
Modelling Software Evolution using Algebraic
Graph Rewriting ?

Selim Ciraci and Pim van den Broek

Software Engineering Group
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente
PO Box 217

7500 AE Enschede
The Netherlands

{s.ciraci, pimvdb}@ewi.utwente.nl

Abstract. We show how evolution requests can be formalized using
algebraic graph rewriting. In particular, we present a way to convert the
UML class diagrams to colored graphs. Since changes in software may
effect the relation between the methods of classes, our colored graph
representation also employs the relations in UML interaction diagrams.
Then, we provide a set of algebraic graph rewrite rules that formalizes the
changes that may be caused by an evolution request, using the pushout
construction in the category of marked colored graphs.

Keywords: Software evolvability, Software evolution, Evolution modelling,
graph rewriting.

1 Introduction

Studies have shown that maintenance and evolution are the longest and most
expensive phases in the software life-cycle [1]. From these phases, evolution has
started to receive the greatest attention, due to the marketing demands and fast
technological improvements of recent years. For software systems to continue to
be effective and to compete with similar systems on the market, they should
include new requirements or change the present ones. These requirements modi-
fications have an impact on the overall software system, and for organizations it
is important to know this impact without implementing the changes. There are
many studies that try to capture the scope of evolution. For example, Bennett
and Rajlich [1] state that software evolution occurs only after the initial software
system is developed. We consider evolution as a procedure for integrating new
requirements to the software system. Thus, evolution does not occur only after

? This work has been carried out as a part of the DARWIN project under the respon-
sibilities of the Embedded Systems Institute. This project is partially supported by
the Netherlands Ministry of Economic Affairs under the Bsik program.



the initial system is developed, since user requirements may also change during
the development of the initial system.

The term evolution first appeared in the software engineering literature in
a study based on the observations made on the source code of 20 releases of
the OS/360 operating system [2]. These observations have shown an increasing
trend in the complexity of the overall system. For example, nearly in all releases
new modules were added to the system. From then, most of the research on soft-
ware evolution is focused on analyzing the properties of evolution by conducting
empirical analysis on the source code of releases of software systems [3], [4].
Although such an analysis may help in estimation of the growth or the cost of
an evolution request, we believe that evolution still lacks a formal background,
rules or a model. Such a model may ease realization of evolution requests by
depicting the impact of the request by basing the request on certain rules.

Component New Component

SYSTEM

Component

NEW SYSTEM

New Component

Evolution

Embedding

Glue2

Glue1

Fig. 1. Evolution model

In this paper, we provide a model for software evolution that is based on al-
gebraic graph rewriting. Our idea is that software architecture can be modelled
as a colored graph and the evolution requests can be viewed as morphisms on
the components of the software system (e.g. classes), as can be seen in Figure 1.
Although UML class and interaction diagrams may also be used; using only one
model that combines the information given in these diagrams makes it easier to
adopt a model based on algebraic graph re-writting. For software architectures,
we follow the Unified Process [5] and use the UML class and interaction diagrams
because the process has defined output models and is a widely adopted standard.
Medvidovic and et al. [6] also states that UML ”as is” is suitable as an architec-
ture description language. A similar approach is taken by Alanen and Porres [7]
to combine the changes made on class diagrams of software systems by differ-
ent developers; similar to a version control system. The idea of using algebraic
graph rewriting to model software evolution is also used by Wermelinger and
Fiadeiro [8] and Mens, Eetvelde, Demeyer and Janssens [9]. The main difference
of our between the studies and our work is that we use marked graphs and we
build the evolution model at architecture level from UML class and interaction
diagrams.



The paper is organized as follows. In the next section brief information about
algebraic graph rewriting can be found. Then in section 3, we present our evo-
lution model; first the model of object oriented software system is presented
and then the evolution model build on the software system model is presented.
Finally, we conclude our discussion and present the future work in section 4.

2 Background on Graph Rewriting

In this section we present a brief summary on algebraic graph rewriting; de-
tailed information on this topic can be found in [10] and [11]. The main
idea of the algebraic approach to graph rewriting is to give an abstract alge-
braic characterization, using the pushout construction in the category of colored
graphs [10]. A colored graph, for example G, is represented by a 6-tuple as
G = {NG, AG, sG, tG,
mG,1,mG,2}. Here, NG denotes the set of nodes, AG denotes the set of edges; sG

is a mapping that maps the edges to their sources and tG maps them to their
targets. mG,1 and mG,2 are mappings that map the nodes and arcs in the graph
to the fixed alphabets of node and edge colors. Then a graph morphism f for a
given pair of graphs G and G′, which is presented as f : G → G′ or f or G → G′,
is a pair of maps fN : NG 7→ NG′ and fA : AG 7→ AG′ that preserves sources,
targets and colors. That is:

fN .sG = sG′ .fA, fN .tG = tG′ .fA

mG,1 = mG′,1.fN , mG,2 = mG′,2.fN

L

K

M

G

d

b

g

c

Pushout

Fig. 2. Pushout of d and b

A pushout is depicted in Figure 2, where the input consists of morphisms
d : L → K and b : L → M and the output consists of c : K → G, g : M → G such
that the diagram commutes. Here, the morphism b describes which rewriting
should be done and d identifies the occurrence of the part of the initial graph (L)
that should be rewritten. For definition of categories, commuting diagrams and
pushouts the reader is referred to literature [12], [13]. Here, we only present the



construction of the pushout in the category of colored graphs. Given that d and
b are morphisms, the pushout is constructed by applying the gluing procedure
as follows:

1. Form M +K, which is the colored graph that consists of the two components
M and K.

2. In M + K, identify (glue together) the nodes bNx and dNx for all nodes
x ∈ NL, and identify the edge bAx and dAx for all edges x ∈ AL.

The gluing construction given above shows that only items (nodes and edges)
can be added to graph G; however, in colored graphs items can be removed.
Ehrig [10] provides a solution to the problem of item removal, which uses double
pushouts. A simpler approach is provided by Van den Broek [11] that uses single
pushouts in the category of marked colored graphs. The idea behind this ap-
proach is that the items that are going to be removed are marked. So the graph
contains two types of items; marked and not marked. Although, the marked
items stay in the graph, they are considered as garbage. A marked graph is an
8-tuple, G = {NG,MG, AG, BG, sG, tG,mG,1,mG,2}. In a marked graph the sets
of nodes and edges are subdivided into sets of marked and non-marked nodes
and edges. Thus the only difference between a colored graph representation and
marked graph representation is the two sets, MG and BG which denote the set
of marked nodes and edges respectively. For a given two marked graphs G and
G′, a morphism, f : G → G′, is a pair of maps fN : NG

⋃
MG 7→ NG′

⋃
MG′

and fA : AG

⋃
BG 7→ AG′

⋃
BG′ , which preserves sources, edges and colors like

morphisms for colored graphs and, in addition, map marked items onto marked
items:

fN (MG) ⊆ MG′ ,

fA(BG) ⊆ BG′

In the category of marked graphs, pushouts are constructed as follows: first
the pushout of colored graphs is constructed by using the gluing procedure de-
scribed above; all markings are ignored. Subsequently, those items are marked
onto which marked items are mapped. This pushout always exists [11]. However,
at the end the marked items are deleted which may cause dangling arcs and for
such cases there is no rewriting.

We revisit the example presented by Alanen and Porres [7] to show an ex-
ample of what we have described in this section. In this example, the design of a
software system that consists of classes A, B (B extends A) and C is modified by
the two designers, which is depicted in Figure 3a. The first designer deletes class
B and the second one adds class D, which extends class C. The final model is the
combination of these two models that tries to capture the changes made by two
designers; that is the changes made by both designers are glued on the original
design to form the final design. In this figure, class B and the inheritance relation



to class B is marked. So they are treated as garbage and they can be removed
from the system. For this example, it is possible to remove marked items since
they do not result in dangling arcs.

A C

B

Original Model

A C

Designer 1

A C

B

Designer 2

D

A C

Final Model

D

B

*

*

B

*

*

A C

B

Original Model

A C

Designer 1

A C

B

Designer 2

D

A C

Final Model

D

B

*

*

B

*

*

(a) (b)

Fig. 3. a) The example presented by Alanen and Porres [7], here marked items can be
discarded. b) The same example with a slight modification, here marked items can not
be discarded.

Alanen and Porres [7] state that element deletion may result in conflicts. In
cases, for example, where the same element is deleted by the two designers, a
conflict emerges. Though, such a conflict can be resolved by deleting the equiv-
alent delete operations from one of the designers model during the construction.
In our model, this situation does not lead to a conflict. The conflict that occurs
when a designer modifies an element and the other designer deletes it, can not
be resolved. In Figure 3b, we give an example of such a conflict. Here, again
the first designer deletes class B. However, the second designer adds class D,
which extends class B. In the final model, it can be seen that if marked items
are removed from the system we would end up with a structure that is not a
graph; the edge from class D would become dangling. As discussed earlier, for
such cases there is no rewriting, due to conflicting changes.

3 Application of Graph Rewriting to Evolution

We present the model of evolution and the model of the object-oriented system
that we have built the evolution model on. We continue this section by describ-
ing how the evolution requests can be formalized. Although class diagrams can
also be used with our model, with these diagrams some of the impacts may



not be captured, because they model only the static structure of a system. For
example, assume we have a system whose class diagram is shown in Figure 4.
Furthermore, assume that an evolution request requires extensions to the method
getDescription() in class FooWorker. A solution to realize this evolution request
may require to add another parameter to this method. However, the exact im-
pact of this change is not clear, since it is not clear from the class diagram which
method of class Driver calls the method FooWorker.getDescription(). Such de-
tails may be captured by using UML interaction diagrams. Thus, to capture
the impact of changes, one needs to employ both class and interaction diagrams.
However, rather then employing two different models, we propose to employ only
one model that is similar to class diagrams but also includes the relations from
interaction diagrams.

3.1 Object-Oriented System Model

We present a model for object-oriented software that uses marked graph repre-
sentations in this subsection. This model can be viewed as a class diagram with
the relations from collaboration and/or sequence diagrams.

As discussed in section 2, a marked graph has a pair of color alphabets, one
to color the edges and one to color the nodes. To model a piece of software as
a marked graph, the color alphabets play an important role in describing the
relationship between components. In our model of object-oriented software the
components, the elements of the node color alphabet (CE), are the following:

– Class
– Attribute:¿ Type À
– Method
– Parameter:¿ Type À
– Return value:¿ Type À

SuperWork

+state: int

+doWork(name:String): bool

FooWorker

-counter: short

+getDescription(description:String): boolean

Driver

-Descriptor

+ParseDescriptor(given:String): short

+TestDescriptor(shortDesc:String): char

Fig. 4. An example of a class diagram

In the color alphabet, we do not include names of the components because
graphs represent the structure of the system. However, without names it would



be hard to identify the components. As a result, in our model we use names
to identify components. The edges, in this model, describe the relationship be-
tween components, which can be classified into three classes. The first class of
relationships depicts which attributes and methods belong to a class. An edge
that connects a class to an attribute is colored with Has Attribute and an edge
that connects it to a method is colored with Has Method. To capture encapsula-
tion, we extend these colors to include private and public declarations. So in the
color alphabet, we have Has Public Attribute, Has Private Attribute, Has Public
Method and Has Private Method colors. It is also important for this model to
show the parameters and the return values that methods take or return; thus
the model also employs the colors Takes Parameter and Returns.

The second class of relationships shows the connection between classes. For
this class, we use the same connections that are used in class diagrams. However,
for simplicity, in this paper, we are only including Association, Aggregation,
Generalization and Composition into the color alphabet of edges. We use the
same direction for edges as the directions for relations in UML class diagrams.
Changes may also effect the overridden methods, so our model also employs an
edge colored as Overrides which connects the overridden method to the method
that overrides it.

The third class of relationships captures the object relations that are ex-
tracted from UML interaction diagrams, specifically UML sequence diagrams.
This type of relationship is important to include in our model because they
specify which methods and parameters are effected by the changes caused by
evolution requests. It is possible to extract the relations between the methods
of objects by using UML sequence diagrams. As example, for the class dia-
gram given in Figure 4 let’s say that the Driver.TestDescriptor() method calls
the FooWorker.getDescription() method. In the sequence diagram this is rep-
resented with two arcs; the first one connecting the user of the class Driver to
an instance of Driver class labelled with TestDescriptor() and the second one
connecting an instance of Driver to an instance of FooWorker labelled as get-
Descriptor(desc). Such relations, in our model, are captured with edges that
connect a method to another method colored as Calls. To show that the calling
method is passing parameters to the method that is being called, our model uses
edges that connect the calling method to the parameter(s) of the method that
is being called, which are colored as Passes. If, for example, the method being
called does not take any parameters than these edges are not drawn. An evo-
lution request may cause the return value for a method to change, so methods
that depend on this method may also need changing. In our model, we make the
relationship between a method and a return value explicit with an edge colored
with Gets Return Value that connects a return value node to a method node.

In Figure 5, we redraw the class diagram shown in Figure 4 using the model
presented in this section. In this figure, it is clearly seen that the method
Driver.TestDescriptor calls the FooWorker.getDescription method since there
is an edge that connects the node Method TestDescriptor to the node Param-
eter:String Description. Thus with this presentation, it is easy to argue that



Class
Driver

Attribute:
String

Descriptor

Has Private Attribute

Method
ParseDescriptor

Has Public Method

Has Public Method

Method
TestDescriptor

Parameter:
String
given

ReturnValue:
Short

Takes Parameter
Returns

Takes
Parameter

Parameter:
String

shortDesc

Returns

ReturnValue:
Char

Class
FooWorker

Attribute:
Short

Counter

Method
getDescription

Parameter:
String

description

Aggregation

Passes

Has Public Attribute

Class
SuperWork

Attribute:
Int

State

Method
doWork

Parameter:
String

description

Takes Parameter

Has Public Method

Generalization

Calls

ReturnValue:
Boolean

Returns
Takes 
Parameter

Gets return
value

Fig. 5. Class diagram of Figure 4 redrawn with the new model; the method calls are
explicit with this model

adding a parameter to the method FooWorker.getDescription is going to have an
impact on Driver.TestDescriptor; some extra-lines are going to be added to han-
dle the new parameter. This figure also shows that the method Driver.TestDescrip-
tor makes use of the value returned by the method FooWorker.getDescription
since there is an edge that connects the return value to the method TestDescrip-
tor. In summary, with this model we are able to capture the relations between
software components without employing two different models. In the next sub-
section we build a formal model for evolution using pushouts. The examples
shown in the next subsection use the model shown in Figure 5.

3.2 Formalizing Evolution Operations

In this section of the paper, we present how some of the evolution requests can be
modelled using pushouts as shown in Figure 1. Our main focus here is on addition
and removal operations since we believe that by combining these operators most
of the changes in a system can be modelled (e.g., a type change can be modelled
by removing the component with old type and adding the component with the
new type). Specifically, we focus on evolution requests that cause addition or
removal of components in the system. Though, using the model we present here,
it also possible to formalize evolution requests that cause the relation between
components to change. It is important to note here that to realize removal of
components using a single pushout, our model makes use of marked graphs [11].



We categorize addition and removal of software components into three levels,
which are parameter and return value level, method and attribute level and class
level. For each level, we describe the pushouts that formalize the changes and
we conclude our discussion in this subsection, by showing how the pushouts at
different levels can be combined to model an evolution request; since an evolution
request may require changes at these three levels. For example, an evolution
that requires removal of a method, also requires the parameters and the return
values of that method to be removed. In our model, such an evolution can be
modelled by using the pushout that removes a parameter from a method for each
parameter the method has, and then the pushout that removes the method.

In Figure 1 we show the abstract model of software evolution. In the next
sections, we are going to generalize this diagram to show evolution on different
software components. For each pushout described in the next sections, we have
four graphs; which are:

– Component: contains the software components which are going to evolve.
– New Component: contains the components after the evolution.
– System: shows the system that contains the original components
– New System: shows the system containing the evolved components

For each pushout, we also have four morphisms labelled as Embedding, Evo-
lution, Glue1 and Glue2.

Evolution of Parameters Evolution requests may cause changes in parame-
ters in various ways; however, as discussed earlier we are going to model addition
and removal of a parameter as pushouts. These pushouts then can be combined
to realize other changes in parameters. The pushouts presented in this section,
depict the changes between two methods; in other words the Component of Fig-
ure 1 is made up of two methods, in which one calls the other one and the one
being called is going to evolve. In many cases more than one method call the
method that is going to evolve; for such cases these methods can also be included
in the Component graph.

First, we describe how addition of a new parameter can be modelled with
a pushout as shown Figure 6.The system graph shows that, with Embedding
morphism, the methods are a part of the system; in the figure it is clearly seen
that the methods and relation between methods are preserved. This figure also
shows the importance using names to identify the components, since without
the names it would be impossible recognize which methods in the Component
graph are mapped to which methods in the System graph. Then, it can be seen
that the evolution morphism occurs which adds a parameter to the method
that is being called. Adding this parameter also causes two edges to be added
to the component; the takes parameter edge and the passes edge. Evolution is
also a morphism since again the methods and the relation between methods are
preserved. The pushout construction glues the new parameter to the system and
the cost of such a glue operation is proportional to adding the new parameter
to all methods that call this method.



Method
A

Method
A

Parameter:
INT
D

Evolution

System

Glue2

Glue1

Embedding

Method
B

Calls Takes
Parameter

Method
B

Calls

Passes

Method
A

Parameter:
INT
D

Takes
Parameter

Method
B

Calls

Passes

New System

Method
A

Method
B

Calls

Method
C

Calls

Method
C

Calls

Component

New Component

Fig. 6. Addition of a new parameter to an existing method.

In Figure 7, we show the pushout that formalizes the removal of parameter
from a method. In New Component, the edge that connects the calling method
to the parameter of the method that is being called is marked, which means
the calling method should not pass this parameter. As it can be seen, the only
difference between Component and New Component is that the parameter and
the edges colored with Passes and Takes Parameter are marked.

As presented in section 2, the last step in a marked graph construction con-
sists of removing the marked nodes and edges from the construction, if removing
them does not cause any dangling arcs. From Figure 7, it can be easily seen that
removing marked items does not cause any dangling items, so these items can
be removed; thus the operation has succeeded.

Evolution requests may also require the type of parameters to be changed.
Though we do not have a special pushout that formalizes such a change. This is
because a type change can be handled by first applying the parameter removal
pushout to remove the parameter with the old type and then with the parameter
addition pushout the new parameter can be glued to the system.

Evolution of Methods Here, we show how addition or removal of a method can
be modelled using pushouts. For addition, presented in Figure 8, the Component
graph includes a class, to which the new method is going to be added to, and a
method, which is going to call the new method. When there is going to be more
than one method calling the new method, these methods can also be added in the
Component graph to show that they are also going to be effected by the addition



Method
A

Parameter:
INT
D

Evolution

Glue1Embedding

Takes 
Parameter

Method
B

Calls

Passes

Method:
A

Parameter:
INT
D

Takes
Parameter

Method:
B

Calls

Passes

Method
A

Parameter:
INT
D

Takes
Parameter

Method
B

Calls

Passes

Method
A

Parameter:
INT:

D

Takes
Parameter

Method
B

Calls

Passes

*

*

*

*

*

*

Method
C

Calls

Method
C

Calls

Component New Component

Glue2

System New System

Fig. 7. Removal of a parameter from a method.

or the same pushout can be repeated until all these methods are covered. The
figure shows that with the Embedding morphism the items in Component are a
part of the System. With Evolution a new method is added to the Component
and with gluing constructions this method is included in the System so the it
evolves to New System. Here, we show the addition of public method (hence New
Component includes an edge colored as Has Public Method; however, the same
pushout can also be used to add a private method.

Adding methods are formalized using pushouts that are similar to the pushouts
presented for addition of parameters. From this pushout, it can be said that the
cost of this operation is proportional to adding the code that calls the new
method. If this new method has a return value and/or parameters, then the
pushouts presented for adding these can be used after using the pushout that
adds the method. Furthermore, since the cost of adding a parameter or a return
value is proportional to adding it to all methods we can say that the cost of
adding the method is proportional to adding the code that calls this method
and handles its parameters and return values. Although without pushouts it is
possible to calculate the cost of adding a method to the system with intuition,
pushouts have helped in formalizing the addition.

In Figure 9, we show how method removal can be formalized. The figure
shows that method B calls the method A of class F. The evolution request
requires removal of method A and, in turn, this requires removal of all the
edges that connects this method to other methods and its class. So with the
Evolution morphism these edges and the method node are marked. Then with



Class
F

Method
B

Class
F

Method
B

Method
A

Calls

Has Public
Method

Class
F

Method
B

Class
F

Method
B

Method
A

Calls

Has Public
Method

Method
C

Calls

Method
C

Calls

Embedding
Glue1

Glue2

Evolution

System New System

New ComponentComponent

Has Public
Method

Fig. 8. The pushout that shows addition of a method. In order not to complicate the
diagram, the has public method color for the edges between the class F and methods C
and D is not shown

Class
F

Method
B

Method
A

Calls

Has Public
Method

Class
F

Method
B

Method
A

Calls

Has Public
Method

Class
F

Method
B

Method
A

Calls

Has Public
Method

Class
F

Method
B

Method
A

Calls

Has Public
Method

*

*

*

*

Method
C

Calls

Method
C

Calls

*

*

Embedding

Evolution

System New System

New ComponentComponent

Glue1

Glue2

Fig. 9. The pushout that shows the removal of a method. In order not to complicate
the diagram, the has public method color for the edges between the class F and methods
C and D is not shown



gluing construction these marked items are glued to the system. It can clearly
be seen from the figure that all morphisms preserve target, source and color
mappings and the resulting structure is a graph since there are no dangling arcs.
So the marked items can be removed from the system. If the method that is
going to be removed has parameters or a return value, then applying only this
pushout causes dangling edges that connect the method to its parameters and
return value. Thus for such methods, the pushout that removes the parameter
or return value should be applied first.

Attribute addition and removal have very similar pushouts as the pushouts
for method addition and removal, so we do not show them explicitly here. In
the pushout that adds an attribute to a class, the Component includes a class.
Then the Evolution morphism adds the new attribute; thus New Component
includes the new attribute that is connected to its class with an edge colored
with has public attribute (or has private attribute if the attribute is private). For
removal, Component contains the attribute that is going to be removed with the
edges that connects it to its class and to the methods using it. With Evolution
morphism these edges and the attribute is marked; the gluing constructions glue
the marked items to the System thus New System is formed. Here, removing the
attribute and edges that connect the attribute does not cause any dangling arcs,
so they can be removed and the operation succeeds.

Evolution of Classes Evolution in classes can be formalized similar to the
pushouts that add or remove a method. In this section, we show the pushouts
that describe addition and removal of a class that generalizes a class and aggre-
gates another one. So in the addition pushout diagram, the Component graph
includes two classes and the New Component graph includes three classes with
two new edges; one that shows the generalization and the other one shows the ag-
gregation as depicted in Figure 10. For different class relations the same pushout
can be used, though the edges that connect the new class to other classes should
be colored accordingly. As can be seen from Figure 10, the target, source and
color mappings are preserved for each graph; thus the changes are morphisms.
Attributes and methods to the newly added class can be added by using the
pushouts for these class components. For example, if a class with several meth-
ods is going to be added to system then the pushout that adds a method is used
for each method after applying the pushout that adds the class. Furthermore,
the attributes to these are added with an attribute addition pushout.

In Figure 11, we show the pushout that formalizes the removal of a class. In
this figure, class E is removed from system. This causes the edges that connect
class E to its base class F and to class D to removed as well. Here, removing
the marked items again does not cause any dangling arcs; thus the items can
be removed from the system. In general, classes to be removed have several
methods that may have some parameters and attributes. For such classes, first
the pushout that removes parameters from methods is used; then the pushout
that removes the method is applied. Lastly, the class is removed from the system.



Class
F

Class
F

Class
F

Class
E

Generalization

Class
D

Class
D

Class
D

Aggregation

Class
F

Class
E

Generalization

Class
D

Aggregation

Aggregation
Aggregation

Embedding

Evolution

Glue1

Glue2

New SystemSystem

Component

New Component

Fig. 10. The pushout that shows addition of a class together with relations with ex-
isting classes.

Class
F

Class
D

Aggregation

Class
E

Generalization

*

Aggregation

Class
F

Class
E

Generalization

Class
D

Aggregation
*

Class
F

Class
E

Generalization

Class
D

Aggregation

*

*

Class
F

Class
D

Aggregation

Class
E

Generalization

Aggregation

*

*

Glue2

Glue1

Evolution

Embedding

Component

System New System

New Component

Fig. 11. The pushout that shows the removal of a class and its relations with other
classes.



4 Conclusions and Future Work

In this paper, we have presented a way to model evolution requests using al-
gebraic graph rewriting. Our idea is that evolution requests can be formalized
with the rules we have presented here. Then these rules can be combined to
realize various evolution requests in a top-down manner just like an algorithm.
For example, an evolution request that requires addition of a method can be
formulated using the method addition rule and the parameter addition rules.

The rules presented here depict the type of changes an evolution request may
cause on the system. Thus our next step in modelling software evolution would
be using the changes presented in this paper as a taxonomy and finding the cost
of each class of changes. For example, the cost of a parameter removal operation
is proportional to removing the parameter from all the methods that call the
method that has evolved.

References

1. Bennett, K.H., Rajlich, V.: Software maintenance and evolution: a roadmap. ICSE
- Future of SE Track (2000) 73–87

2. Belady, L., Lehman, M.: A model of large program development. IBM Sys. J.
15(1) (1976) 225–252

3. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolu-
tion. IEEE Transactions on Software Engineering 25 (1999) 493–509

4. Lehman, M.M., Perry, D.E., Ramil, J.C.F., Turski, W.M., Wernick, P.: Metrics and
laws of software evolution. Fourth International Symposium on Software Metrics
(1997) 20–32

5. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Addison-Wesley Professional (1999)

6. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling soft-
ware architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol. 11(1) (2002) 2–57

7. Alanen, M., Porres, I.: Difference and union of models. In Stevens, P., Whittle,
J., Booch, G., eds.: UML 2003 - The Unified Modeling Language. Volume 2863 of
Lecture Notes in Computer Science., Spinger-Verlag (2003) 2–17

8. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software
architecture reconfiguration. Sci. Comput. Program. 44(2) (2002) 133–155

9. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings
with graph transformations. Journal on Software Maintenance and Evolution:
Research and Practice (2005) 2–31

10. Ehrig, H.: Introduction to the algebraic theory of graph grammars. In Claus,
V., Ehrig, H., Rozenberg, G., eds.: Graph Grammars and Their Application to
Computer Science and Biology. Volume 73 of Lecture Notes in Computer Science.,
Spinger-Verlag (1979) 1–69

11. van den Broek, P.M.: Algebraic graph rewriting using a single pushout. In Abram-
ski, S., Maibaum, T., eds.: TAPSOFT’91. Volume 493 of Lecture Notes in Com-
puter Science., Springer-Verlag (1991) 90–102

12. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall (1988)
13. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Leicester, United

Kingdom (2005)


