
Change Impact Analysis of Crosscutting in Software
Architectural Design

Klaas van den Berg

Software Engineering Group, University of Twente
7500 AE Enschede, the Netherlands

K.G.vandenBerg@ewi.utwente.nl

Abstract. Software architectures should be amenable to changes in user re-
quirements and implementation technology. The analysis of the impact of these
changes can be based on traceability of architectural design elements. Design
elements have dependencies with other software artifacts but also evolve in
time. Crosscutting dependencies may have a strong influence on modifiability
of software architectures. We present an impact analysis of crosscutting de-
pendencies in architectural design. The analysis is supported by a matrix repre-
sentation of dependencies.

Keywords: Change impact analysis, dependency graph, dependency matrix,
crosscutting, software evolution.

1 Introduction

Change management is a prerequisite for high-quality software development.
Changes may be caused by changing user requirements and business goals or be
induced by changes in implementation technologies. Software architectures must be
designed such that they can evolve to cope with these changes. An analysis of the
impact of such changes is necessary for cost effective software development [3]. The
number of affected modules or elements is a response measure for the quality attrib-
ute modifiability in software architectural design [5]. Such analysis can be based on
dependency traces between elements in the architectural design and other software
artifacts. We will elaborate on traceability research in requirements engineering
[15,25]. In case of crosscutting dependencies, the impact can be large. Crosscutting
has been studied extensively in the context of Aspect Oriented Software Development
(AOSD) [13].

In this paper, we present a framework for change impact analysis in case of cross-
cutting in the architectural design. The impact analysis is based on traceability of
dependencies between elements in software artifacts. We propose a matrix represen-
tation of dependencies, together with formal definitions of specific cases of depend-
encies, such as tangling, scattering and crosscutting. We extend the approach of trace-
ability to evolution of these elements. We define crosscutting dependencies between
elements and show that crosscutting may have a large change impact.

The paper is structured as follows. In Section 2, we introduce definitions of trace-
ability including the tracing of evolution of design elements. We show how trace data
can be used in impact analysis. In Section 3, we introduce the definition of crosscut-
ting and related concepts scattering and tangling. We describe how to represent and
visualize crosscutting in matrices. In Section 4, we described the change impact
analysis for trace dependencies between two levels and for multiple levels. Finally in
Sections 5 and 6, we describe related work and present conclusions of the paper.

2 Tracing Evolution

In this section, we give some background to traceability and change impact analysis
to support software evolution.

Traceability is defined as the degree to which a relationship can be established be-
tween two or more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another [16]. In
Gotel and Finkelstein [15], traceability is defined in the context of requirements engi-
neering, and a distinction is made between pre-requirements specification traceability
(forward to requirements and backward from requirements) and post-requirements
specification traceability (forward from requirements and backward to requirements).
Moreover, one may distinguish inter-level trace dependencies (sometimes called
horizontal traceability) and intra-level trace dependencies (or vertical traceability) [1].

Figure 1. Traceability in Software Development

In Figure 1, several types of traceability are shown. (Remark: We prefer not to use
the terms vertical and horizontal because they are dependent on the layout. In Figure
1, the inter-level relationships are represented as vertical arrows.) Architectural de-
sign elements are traced backwards to requirements and forward to elements in the
detailed design. Elements at the architectural design may have intra-level dependency
relations, and may evolve to a new configuration of architectural elements. In Ramesh
and Jarke [25], a meta-model for requirements traceability is discussed, together with
instances of traceability links. There are traceability links between artifacts (such as
requirements and architectural design elements) and links representing the evolution
and/or incremental development of these artifacts.

Impact analysis is the activity of identifying what to modify to accomplish a change,
or identifying the potential consequences of a change [3]. Impact is usually related
with maintenance effort. “Impact analysis is the evaluation of the many risks associ-
ated with the change, including estimates of effects on resources, effort, and sched-
ule” [24 p.490]. Instead of an adaptive maintenance model (see Figure 2), we will
focus on the identification which elements are involved in the change. This has to be
captured in a change impact model. Eventually in a quality improvement model, the
change impact analysis and maintenance effort have to be related in empirical valida-
tion studies.

Software Artifacts and
Software Process Change Impact ModelAdaptive Maintenance

Model

Measurement Value Measurement Value

External Factors

Quality Improvement Model

Figure 2. Quantitative Software Improvement for Evolution

AOSD aims at a proper separation of concerns in the software development process.
“The distribution of the code for realizing a concern becomes especially critical as the
requirements for that system evolve – a system maintainer must find and correctly
update a variety of (likely poorly identified) situations.” [13, p. 2].

In this update effort, the maintainer has both to know what to change and what to
preserve. In our case, it is not just the elements that have to be changed, but also the
elements (and mappings) that have to be preserved (which requires the effort of un-
derstanding). This will be explained in Section 4.

3 Crosscutting in Design

The problem of crosscutting has been studied in AOSD. Crosscutting can occur at
implementation level, but also in early phases of software development [13]. In pre-
vious papers [6,7,8], we generalized the concept of crosscutting by means of a cross-
cutting pattern (see Figure 3). We call this a pattern as in [14], because it is a recur-
ring problem (obvious from Figure 1) for which we propose a conceptual framework
for solutions. In this pattern, we have dependency relations between elements in the
source and elements in the target. These dependency relations also provide traceabil-
ity between the elements, as well as inter-level relations as intra-level relations. Intra-
level relations denote coupling between elements at a certain level. There is extensive
literature on different types of coupling and the trade-off between coupling and cohe-
sion (e.g. [11]). Here, we focus on inter-level dependencies. We now summarize our
definition of crosscutting.

Figure 3. Traceability Pattern for Crosscutting

Our proposition is that crosscutting can only be defined in terms of 'one thing' with
respect to 'another thing'. In other words, at least two domains (or two levels or two
phases) are related with each other in some way.
• A domain could refer for example to a concern model with concerns or to a de-

sign with architectural elements.
• A level could refer for example to refinements in the Model Driven Architecture

(e.g. CIM, PIM and PSM) [23].
• A phase could refer to any phase in the software development life cycle (e.g.

requirements, design, and so on).
We use here the general terms source and target (as in [23]) to denote two consecu-
tive domains, phases or levels. We assume that elements in the source are related to
elements in the target: there is a mapping between source and target elements. The
mapping can be established manually or be automated in transformation rules.

We may distinguish several cases of mappings between source and target. This can
be represented in a dependency graph, as shown in Figure 4:

• Injection: a source element is related to a distinct target element (e.g. s2 to t2)
• Scattering: a source element is related to multiple target elements (e.g. s1 to t1, t3

and t4)
• Tangling: a target element is related to multiple source elements (e.g. s1 and s3 to

t3)
• Crosscutting: a target element is involved both in scattering and tangling (e.g. t3;

scattering of s1 to t1, t3 and t4, and tangling of s1 and s3 in t3)

source s1 s2 s3

target t1 t2
t3 t4

Figure 4. Mapping between Elements at two Levels of Abstraction

(s1, s2, s3 at source; t1, t2, t3 and t4 at target)

We say that source element s1 crosscuts source element s3 with respect to the given
mapping between source and target. According to our definition in [7], crosscutting
occurs when in a mapping between source and target, a source element is mapped to
two or more target elements and at least one of these target elements has a mapping
from one other source element.

Although crosscutting is defined as a relation between source elements (see Figure
3), the crosscutting relation depends on the mapping between source and target. Cou-
pling is also defined as a relation between elements at source level; however this
relation just depends on intra-level relationships.

In broad sense, we may define crosscutting just as scattering and tangling [13].
Above, we defined crosscutting - in narrow sense - as a specific combination of tan-
gling and scattering.

3.1 Matrix representation

In this section, we describe how crosscutting – as shown in the dependency graph -
can be represented in matrices. As starting point, the developer must establish a de-
pendency matrix showing the mapping between source and target. From this matrix,
we derive the crosscutting matrix, where we represent the crosscutting source ele-
ments.

The relation between source elements and target elements can be represented in a
matrix that we called dependency matrix. As described before, the mapping can have
different types, such as usage and abstraction dependencies (e.g. realization, refine-
ment and tracing [26]). A dependency matrix (source x target) represents the depend-
ency relation between source elements and target elements (inter-level relationship).
In the rows, we have the source elements, and in the columns, we have the target

elements. In this matrix, a cell with 1 denotes that the source element (in the row) is
mapped to the target element (in the column). Reciprocally this means that the target
element is related to the source element. Scattering and tangling can easily be visual-
ized in this matrix (see the examples below).

We define an auxiliary concept crosscutpoint used in the context of dependency
matrices, to denote a matrix cell involved in both tangling and scattering. If there is
one or more crosscutpoints then we say we have crosscutting.

Table 1. Example Dependency Matrix and Crosscutting Matrix
dependency matrix

 target
 t[1] t[2] t[3] t[4]

s[1] 1 0 1 1 S
s[2] 0 1 0 0 NS

so
ur

ce

s[3] 0 0 1 0 NS
 NT NT T NT

crosscutting matrix

 source
 s[1] s[2] s[3]

s[1] 0 0 1
s[2] 0 0 0

so
ur

ce

s[3] 0 0 0

Crosscutting between source elements for a given mapping to target elements, as
shown in a dependency matrix, can be represented in a crosscutting matrix. A cross-
cutting matrix (source x source) represents the crosscutting relation between source
elements, for a given source to target mapping (represented in a dependency matrix).
In the crosscutting matrix, a cell with 1 denotes that the source element in the row is
crosscutting the source element in the column.

A crosscutting matrix should not be confused with a coupling matrix. A coupling
matrix shows coupling relations between elements at the same level (intra-level de-
pendencies) [9]. In some sense, the coupling matrix is related to the design structure
matrix [4]. However, a crosscutting matrix shows crosscutting relations between
elements at one level with respect to a mapping onto elements at some other level
(inter-level dependencies).

We now give an example and use the dependency matrix and crosscutting matrix
to visualize the definitions (S denotes a scattered source element - a grey row; NS
denotes a non-scattered source element; T denotes a tangled target element - a grey
column; NT denotes a non-tangled target element). The example is shown in Table 1,
representing the mapping from Figure 4.

In this example, we have one scattered source element s[1] and one tangled target
element t[3]. Moreover there is one crosscutpoint at matrix cell [1,3] (dark grey cell).
Applying our definition, we arrive to the crosscutting matrix. Source element s[1] is
crosscutting s[3] (because s[1] is scattered over [t[1], t[3], t[4]] and s[3] is in the tan-
gled one of these elements, namely t[3]). The reverse is not true: the crosscutting
relation is not symmetric.

In [7], we show how to construct the crosscutting matrix from the dependency ma-
trix using some matrix operations. For convenience, these formulas can be calculated
by means of simple mathematic tools. By filling in the cells of the dependency matrix,
the crosscutting matrix is calculated automatically.

3.2 Multiple levels of dependencies

Above, we only considered dependencies between two levels. Usually we encounter
multiple levels as shown in Figure 1. In that case we have to take into account the
transitivity of trace dependency relations. This can be accomplished through the cas-
cading of the dependency pattern as described in [9]. The main concepts will be sum-
marized here (see Figure 5). Assume we have two patterns: between domains A and
B, and between domains B and C.

Figure 5. Cascading of Traceability Pattern

The target of the first pattern serves as source in the second pattern. Then, the transi-
tivity dependency relation rel for source A, intermediate level B and target C, and #B
is the number of elements in B is defined as follows:

∃ k ∊ (1..#B): (A[i] rel B[k]) ∧ (B[k] rel C[m]) ⇒ (A[i] rel C[m])

We may support this analysis with a matrix analysis. We consider the three domains
(or levels) A, B and C (see Table 2).

Table 2. Forward and Backward Trace Dependencies for three levels

 Domain A Domain B Domain C

Domain A

Coupling
(AxA)

Forward Trace
Dependency

(AxB)

Forward Trace
Dependency
(AxB)(BxC)

Domain B

Backward Trace
Dependency

(AxB)T

Coupling
(BxB)

Forward Trace
Dependency

(BxC)

Domain C

Backward Trace
Dependency

((AxB)(BxC))T

Backward Trace
Dependency

(BxC)T

Coupling
(CxC)

Let the forward trace dependencies between level A and B be represented in the
dependency matrix AxB, and the forward trace dependencies between level B and C
in the dependency matrix BxC. The trace dependencies between level A and C based
on the transitivity of dependencies can be obtained by means of the boolean matrix
multiplication of the matrices AxB and BxC.

The backward trace dependencies between level B and A can be obtained from the
transposed dependency matrix (AxB)T. Similarly, we can obtain the other backward
traceability relations. Trace dependencies between elements at the same level can be
captured in the coupling matrix with adjacency relations. If coupling exists then the
transitive closure has to be determined at each level, e.g. (AxA)*.

The actual dependencies between two levels e.g. A and B, is then obtained through
(AxA)*(AxB)(BxB)*. We will not consider coupling in this paper and focus on intra-
level change impact analysis.

4 Change Impact of Crosscutting

In this section we describe the impact analysis of changes. We consider change im-
pact in case of tangling, scattering and crosscutting, both for two-level dependencies
and multiple-level dependencies.

4.1 Two-level impact analysis

Change impact in the traceability pattern is operationalized in terms of the elements
involved in the change of a source element. The set of elements is called the impact
set.

We now show some examples of the change impact in case of a change in some
source element. We consider the different cases of mappings between source and
target.

Injection: impact s1 => change (s1,t1)
Scattering: impact s2 => change ((s2,t2), (s2,t3))
Tangling: impact s3 => change (s3,t4) + preserve (s4,t4)
Crosscutting: impact s5 => change ((s5,t5), (s5,t6))
 + preserve ((s6,t6), (s7,t6))

Changing s1 (for injection) means that t1 need to be changed. Similarly, changing s2
(for scattering) means that t2 and t3 need to be changed. Changing s3 (for tangling)
means that t4 need to be changed, however in this change, the dependency of s4 in t4
has to be preserved. Changing s5 for crosscutting means that t5 and t6 need to be
changed, while preserving the dependency of s6 in t6, and of s7 onto t6.

s1
s2

s3

s4
s5

s6

t1
t2

t3
t4

t5 t6

s7

Figure 6. Examples of Change Impact

As shown in these examples, the impact set consists of two subsets: impacted target
elements that need to be changed (forward traceability from source to target), and
impacted source elements that need to be preserved in this change of target elements
(backward traceability from target to source).

The severity of anticipated impact for injection is relatively weak, for scattering
and tangling the anticipated impact is moderate, whereas for crosscutting the antici-
pated impact is strong. The severity of the actual impact in each case depends on the
number of elements involved and eventually on the type of change required.

Above, we only considered dependencies between two levels. Usually we encoun-
ter multiple levels as shown in Figure 1. In that case we have to take into account the
transitivity of trace dependency relations.

4.2 Multi-level impact analysis

We extend our analysis to dependencies across multiple levels. Assume we change
element v in the mapping (x,v). As shown in the previous section, there will be map-
pings that have to be changed and mappings that have to be preserved. The mappings
involved in this change due to the change propagation can be obtained from the fol-
lowing recursive function:

impact(x,v) =
 change(x,v)
 + (preserve(u,v) | u ← preds(v); x ≠ v)
 + (impact(v,w) | w ← succs(v))

where the function preds gives the predecessors of an element (adjacent elements in
backward trace) and the function succs gives the successors of an element (adjacent
elements in forward trace). The result of this function contains a list of mappings to
be changed based on forward traceability, and a list of mappings to be preserved
based on backward traceability.

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4 c5
Figure 7. Example with Trace Dependencies across three levels

We show this in the following example (see Figure 7), in which we want to know the
impact of changing element b2 in the mapping (a2,b2):

impact(a2,b2) =
 change((a2,b2), (b2,c2), (b2,c3))
 + preserve ((a1,b2), (b1,c2), (b3,c3))

There are 6 (unique) mappings involved in this change. There are 3 mappings to be
changed and 3 mappings to be preserved. The impact of changing element a2 can be
obtained in the same way:

impact(a2,a2) =
 change((a2,a2),(a2,b2),(b2,c2),(b2,c3),(a2,b3),(b3,c3),(b3,c4))
 + preserve ((a1,b2),(b1,c2),(b3,c3),(a3,b3),(b2,c3),(b4,c4))

In this example, the two mappings (b2,c3) and (b3,c3) have to be changed and at the
same time to be preserved. Here, a strategy is required to resolve this conflict. Such a
conflict only occurs in case of a combination of scattering at one level and tangling in
a subsequent level, resulting in multiple paths from (initial) source to (final) target
elements.

Table 3. Results of Change Impact for example in Figure 7

mappings changed preserved involved conflicts
impact(a2,b2) 3 3 6 0
impact(a2,a2) 7 6 11 2

The results of these two examples are summarized in the following Table 3, where:

#conflicts = #changed + #preserved - #involved

We may support this analysis with a matrix analysis. The example of Figure 7 can be
represented in a dependency matrix (see Table 4). We have three levels A, B and C
with elements (a1,a2,a3}, {b1,b2,b3,b4} and {c1,c2,c3,c4,c5}. For the impact (a2,a2)
we shaded the cells of dependencies that have to be changed or preserved. There is
one path from a2 to c2 as shown in cell (a2,c2), and there are two paths from a2 to c3
as shown in cell (a2,c3) indicating that there is a conflict. The dark grey cells repre-
sent the conflicting mappings (both to be changed and preserved).

Table 4. Dependency Matrix for Figure 7 with Change Impact (a2,a2)
Gray cell: change or preserve. Dark cell: change and preserve

 a1 a2 a3 b1 b2 b3 b4 c1 c2 c3 c4 c5
a1 1 0 0 1 1 0 0 1 2 1 0 0
a2 0 1 0 0 1 1 0 0 1 2 1 0

a3 0 0 1 0 0 1 1 0 0 1 2 1

b1 1 0 0 1 0 0 0 1 1 0 0 0

b2 1 1 0 0 1 0 0 0 1 1 0 0

b3 0 1 1 0 0 1 0 0 0 1 1 0

b4 0 0 1 0 0 0 1 0 0 0 1 1

c1 1 0 0 1 0 0 0 1 0 0 0 0
c2 2 1 0 1 1 0 0 0 1 0 0 0
c3 1 2 1 0 1 1 0 0 0 1 0 0
c4 0 1 2 0 0 1 1 0 0 0 1 0

c5 0 0 1 0 0 0 1 0 0 0 0 1

The recursive nature of the impact function can be seen from going from one depend-
ency matrix to the dependency matrix at the next level. The forward traceability is
provided in the rows, whereas the backward traceability is provided in the columns.

4.3 Example

In this section, we show a small - and trivial - example with elements at three levels:
requirements, architectural design and implementation. The system is a calculator
with the following requirements:

R1. Calculate The system shall calculate the addition and subtraction of real and
integer numbers.

R2. Feedback The system shall provide feedback on input errors.
We selected the Model-View-Controller pattern for the architectural design, e.g. rep-
resented in three UML-classes.

In the implementation in Java, it is decided (e.g. for performance reasons) to have
two classes, one class Storage.java with the storage of numbers and one class Calcu-
late.java with conversion of the input to numbers and the calculations. The three
levels are shown in Figure 8 with the dependencies between the elements at each
level.

R1: Calculate R2: Feedback

Model Controller View

Storage.java Calculate.java

Requirements

Design (UML classes)

Implementation (Java classes)

Figure 8. Calculator Example with Trace Dependencies between three levels

Assume we want to change requirement R1 and add a new operation to the system
(e.g. multiplication of numbers). The feedback requirement R2 is not changed. The
impact of changing R1 is that we have to change the operators and attributes in the
UML classes Model, View, and Controller. There are conflicts, because we have a
combination of scattering and tangling, resulting in two paths from requirement R1 to
both implementation classes. The severity of the conflicts depends on how strong the
MVC-functionalities are coupled in the implementation classes.

5 Related Work

Several authors use matrices (design structure matrices, DSM) to analyze modularity
in software design [4]. Lopes and Bajracharya [19] describe a method with clustering
and partitioning of the design structure matrix for improving modularity of object-
oriented designs. The design structure matrices represent intra-level dependencies (as
coupling matrices) and do not address the inter-level dependencies as in the depend-
ency matrices used for the analysis of crosscutting. Our definition of crosscutting is
similar to the definition provided by Masuhara & Kiczales [22]. However, our defini-
tion is less restrictive and not symmetric as discussed in [7].

In project management, an extension to design structure matrices is proposed by
Danilovic & Sandkull [10]. In so-called domain mapping matrices (DMM), they
capture the dynamics of product development. In their terminology, the traditional
DSMs support intra-domain analysis, whereas the DMMs support inter-domain
analysis. The purpose of our dependency matrix is similar to these domain mapping
matrices.

Maletec et al. [21] describe an XML based approach to support the evolution of
traceability links between models. Their traceability graph is similar to our depend-
ency graph. However, they do not discuss change impact analysis.

Luqi [20] uses graphs and sets to represent changes. Ajila [1] explicitly defines
elements and relations between elements to be traced with intra-level and inter-level
dependencies. Impact analysis based on transitive closures of call graphs is discussed
in Law [17]. We used the transitive closure for dependency relations between ele-
ments at the same level (intra-level dependencies or coupling).

Similar to our approach, Lindvall et al [18] show tracing across phases again with
intra-level and inter-level dependencies. They also discuss an impact analysis based
on traceability data of an object-oriented system. However, they do not support their
analysis with a formal graph or matrix model.

Change impact analysis for software architectures has been studied by Zhao et al.
[27]. They use a formal architectural description language to specify and graphs to
represent the architectures. They restrict their analysis to the architectural level and
not across multiple levels.

6 Conclusion

In this paper, we proposed a framework for the change impact analysis of software
artifacts across several phases of software development and in the evolution of these
artifacts. We defined a traceability pattern and defined specific cases of trace depend-
encies, i.e. tangling, scattering and crosscutting. Architectural design elements are
related on one hand to requirements and elements in the detailed design, on the other
hand they have trace dependencies in the evolution of the architecture.

We analyzed the changed impact in case of tangling, scattering and crosscutting.
We applied this analysis to two-level dependencies and to multiple-level dependen-
cies. We used a matrix representation for the intra-level and inter-level dependencies.
The change impact consists of mappings that need to be changed and mappings that
need to be preserved. In specific cases, we found conflicts in the change propagation
requiring at the same time change of the mapping and preservation of the mapping.
These situations deserve special attention in software evolution and a strategy for the
implementation of changes.

The framework has to be validated in empirical case studies. We focused on the
analysis of change impact based on trace dependencies. The derivation of dependen-
cies and its analysis should be supported by tools in order to scale to industrial pro-
jects.

Acknowledgments. This work has been carried out in conjunction with the AOSD-
Europe Project IST-2-004349-NoE [2] and of the ESI Project Darwin [12]. Pim van
den Broek made valuable comments on an earlier version of this paper.

References

1. Ajila, S. (1995). Software maintenance: An approach to impact analysis of object change.
Software - Practice and Experience, 25 (10), 1155-1181

2. AOSD-Europe (2005). AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation.
Retrieved May, 2005, from http://www.aosd-europe.net/documents/d9Ont.pdf

3. Arnold, R. S. & Bohner, S. A. (1993). Impact analysis - towards a framework for com-
parison. Paper presented at the Conference on Software Maintenance

4. Baldwin, C.Y. & Clark, K.B. (2000). Design Rules vol I, The Power of Modularity. MIT
Press

5. Bass, L., Clements, P. & Kazman, R. (2003). Software architecture in practice (2nd ed.).
Boston: Addison-Wesley

6. Berg, K. van den & Conejero, J. (2005a), A Conceptual Formalization of Crosscutting in
AOSD. In Iberian Workshop on Aspect Oriented Software Development, Technical Re-
port TR-24/05 University of Extremadura, 46-52. Granada, Spain

7. Berg, K. van den & Conejero, J. (2005). Disentangling crosscutting in AOSD: a concep-
tual framework. In Second Edition of European Interactive Workshop on Aspects in Soft-
ware, Brussels, Belgium

8. Berg, K. van den, Conejero, J. M. & Hernández, J. (2006). Identification of crosscutting in
software design. In AOM2006, 8th International Workshop on Aspect-Oriented Modeling,
Bonn, Germany

9. Berg, K. van den, Conejero, J. M., & Hernández, J. (2006b). Analysis of crosscutting
across software development phases based on traceability. In Early Aspects at ICSE2006:
Workshop in Aspect-Oriented Requirements Engineering and Architecture Design,
Shanghai

10. Danilovic, M., Sandkull B. (2005). The use of dependence structure matrix and domain
mapping matrix in managing uncertainty in multiple project situations. International Jour-
nal of Project Management 23 (3) 193-203

11. Darcy, D.P., Kemerer, C.F., Slaughter, S.A. & Tomayko, J.E. (2005). The structural com-
plexity of software: an experimental test. IEEE Transactions on Software Engineering, 31
(11) 982- 995

12. Darwin (2005). Designing Highly Evolvable System Architectures. Retrieved March 13,
2006 from http://www.esi.nl/site/projects/darwin.html

13. Filman, R., Elrad, T., Clarke, S. & Aksit, M. (2004). Aspect-oriented software develop-
ment: Addison-Wesley

14. Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns. Elements of
reusable object-oriented software. Addison-Wesley

15. Gotel, O. & Finkelstein, A.(1994). An Analysis of the Requirements Traceability Prob-
lem, IEEE International Conference on Requirements Engineering, Los Alamitos, Califor-
nia: IEEE Computer Society Press, April 1994, 94-101

16. IEEE (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. Institute of Electrical and Electronics Engineers, New York

17. Law, J., & Rothermel, G. (2003). Whole program path-based dynamic impact analysis.
Paper presented at the International Conference on Software Engineering

18. Lindvall, M. & Sandahl, K. (1998). Traceability aspects of impact analysis in object-
oriented systems. Software Maintenance: Research and Practice, 10, 37-57

19. Lopes, C.V. & Bajracharya, S.K. (2005). An analysis of modularity in aspect oriented
design. In 4th International Conference on Aspect-Oriented Software Development. Chi-
cago, Illinois

20. Luqi. (1990). A graph model for software evolution. Transactions on Software Engineer-
ing, 18 (8), 917-927

21. Maletec, J.I., Collard, M.L. & Simoes, B. (2005). An XML Based Approach to Support
the Evolution of Model-to-Model Traceability Links. Proceedings of the 3rd international
workshop on Traceability in emerging forms of software engineering TEFSE, California

22. Masuhara, H. & Kiczales, G. (2003). Modeling Crosscutting in Aspect-Oriented Mecha-
nisms. In 17th European Conference on Object Oriented Programming. Darmstadt

23. MDA (2003). MDA Guide Version 1.0.1, document number omg/2003-06-01
24. Pfleeger, S. L. (2001). Software engineering. Theory and practice: Prentice-Hall
25. Ramesh, B. & Jarke, M. (2001). Toward a Reference Model for Requirements Traceabil-

ity. IEEE Transactions on Software Engineering, 27, 1, 58-93
26. UML (2004). Unified Modeling Language 2.0 Superstructure Specification. Retrieved

October, 2004 from http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
27. Zhao, J., Yang, H., Xiang, L. & Xu, B. (2002). Change impact analysis to support archi-

tectural evolution. Journal of Software Maintenance and Evolution: Research and Prac-
tice, 14, 317-333

