G−C
2

G
2 G G

2

Introduction to Computational Science

Hawks vs. Doves VI

Let xb, xd, xh, xr, denote the numbers of bullies, doves, hawks and retaliators, and
Pb, Pd, Ph, Pr their payoffs.

The payoffs become:

Ph = (xr + xh)
G− C

2
+ (xb + xd)G (4)

Pd = (xd + xr)
G

2
(5)

Pb = xdG + xb
G

2
(6)

Pr = xh
G− C

2
+ (xd + xr)

G

2
+ xbG (7)

Introduction to Computational Science

Hawks vs. Doves VII

Demanding that Pb = Pd at stability means that

xr = xb + xd (8)

If we insert this into (4) and (7), and then require that Ph = Pr we arrive at

xr(G− C) = xbG (9)

This can only be the case if the signs of xr and xb are different which is
meaningless in this context.

Therefore, no 4-strategy equilibrium exists in this case.

Introduction to Computational Science

Hawks vs. Doves VIII

If xb = 0, equating Ph and Pr yields

xr =
G

C
xd (10)

inserting this into (4) and (5) yields xh = 0

If xr = 0, equating Pb and Pd yields that xb = −xd which is again meaningless.

The two-strategy options:

Doves and retaliators can live together in any ratio (why?)
Retaliators drive hawks to extinction (why?)
Retaliators drive bullies to extinction (why?)
Bullies drive doves into extinction
Bullies and hawks achieve the same equilibrium as hawks and doves.

Introduction to Computational Science

Evolutionary Stable Strategies I

A strategy S is an Evolutionary Stable Strategy (ESS) if a pure population of
S-strategists is stable against invasion by any other strategy.

Let the fitness of an individual with strategy Si is a population P be denoted
F (Si, P).

A population consisting of a mixture of individuals with N strategies P may be
denoted as

∑N
j=1 pjSj with pj the fraction of individuals with strategy Sj, and∑N

j=1 pj = 1.

for a pure population of Si-strategists we have P = Si.

Si is an ESS if
F (Si, Si) > F (Sj, Si) ∀j 6= i (11)

Introduction to Computational Science

Evolutionary Stable Strategies II

In the case above, neither hawks, doves, bullies nor retaliators are an ESS.

ESSs are NOT unique: there are cases in which

F (S1, S1) > F (S2, S1) and F (S2, S2) > F (S1, S2) (12)

An example is that of toxin producing bacteria and their susceptible counterparts

The payoffs F (S, P) and F (T, P) of the susceptible strategy S and toxin producing
strategy T in a population P = xS + (1− x)T are

F (S, P) = µ− (1− x)κ and F (S, P) = µ− ε (13)

with µ the relative growth rate, κ the toxin kill rate and ε the cost of toxin production.

If ε < κ, F (S, S) = µ > µ− ε = F (T, S) and F (T, T) = µ− ε > µ− κ = F (S, T).

Introduction to Computational Science

Normal Form Games I

In general, if N pure strategies are available we can allow mixed strategies S by
assigning each strategy Si a given probability pi to be used by an individual.

each strategy is now a point in the simplex

RN =
{
p = (p1, p2, . . . , pN),

N∑
i=1

pi = 1
}

(14)

The corners of the simplex are given by the unit vectors along the coordinate axes:
the pure strategies.

The interior of the simplex consist of completely mixed strategies (all pi > 0)

On the boundary of the simplex are those strategies for which one or more pi = 0

Introduction to Computational Science

Normal Form Games II

Each pure-strategy player using Si extracts a payoff uij against a pure-strategy
player using Sj.

The N ×N matrix U = (uij) is the payoff matrix.

An Si-strategist extracts a payoff Pi against a p-strategist of

Pi = (Up)i =
N∑

j=1

uijpj (15)

For a mixed strategy q-player the payoff Pq against a p-strategist becomes

Pq = q ·Up =
N∑

j=1

N∑
i=1

uijqipj (16)

Introduction to Computational Science

Nash Equilibria

We denote the best replies to strategy p as β(p)

This is the set of strategies q for which the map q→ q ·Up attains the maximum
value.

If
p ∈ β(p), (17)

p is a Nash equilibrium.

Every normal form game has at least one Nash equilibrium.

If
q ·Up < p ·Up,∀q 6= p, (18)

p is a strict Nash equilibrium.

All strict Nash equilibria are pure strategies

Introduction to Computational Science

Nash Equilibria and ESS

If a Nash equilibrium p is strict, any population consisting only of p-strategists
cannot be invaded by other strategies.

Such strict Nash equilibria are ESS!

Non-strict Nash equilibria are not necessarily ESS.

ESS requires TWO conditions:

1. the equilibrium condition

q ·Up ≤ p ·Up, ∀q ∈ RN (19)

2. the stability condition

q ·Uq < p ·Uq, if q 6= p, and q ·Up = p ·Up (20)

Introduction to Computational Science

Population Games: The Sex-Ratio Game

Why do animals (including us) produce offspring of both sexes in equal numbers?

Why is this a problem? Because populations with more females than males could
reproduce faster (ask any farmer).

However, if there are mostly females, then producing more males as offspring
would be the better strategy:

some females might never find males
all males are likely to find females

If males dominate producing females is better.

Thus, the payoff of a strategy depends on the population, rather than on a single
individual’s strategy.

This means, the Sex-Ratio Game is a Population Game.

Introduction to Computational Science

The Sex-Ratio Game II

Consider the payoff in terms of the number of grandchildren

Let p be the sex-ratio of a given individual, and m the average sex ratio in the
population

Let the number of children of the current population be N1, of which mN1 are
males, and (1−m)N1 females.

Let the number of grandchildren of the current generation be N2.

Each male child of the current generation produces an average of N2/mN1 of these
grandchildren

Each female child N2/(1−m)N1.

The number of grandchildren N2,p of an individual with sex ratio p is

N2,p = p
N2

mN1
+ (1− p)

N2

(1−m)N1
(21)

Introduction to Computational Science

The Sex-Ratio Game III

The fitness is proportional to

w(p, m) =
p

m
+

1− p

1−m
(22)

If the population consists of a individuals with a sex ratio of q, is this evolutionary
stable?

Suppose a small fraction ε of the population mutates into some other value p for the
sex ratio. The population mean m is then

m = εp + (1− ε)q (23)

The q-strategy is only evolutionary stable if w(p, m) < w(q, m).

If q = 0.5 it can easily be shown that this holds true for all p 6= q.

Introduction to Computational Science

Population Games

This notion can be generalized by stating that the payoff Pi for a pure strategy
player Si depends on the probabilities of meeting a particular strategy in the
population.

More formally: Pi is a function of the frequencies mj with which the pure strategies
Sj are used in the population.

Note that m = (m1,m2, . . . ,mn) is just a point in the simplex RN .

The payoff Pp for a p-strategist is

Pp =
N∑

i=1

piPi(m) = p ·P(m). (24)

Introduction to Computational Science

Replicator Dynamics I

These describe the evolution of the frequencies with which different strategies
occur in the population

Assume we have n types in the population with frequencies x1 to xn.

As above, the fitness fi will be a function of the state x = (x1, x2, . . . , xn).

We assume that the population is large enough to model the rate of change of x as
a function of time by differential equations.

We assume the change in frequency is linked to its fitness compared to the
average population fitness

1
xi

dxi

dt
= fi(x)− f̄(x) or

dxi

dt
= (fi(x)− f̄(x))xi (25)

Introduction to Computational Science

Replicator Dynamics II

Assume that the replicator dynamics derive from a normal form game with N pure
strategies S1, S2, . . . , SN (note N 6= n), and payoff matrix U.

The n types in the population correspond to (possibly mixed) strategies
p1,p2, . . . ,pn.

The state of the system is given by x = (x1, x2, . . . , xn), which is a point in simplex
Rn (not RN).

Let matrix A = (aij) = (pi ·Upj).

The fitness fi now becomes

fi(x) =
n∑

j=1

aijxj = (Ax)i (26)

Introduction to Computational Science

Replicator Dynamics III

The replicator equation (25) becomes

dxi

dt
= (((Ax)i − x ·Ax)xi (27)

We now say that a point y ∈ Rn is a Nash equilibrium if

x ·Ay ≤ y ·Ay ∀x ∈ Rn (28)

It is an evolutionary stable state (not strategy!) if

x ·Ax < y ·Ax ∀x 6= y (29)

in a neighbourhood of y.

Introduction to Computational Science

Replicator Dynamics IV

A simple example of replicator dynamics is in the Hawk-Dove game

For two strategies we can simplify the replicator equation by replacing x1 by x and
x2 by 1− x. We obtain

dx

dt
= x(1− x)((Ax)1 − (Ax)2) (30)

In the Hawk-Dove case we obtain

dx

dt
= x(1− x)(G− Cx) (31)

This has a point attractor G/C for the domain]0, 1[.

Introduction to Computational Science

Replicator Dynamics V

More complex dynamics are obtained with the so called Rock-Scissors-Paper
game.

We now have a zero sum payoff matrix

A =

(0 1 −1
−1 0 1
1 −1 0

)
(32)

This yields replicator equations

dx1

dt
= x1(x2 − x3) (33)

dx2

dt
= x2(x3 − x1) (34)

dx3

dt
= x3(x1 − x2) (35)

Introduction to Computational Science

Replicator Dynamics V

This yields equilibria at

x = (1/3, 1/3, 1/3) (36)

x = (1, 0, 0) (37)

x = (0, 1, 0) (38)

x = (0, 0, 1) (39)

(how do we find these?)

The system will typically oscillate in orbits in which x1x2x3 = c, centred on
(1/3, 1/3, 1/3).

Introduction to Computational Science

Asymmetric games: Bimatrix models

In the previous cases we have looked at symmetric games:

If moves are interchanged from player to player, so are the payoffs
Modelling is done using a single payoff matrix

In practice, games between players may be asymmetric

The goals may be different to players

The values of resources may be different to different players: why is a hare faster
than a fox? A hare runs for his life, a fox for his meal!

The roles may be different (e.g. parent – child)

To model such games we use two payoff matrices, or a bimatrix.

Introduction to Computational Science

Bimatrix models: Battle of the Sexes I

A classic example for a bimatrix game is the battle of the sexes, which concerns
parental investment in the offspring

For males who abandon the females after mating can go on to mate with other
females.

Females could prevent this by being “coy”, demanding an investment E from the
male before mating, during a so-called “engagement” period.

After such an investment, it would pay more for a male to help raise his young
(because he is now relatively sure they are his), rather than find another mate (by
which time the mating season may be over).

However, once all males have been selected for faithfulness, a “fast” female, who
will mate without engagement cost will gain

This in turn leads to the appearance of “philandering” males, who will mate and
desert the females to mate with another

Introduction to Computational Science

Bimatrix models: Battle of the Sexes II

We can formalize this:

If a coy female mates with a faithful male, they both win gain G and share the
cost of upbringing C, and both pay E, so each wins G− C/2− E.
If a fast female mates with a faithful male, they both win gain G and share the
cost of upbringing C, without the cost E, so each wins G− C/2.
If a fast female meets a philandering male, she gets G− C, whereas he gets G.
If a coy female encounters a philandering male, she refuses to mate, so both
receive 0

In terms of payoff matrices we have

A =
[

0 G
G− C

2 − E G− C
2

]
B =

[
0 G− C

2 − E
G− C G− C

2

]
(40)

with A the matrix for males and B the matrix for females

It turns out there is no stable equilibrium for this case.

Introduction to Computational Science

Adaptive dynamics

In the previous models we only look at single encounters

Strategies change in a population through competition or copying

Each strategy consists of a fixed set of probabilities for each move

Unless mutations are allowed, no new strategies are developed

In reality, players may change their strategy, depending on previous experience.

Adaptive strategies are formulated differently;

The set of probabilities for moves is a function of the state of the player
The state of a player depends on previous games, either of the player himself, or
those of others.

The resulting adaptive dynamics can be highly complex

Introduction to Computational Science

Evolution of Cooperation

One field in which adaptive dynamics are important is that of the emergence of
cooperation

This emergence might concerns the evolution of cooperative behaviour in animals
(not just the lack of aggression as in the Hawk-Dove game)

It might also be the cooperation in economics and sociology: formation of
coalitions, companies, etc.

The core question is always: Why, when faced with an easy quick win at the
expense of another, do many people or animals take a lower profit which does not
harm the other.

Another way of looking at the problem might be: why do we have such a strong
feeling of fairness? Why do we get angry seeing someone cheat another when he
should have shared?

It turns out that single encounter games cannot solve this problem

Introduction to Computational Science

Iterated Prisoner’s Dilemma (IPD) I

Iterated prisoner’s dilemma is the classic example for adaptive strategies and the
evolution of cooperation

Prisoner’s dilemma is a simple two player game in which there are two possible
moves: cooperate (C) or defect (D)

If both players cooperate, they receive a reward R

If both players defect, they receive a punishment P

If a player defects, but the other cooperates, he receives a temptation T

If a player cooperates and the opponent defects, he receives the sucker’s reward S

In all cases we assume

T > R > P > S and 2R > T + S (41)

Introduction to Computational Science

IPD II

The payoff matrix is

C D
C R S

D T P

If the game is played once: the best strategy is always defect (AllD):

If the other cooperates, cooperating gets you R.
If the other cooperates, defecting gets you T > R.
If the other defects, cooperating gets you S.
If the other defects, defecting yourself gets you P > S.

Therefore, you are always better off defecting

This basically formalizes the selfishness problem

Introduction to Computational Science

IPD III

Now consider the case when you will encounter the same player again, with a
probability w.

Let An denote the payoff in the n-th round, the total expected payoff is given by

A =
∞∑

n=0

Anwn (42)

In the limiting case of w = 1, this diverges, so instead we take the limit of the mean

A = lim
n←∞

∑N
n=0 Anwn

N + 1
(43)

Obviously, if w is very small, each player should still just defect, since the
possibilities for revenge are small.

Introduction to Computational Science

IPD IV: Classifications of Strategies

Strategies in IPD are programs which tell you which move to make in each round.

Strategies are sometimes classified as:

Nice: Does not defect first
Retaliatory: Punishes defection
Forgiving: Returns to cooperation following cooperation of opponent
Suspicious: Does not cooperate until the other cooperates
Generous: Does not always retaliate at a first defection

No best strategy exist, it all depends on the opponent

Introduction to Computational Science

IPD V

If the opponent is an AllC player, AllD is best, because its payoff will be

A =
∞∑

n=0

Twn =
T

1− w
(44)

However, if the opponent is Grim, who is nice, retaliatory and totally unforgiving, the
payoff after your first defection will be

A =
∞∑

n=0

Pwn =
P

1− w
(45)

at best!

This means AllC would perform better (A = R/(1− w)), provided

w >
T −R

T − P
(46)

Introduction to Computational Science

IPD VI: Tit-For-Tat

A simple strategy which does very well in round-robin tournaments (each player
competes in turn with each other player) is Tit-For-Tat (TFT).

Curiously, TFT never gets more points per game than its opponent.

It starts of with C, so it is nice

It then copies the opponents last move

This behaviour makes it retaliatory, because a defection will be repayed by a
defection

It is also forgiving, because it will return to playing C if the opponent returns to C

It can outcompete a population of AllD and gain dominance if

w ≥ max
(

T −R

T − P
,
T −R

R− S

)
(47)

Introduction to Computational Science

IPD VII: Pavlov

TFT has two weaknesses:

1. It is sensitive to noise: if there is a small probability of a message (C or D) being
misinterpreted, two TFT players enter into a round of mutual retaliations

2. It is sensitive to invasion by other strategies such as Pavlov, or any nice strategy.

Pavlov takes both his own and the opponents last move into account to compute
the next

This can be formalized as a function of the last reward

If the last reward is R, play C
If the last reward is P , play C
If the last reward is S, play D
If the last reward is T , play D

In effect, Pavlov retains his strategy after high payoff (T or R) and changes strategy
after low payoff (S or P).

It can correct for occasional mistakes

Strict cooperators cannot invade
Introduction to Computational Science

IPD VIII: TFT variants

The success of TFT resulted in the development of some variants

Tit-For-Two-Tats (TF2T), which retaliates only after two Ds.

More generous
More tolerant for errors
Co-exists with TFT

Suspicious-Tit-For-Tat (STFT) which starts with D instead of C, so it is not nice
(gets on with TFT like a house on fire).

Observer Tit-For-Tat Uses observations of potential opponents in other games to
decide whether to start with D or C.

Requires the possibility of observations
Suppresses “Roving” strategies (AllD strategies which try to reduce w by
selecting new opponents)

Introduction to Computational Science

IPD IX: Stochastic Strategies

Rather than using strict strategies, we can define probabilities with which strategies
are used.

This models:

Noise in the communications process
Faulty memory

It also has the advantage that the importance of the initial move is lost after a
sufficient number of moves.

One way to define stochastic strategies is by defining 2-tuples (p, q) which denote
the probabilities of a C after an opponent’s C or D (respectively).

Nowak and Sigmund (1992) found that generous TFT with p = 1 and

q = min
(

1− T −R

R− S
,
R− P

T − P

)
(48)

was the optimum in the case of w = 1.

Introduction to Computational Science

IPD X: Stochastic Strategies

Note that Grim cannot be modelled using the 2-tuple approach

The above stochastic model can be extend to include more strategies.

By setting the probability of cooperation after receiving a reward R,S, T, orP we
can devise a large space of possible strategies, including

TFT: (1, 0, 1, 0)
Pavlov : (1, 0, 0, 1)
Grim: (1, 0, 0, 0)
AllD: (0, 0, 0, 0)
AllC: (1, 1, 1, 1)

Strictly speaking, we should also add a fifth probability, i.e. the probability for C on
the first move.

Introduction to Computational Science

IPD XI: Experiments

Using 100 random starting points in the 2-tuples-models, and a genetic algorithm
using payoff as fitness function was implemented.

Initially AllD-like strategies increased rapidly and AllC-like “suckers” were removed.

Then, if sufficient TFT-like strategies were in the initial population, they eradicated
the AllD-like strategies

After this GTFT appeared and started to dominate.

Similar results were obtained using the 4-tuple approach, but here Pavlov could
appear, and did so (it was discovered this way).

Introduction to Computational Science

	Overview
	Context
	Hawks vs. Doves I
	Hawks vs. Doves II
	Hawks vs. Doves III
	Hawks vs. Doves IV
	Hawks vs. Doves V
	Hawks vs. Doves VI
	Hawks vs. Doves VII
	Hawks vs. Doves VIII
	Evolutionary Stable Strategies I
	Evolutionary Stable Strategies II
	Normal Form Games I
	Normal Form Games II
	Nash Equilibria
	Nash Equilibria and ESS
	Population Games: The Sex-Ratio Game
	The Sex-Ratio Game II
	The Sex-Ratio Game III
	Population Games
	Replicator Dynamics I
	Replicator Dynamics II
	Replicator Dynamics III
	Replicator Dynamics IV
	Replicator Dynamics V
	Replicator Dynamics V
	Asymmetric games: Bimatrix models
	Bimatrix models: Battle of the Sexes I
	Bimatrix models: Battle of the Sexes II
	Adaptive dynamics
	Evolution of Cooperation
	Iterated Prisoner's Dilemma (IPD) I
	IPD II
	IPD III
	IPD IV: Classifications of Strategies
	IPD V
	IPD VI: Tit-For-Tat
	IPD VII: Pavlov
	IPD VIII: TFT variants
	IPD IX: Stochastic Strategies
	IPD X: Stochastic Strategies
	IPD XI: Experiments

