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Abstract. Software architectures should be amenable to changes in user re-
quirements and implementation technology. The analysis of the impact of these 
changes can be based on traceability of architectural design elements. Design 
elements have dependencies with other software artifacts but also evolve in 
time. Crosscutting dependencies may have a strong influence on modifiability 
of software architectures. We present an impact analysis of crosscutting de-
pendencies in architectural design. The analysis is supported by a matrix repre-
sentation of dependencies.  

Keywords: Change impact analysis, dependency graph, dependency matrix, 
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1 Introduction 

Change management is a prerequisite for high-quality software development. 
Changes may be caused by changing user requirements and business goals or be 
induced by changes in implementation technologies. Software architectures must be 
designed such that they can evolve to cope with these changes. An analysis of the 
impact of such changes is necessary for cost effective software development [3]. The 
number of affected modules or elements is a response measure for the quality attrib-
ute modifiability in software architectural design [5]. Such analysis can be based on 
dependency traces between elements in the architectural design and other software 
artifacts. We will elaborate on traceability research in requirements engineering 
[15,25]. In case of crosscutting dependencies, the impact can be large. Crosscutting 
has been studied extensively in the context of Aspect Oriented Software Development 
(AOSD) [13]. 

In this paper, we present a framework for change impact analysis in case of cross-
cutting in the architectural design. The impact analysis is based on traceability of 
dependencies between elements in software artifacts. We propose a matrix represen-
tation of dependencies, together with formal definitions of specific cases of depend-
encies, such as tangling, scattering and crosscutting. We extend the approach of trace-
ability to evolution of these elements. We define crosscutting dependencies between 
elements and show that crosscutting may have a large change impact. 



The paper is structured as follows. In Section 2, we introduce definitions of trace-
ability including the tracing of evolution of design elements. We show how trace data 
can be used in impact analysis. In Section 3, we introduce the definition of crosscut-
ting and related concepts scattering and tangling. We describe how to represent and 
visualize crosscutting in matrices. In Section 4, we described the change impact 
analysis for trace dependencies between two levels and for multiple levels. Finally in 
Sections 5 and 6, we describe related work and present conclusions of the paper. 

2 Tracing Evolution 

In this section, we give some background to traceability and change impact analysis 
to support software evolution. 

Traceability is defined as the degree to which a relationship can be established be-
tween two or more products of the development process, especially products having a 
predecessor-successor or master-subordinate relationship to one another [16]. In 
Gotel and Finkelstein [15], traceability is defined in the context of requirements engi-
neering, and a distinction is made between pre-requirements specification traceability 
(forward to requirements and backward from requirements) and post-requirements 
specification traceability (forward from requirements and backward to requirements). 
Moreover, one may distinguish inter-level trace dependencies (sometimes called 
horizontal traceability) and intra-level trace dependencies (or vertical traceability) [1].  

 
Figure 1. Traceability in Software Development 



In Figure 1, several types of traceability are shown. (Remark: We prefer not to use 
the terms vertical and horizontal because they are dependent on the layout. In Figure 
1, the inter-level relationships are represented as vertical arrows.) Architectural de-
sign elements are traced backwards to requirements and forward to elements in the 
detailed design. Elements at the architectural design may have intra-level dependency 
relations, and may evolve to a new configuration of architectural elements. In Ramesh 
and Jarke [25], a meta-model for requirements traceability is discussed, together with 
instances of traceability links. There are traceability links between artifacts (such as 
requirements and architectural design elements) and links representing the evolution 
and/or incremental development of these artifacts.  

 
Impact analysis is the activity of identifying what to modify to accomplish a change, 
or identifying the potential consequences of a change [3]. Impact is usually related 
with maintenance effort. “Impact analysis is the evaluation of the many risks associ-
ated with the change, including estimates of effects on resources, effort, and sched-
ule” [24 p.490]. Instead of an adaptive maintenance model (see Figure 2), we will 
focus on the identification which elements are involved in the change. This has to be 
captured in a change impact model. Eventually in a quality improvement model, the 
change impact analysis and maintenance effort have to be related in empirical valida-
tion studies. 

Software Artifacts and
Software Process Change Impact ModelAdaptive Maintenance

Model

Measurement Value Measurement Value

External Factors

Quality Improvement Model

 
Figure 2. Quantitative Software Improvement for Evolution 

AOSD aims at a proper separation of concerns in the software development process. 
“The distribution of the code for realizing a concern becomes especially critical as the 
requirements for that system evolve – a system maintainer must find and correctly 
update a variety of (likely poorly identified) situations.” [13, p. 2].  

In this update effort, the maintainer has both to know what to change and what to 
preserve. In our case, it is not just the elements that have to be changed, but also the 
elements (and mappings) that have to be preserved (which requires the effort of un-
derstanding). This will be explained in Section 4. 



3 Crosscutting in Design 

The problem of crosscutting has been studied in AOSD. Crosscutting can occur at 
implementation level, but also in early phases of software development [13]. In pre-
vious papers [6,7,8], we generalized the concept of crosscutting by means of a cross-
cutting pattern (see Figure 3). We call this a pattern as in [14], because it is a recur-
ring problem (obvious from Figure 1) for which we propose a conceptual framework 
for solutions. In this pattern, we have dependency relations between elements in the 
source and elements in the target. These dependency relations also provide traceabil-
ity between the elements, as well as inter-level relations as intra-level relations. Intra-
level relations denote coupling between elements at a certain level. There is extensive 
literature on different types of coupling and the trade-off between coupling and cohe-
sion (e.g. [11]). Here, we focus on inter-level dependencies. We now summarize our 
definition of crosscutting. 

 
Figure 3. Traceability Pattern for Crosscutting 

Our proposition is that crosscutting can only be defined in terms of 'one thing' with 
respect to 'another thing'. In other words, at least two domains (or two levels or two 
phases) are related with each other in some way.  
• A domain could refer for example to a concern model with concerns or to a de-

sign with architectural elements. 
• A level could refer for example to refinements in the Model Driven Architecture 

(e.g. CIM, PIM and PSM) [23]. 
• A phase could refer to any phase in the software development life cycle (e.g. 

requirements, design, and so on). 
We use here the general terms source and target (as in [23]) to denote two consecu-
tive domains, phases or levels. We assume that elements in the source are related to 
elements in the target: there is a mapping between source and target elements. The 
mapping can be established manually or be automated in transformation rules.  

We may distinguish several cases of mappings between source and target. This can 
be represented in a dependency graph, as shown in Figure 4: 



• Injection: a source element is related to a distinct target element (e.g. s2 to t2) 
• Scattering: a source element is related to multiple target elements (e.g. s1 to t1, t3 

and t4) 
• Tangling: a target element is related to multiple source elements (e.g. s1 and s3 to 

t3) 
• Crosscutting: a target element is involved both in scattering and tangling (e.g. t3; 

scattering of s1 to t1, t3 and t4, and tangling of s1 and s3 in t3) 

source s1 s2 s3

target t1 t2
t3 t4

 
Figure 4. Mapping between Elements at two Levels of Abstraction  

(s1, s2, s3 at source; t1, t2, t3 and t4 at target) 

We say that source element s1 crosscuts source element s3 with respect to the given 
mapping between source and target. According to our definition in [7], crosscutting 
occurs when in a mapping between source and target, a source element is mapped to 
two or more target elements and at least one of these target elements has a mapping 
from one other source element. 

Although crosscutting is defined as a relation between source elements (see Figure 
3), the crosscutting relation depends on the mapping between source and target. Cou-
pling is also defined as a relation between elements at source level; however this 
relation just depends on intra-level relationships. 

In broad sense, we may define crosscutting just as scattering and tangling [13]. 
Above, we defined crosscutting - in narrow sense - as a specific combination of tan-
gling and scattering. 

3.1 Matrix representation 

In this section, we describe how crosscutting – as shown in the dependency graph - 
can be represented in matrices. As starting point, the developer must establish a de-
pendency matrix showing the mapping between source and target. From this matrix, 
we derive the crosscutting matrix, where we represent the crosscutting source ele-
ments.  

The relation between source elements and target elements can be represented in a 
matrix that we called dependency matrix. As described before, the mapping can have 
different types, such as usage and abstraction dependencies (e.g. realization, refine-
ment and tracing [26]). A dependency matrix (source x target) represents the depend-
ency relation between source elements and target elements (inter-level relationship). 
In the rows, we have the source elements, and in the columns, we have the target 



elements. In this matrix, a cell with 1 denotes that the source element (in the row) is 
mapped to the target element (in the column). Reciprocally this means that the target 
element is related to the source element. Scattering and tangling can easily be visual-
ized in this matrix (see the examples below). 

We define an auxiliary concept crosscutpoint used in the context of dependency 
matrices, to denote a matrix cell involved in both tangling and scattering. If there is 
one or more crosscutpoints then we say we have crosscutting. 

 

Table 1. Example Dependency Matrix and Crosscutting Matrix 
dependency matrix  

  target  
  t[1] t[2] t[3] t[4]  

s[1] 1 0 1 1 S 
s[2] 0 1 0 0 NS 

so
ur

ce
 

s[3] 0 0 1 0 NS 
  NT NT T NT  

 
crosscutting matrix 

  source 
  s[1] s[2] s[3] 

s[1] 0 0 1 
s[2] 0 0 0 

so
ur

ce
 

s[3] 0 0 0 
 

Crosscutting between source elements for a given mapping to target elements, as 
shown in a dependency matrix, can be represented in a crosscutting matrix. A cross-
cutting matrix (source x source) represents the crosscutting relation between source 
elements, for a given source to target mapping (represented in a dependency matrix). 
In the crosscutting matrix, a cell with 1 denotes that the source element in the row is 
crosscutting the source element in the column. 

A crosscutting matrix should not be confused with a coupling matrix. A coupling 
matrix shows coupling relations between elements at the same level (intra-level de-
pendencies) [9]. In some sense, the coupling matrix is related to the design structure 
matrix [4]. However, a crosscutting matrix shows crosscutting relations between 
elements at one level with respect to a mapping onto elements at some other level 
(inter-level dependencies).  

We now give an example and use the dependency matrix and crosscutting matrix 
to visualize the definitions (S denotes a scattered source element - a grey row; NS 
denotes a non-scattered source element; T denotes a tangled target element - a grey 
column; NT denotes a non-tangled target element). The example is shown in Table 1, 
representing the mapping from Figure 4. 

In this example, we have one scattered source element s[1] and one tangled target 
element t[3]. Moreover there is one crosscutpoint at matrix cell [1,3] (dark grey cell). 
Applying our definition, we arrive to the crosscutting matrix. Source element s[1] is 
crosscutting s[3] (because s[1] is scattered over [t[1], t[3], t[4]] and s[3] is in the tan-
gled one of these elements, namely t[3]). The reverse is not true: the crosscutting 
relation is not symmetric.  



In [7], we show how to construct the crosscutting matrix from the dependency ma-
trix using some matrix operations. For convenience, these formulas can be calculated 
by means of simple mathematic tools. By filling in the cells of the dependency matrix, 
the crosscutting matrix is calculated automatically. 

3.2 Multiple levels of dependencies 

Above, we only considered dependencies between two levels. Usually we encounter 
multiple levels as shown in Figure 1. In that case we have to take into account the 
transitivity of trace dependency relations. This can be accomplished through the cas-
cading of the dependency pattern as described in [9]. The main concepts will be sum-
marized here (see Figure 5 ). Assume we have two patterns: between domains A and 
B, and between domains B and C.  

 
Figure 5. Cascading of Traceability Pattern 

The target of the first pattern serves as source in the second pattern. Then, the transi-
tivity dependency relation rel for source A, intermediate level B and target C, and #B 
is the number of elements in B is defined as follows: 

 
∃ k ∊ (1..#B): (A[i] rel B[k]) ∧ (B[k] rel C[m]) ⇒ (A[i] rel C[m]) 
 

We may support this analysis with a matrix analysis. We consider the three domains 
(or levels) A, B and C (see Table 2). 

Table 2. Forward and Backward Trace Dependencies for three levels 

 Domain A Domain B Domain C 
 
Domain A 

Coupling 
(AxA) 

Forward Trace 
Dependency 

(AxB) 

Forward Trace 
Dependency 
(AxB)(BxC) 

 
Domain B 

Backward Trace
Dependency 

(AxB)T

Coupling 
(BxB) 

Forward Trace 
Dependency 

(BxC) 
 
Domain C 

Backward Trace 
Dependency 

((AxB)(BxC))T

Backward Trace 
Dependency 

(BxC)T

Coupling 
(CxC) 

 



Let the forward trace dependencies between level A and B be represented in the 
dependency matrix AxB, and the forward trace dependencies between level B and C 
in the dependency matrix BxC. The trace dependencies between level A and C based 
on the transitivity of dependencies can be obtained by means of the boolean matrix 
multiplication of the matrices AxB and BxC.  

The backward trace dependencies between level B and A can be obtained from the 
transposed dependency matrix (AxB)T. Similarly, we can obtain the other backward 
traceability relations. Trace dependencies between elements at the same level can be 
captured in the coupling matrix with adjacency relations. If coupling exists then the 
transitive closure has to be determined at each level, e.g. (AxA)*.  

The actual dependencies between two levels e.g. A and B, is then obtained through 
(AxA)*(AxB)(BxB)*. We will not consider coupling in this paper and focus on intra-
level change impact analysis. 

4 Change Impact of Crosscutting 

In this section we describe the impact analysis of changes. We consider change im-
pact in case of tangling, scattering and crosscutting, both for two-level dependencies 
and multiple-level dependencies. 

4.1 Two-level impact analysis 

Change impact in the traceability pattern is operationalized in terms of the elements 
involved in the change of a source element. The set of elements is called the impact 
set. 

We now show some examples of the change impact in case of a change in some 
source element. We consider the different cases of mappings between source and 
target.  

 
Injection:  impact s1 => change (s1,t1) 
Scattering:  impact s2 => change ((s2,t2), (s2,t3)) 
Tangling:   impact s3 => change (s3,t4) + preserve (s4,t4) 
Crosscutting:  impact s5 => change ((s5,t5), (s5,t6)) 
                + preserve ((s6,t6), (s7,t6)) 
 

Changing s1 (for injection) means that t1 need to be changed. Similarly, changing s2 
(for scattering) means that t2 and t3 need to be changed. Changing s3 (for tangling) 
means that t4 need to be changed, however in this change, the dependency of s4 in t4 
has to be preserved. Changing s5 for crosscutting means that t5 and t6 need to be 
changed, while preserving the dependency of s6 in t6, and of s7 onto t6. 

 



s1 
s2

s3

s4
s5

s6

t1 
t2

t3
t4

t5 t6

s7

 
Figure 6. Examples of Change Impact 

As shown in these examples, the impact set consists of two subsets: impacted target 
elements that need to be changed (forward traceability from source to target), and 
impacted source elements that need to be preserved in this change of target elements 
(backward traceability from target to source). 

The severity of anticipated impact for injection is relatively weak, for scattering 
and tangling the anticipated impact is moderate, whereas for crosscutting the antici-
pated impact is strong. The severity of the actual impact in each case depends on the 
number of elements involved and eventually on the type of change required. 

Above, we only considered dependencies between two levels. Usually we encoun-
ter multiple levels as shown in Figure 1. In that case we have to take into account the 
transitivity of trace dependency relations.  

4.2 Multi-level impact analysis 

We extend our analysis to dependencies across multiple levels. Assume we change 
element v in the mapping (x,v). As shown in the previous section, there will be map-
pings that have to be changed and mappings that have to be preserved. The mappings 
involved in this change due to the change propagation can be obtained from the fol-
lowing recursive function: 

 
impact(x,v) =  
   change(x,v)  
   + (preserve(u,v) | u ← preds(v); x ≠ v) 
   + (impact(v,w) | w ← succs(v)) 
 

where the function preds gives the predecessors of an element (adjacent elements in 
backward trace) and the function succs gives the successors of an element (adjacent 
elements in forward trace). The result of this function contains a list of mappings to 
be changed based on forward traceability, and a list of mappings to be preserved 
based on backward traceability. 



a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4 c5  
Figure 7. Example with Trace Dependencies across three levels 

We show this in the following example (see Figure 7), in which we want to know the 
impact of changing element b2 in the mapping (a2,b2): 

 
impact(a2,b2) =  
     change((a2,b2), (b2,c2), (b2,c3)) 
     + preserve ((a1,b2), (b1,c2), (b3,c3)) 
 

There are 6 (unique) mappings involved in this change. There are 3 mappings to be 
changed and 3 mappings to be preserved. The impact of changing element a2 can be 
obtained in the same way: 

 
impact(a2,a2) =  
    change((a2,a2),(a2,b2),(b2,c2),(b2,c3),(a2,b3),(b3,c3),(b3,c4)) 
    + preserve ((a1,b2),(b1,c2),(b3,c3),(a3,b3),(b2,c3),(b4,c4)) 
 

In this example, the two mappings (b2,c3) and (b3,c3) have to be changed and at the 
same time to be preserved. Here, a strategy is required to resolve this conflict. Such a 
conflict only occurs in case of a combination of scattering at one level and tangling in 
a subsequent level, resulting in multiple paths from (initial) source to (final) target 
elements.  

Table 3. Results of Change Impact for example in Figure 7

mappings changed preserved involved conflicts 
impact(a2,b2) 3 3 6 0 
impact(a2,a2) 7 6 11 2 

 
The results of these two examples are summarized in the following Table 3, where:  

 
#conflicts = #changed + #preserved - #involved 
 

We may support this analysis with a matrix analysis. The example of Figure 7 can be 
represented in a dependency matrix (see Table 4). We have three levels A, B and C 
with elements (a1,a2,a3}, {b1,b2,b3,b4} and {c1,c2,c3,c4,c5}. For the impact (a2,a2) 
we shaded the cells of dependencies that have to be changed or preserved. There is 
one path from a2 to c2 as shown in cell (a2,c2), and there are two paths from a2 to c3 
as shown in cell (a2,c3) indicating that there is a conflict. The dark grey cells repre-
sent the conflicting mappings (both to be changed and preserved).  



Table 4. Dependency Matrix for Figure 7 with Change Impact (a2,a2)  
Gray cell: change or  preserve. Dark cell: change and preserve 

 a1 a2 a3 b1 b2 b3 b4 c1 c2 c3 c4 c5 
a1 1 0 0 1 1 0 0 1 2 1 0 0 
a2 0 1 0 0 1 1 0 0 1 2 1 0 

a3 0 0 1 0 0 1 1 0 0 1 2 1 

b1 1 0 0 1 0 0 0 1 1 0 0 0 

b2 1 1 0 0 1 0 0 0 1 1 0 0 

b3 0 1 1 0 0 1 0 0 0 1 1 0 

b4 0 0 1 0 0 0 1 0 0 0 1 1 

c1 1 0 0 1 0 0 0 1 0 0 0 0 
c2 2 1 0 1 1 0 0 0 1 0 0 0 
c3 1 2 1 0 1 1 0 0 0 1 0 0 
c4 0 1 2 0 0 1 1 0 0 0 1 0 

c5 0 0 1 0 0 0 1 0 0 0 0 1 
 

The recursive nature of the impact function can be seen from going from one depend-
ency matrix to the dependency matrix at the next level. The forward traceability is 
provided in the rows, whereas the backward traceability is provided in the columns. 

4.3 Example 

In this section, we show a small - and trivial - example with elements at three levels: 
requirements, architectural design and implementation. The system is a calculator 
with the following requirements: 

R1. Calculate The system shall calculate the addition and subtraction of real and 
integer numbers. 

R2. Feedback The system shall provide feedback on input errors. 
We selected the Model-View-Controller pattern for the architectural design, e.g. rep-
resented in three UML-classes.  

In the implementation in Java, it is decided (e.g. for performance reasons) to have 
two classes, one class Storage.java with the storage of numbers and one class Calcu-
late.java with conversion of the input to numbers and the calculations. The three 
levels are shown in Figure 8 with the dependencies between the elements at each 
level. 



R1: Calculate R2: Feedback 

Model Controller View 

Storage.java Calculate.java 

Requirements 

Design (UML classes) 

Implementation (Java classes)
 

Figure 8. Calculator Example with Trace Dependencies between three levels 

Assume we want to change requirement R1 and add a new operation to the system 
(e.g. multiplication of numbers). The feedback requirement R2 is not changed. The 
impact of changing R1 is that we have to change the operators and attributes in the 
UML classes Model, View, and Controller. There are conflicts, because we have a 
combination of scattering and tangling, resulting in two paths from requirement R1 to 
both implementation classes. The severity of the conflicts depends on how strong the 
MVC-functionalities are coupled in the implementation classes. 

5 Related Work 

Several authors use matrices (design structure matrices, DSM) to analyze modularity 
in software design [4]. Lopes and Bajracharya [19] describe a method with clustering 
and partitioning of the design structure matrix for improving modularity of object-
oriented designs. The design structure matrices represent intra-level dependencies (as 
coupling matrices) and do not address the inter-level dependencies as in the depend-
ency matrices used for the analysis of crosscutting. Our definition of crosscutting is 
similar to the definition provided by Masuhara & Kiczales [22]. However, our defini-
tion is less restrictive and not symmetric as discussed in [7]. 

In project management, an extension to design structure matrices is proposed by 
Danilovic & Sandkull [10]. In so-called domain mapping matrices (DMM), they 
capture the dynamics of product development. In their terminology, the traditional 
DSMs support intra-domain analysis, whereas the DMMs support inter-domain 
analysis. The purpose of our dependency matrix is similar to these domain mapping 
matrices. 

Maletec et al. [21] describe an XML based approach to support the evolution of 
traceability links between models. Their traceability graph is similar to our depend-
ency graph. However, they do not discuss change impact analysis. 

Luqi [20] uses graphs and sets to represent changes. Ajila [1] explicitly defines 
elements and relations between elements to be traced with intra-level and inter-level 
dependencies. Impact analysis based on transitive closures of call graphs is discussed 
in Law [17]. We used the transitive closure for dependency relations between ele-
ments at the same level (intra-level dependencies or coupling). 



Similar to our approach, Lindvall et al [18] show tracing across phases again with 
intra-level and inter-level dependencies. They also discuss an impact analysis based 
on traceability data of an object-oriented system. However, they do not support their 
analysis with a formal graph or matrix model.  

Change impact analysis for software architectures has been studied by Zhao et al. 
[27]. They use a formal architectural description language to specify and graphs to 
represent the architectures. They restrict their analysis to the architectural level and 
not across multiple levels. 

6 Conclusion 

In this paper, we proposed a framework for the change impact analysis of software 
artifacts across several phases of software development and in the evolution of these 
artifacts. We defined a traceability pattern and defined specific cases of trace depend-
encies, i.e. tangling, scattering and crosscutting. Architectural design elements are 
related on one hand to requirements and elements in the detailed design, on the other 
hand they have trace dependencies in the evolution of the architecture. 

We analyzed the changed impact in case of tangling, scattering and crosscutting. 
We applied this analysis to two-level dependencies and to multiple-level dependen-
cies. We used a matrix representation for the intra-level and inter-level dependencies. 
The change impact consists of mappings that need to be changed and mappings that 
need to be preserved. In specific cases, we found conflicts in the change propagation 
requiring at the same time change of the mapping and preservation of the mapping. 
These situations deserve special attention in software evolution and a strategy for the 
implementation of changes. 

The framework has to be validated in empirical case studies. We focused on the 
analysis of change impact based on trace dependencies. The derivation of dependen-
cies and its analysis should be supported by tools in order to scale to industrial pro-
jects. 
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