
A Generic Framework for Integrating New
Functionalities into Software Architectures

Guillaume Waignier, Anne-Françoise Le Meur, and Laurence Duchien

LIFL, INRIA project Jacquard
Université des Sciences et Technologies de Lille

59655 Villeneuve d’Ascq, France
{waignier,lemeur,duchien}@lifl.fr

Abstract. Integrating new functionalities into a software architecture
is necessary when the application must evolve to cope with new context
and user requirements. The architect has thus to manually modify the
architecture description, which is often tedious and error prone.
In this paper, we propose FIESTA, a generic framework for automat-
ically integrating new functionalities into an architecture description.
Our approach is inspired by TranSAT, an integration framework. How-
ever, TranSAT is dedicated to a specific architecture description language
(ADL) while our approach is ADL-independent. To do so, we have per-
formed a domain analysis, studying for many ADLs how to integrate
new functionalities. Based on our domain analysis, we have defined a
generic ADL model to manipulate and reason about architectural ele-
ments that are involved in integration. Furthermore, we have defined
high-level abstractions to describe different kinds of integration. Finally,
we have developed a generic integration engine.

1 Introduction

Software architecture is an abstract specification of a system structure. It en-
ables the software architect to identify the various components of the system,
their interfaces and to reason about their assembly, without having to consider
implementation details. Many architecture description languages (ADLs) have
been proposed to represent various system properties [14].

An architecture description facilitates the comprehension, the analysis and
the prototyping of a system, as well as being a good basis for its evolution. A
system may need to evolve to take into account new functionalities in order to
better address the application environment and user requirements. Nevertheless,
adding a new functionality implies that the architect has to manually modify
the architecture description. These modification operations are often low-level,
tedious and prone to error, particularly in the case of cross-cutting functionalities
that require invasively modifying specifications in several files.

The TranSAT framework proposes an approach to automatically integrate
new functionalities into a software architecture description [5, 6]. This approach,
inspired by Aspect Oriented Programming [12], relies on both the definition of

software patterns and the use of a weaver to automatically integrate patterns into
the target architecture. A software pattern consists of three parts: a new plan,
a join point mask and a set of transformation rules. A new plan is a component
assembly corresponding to a given functionality. The join point mask expresses
properties that the target architecture must satisfy for the integration to be
possible. Finally, the set of transformation rules specifies the operations that the
weaver has to perform to integrate the new plan into the target architecture.
TranSAT is however dedicated to a single ADL, SafArchie [4], which limits its
applicability.

In this paper we present FIESTA, a Framework for Incremental Evolution
of SofTware Architectures. FIESTA entirely revisits the TranSAT approach in
order to be independent of any specific ADL, keeping only the general ideas of
defining software patterns and using a weaver to perform the integration. To do
so, we have performed a domain analysis to understand the integration process in
architectures described in various ADLs. This analysis has allowed us to identify
the common architecture elements that are involved in integration, leading to
the definition of a generic ADL model. This analysis has also enabled us to define
more abstract expressions to specify a join point mask and the transformation
rules. Overall, the FIESTA framework assists the architect during the integration
process. Furthermore, our framework is built so that it can easily support new
ADLs.

The rest of this paper is organized as follows. Section 2 describes our domain
analysis and Section 3 presents our framework, FIESTA, including our definition
of software patterns, our generic ADL model and our weaver. Section 4 describes
some related work and Section 5 concludes and provides some future work.

2 Domain Analysis

In our domain analysis we have focused on the problem of adding new functional-
ities to the Comanche Web server. Comanche is provided as an example by Julia,
the Java implementation of the Fractal component model [7]. We have manu-
ally integrated several new functionalities into this application, such as caching,
logging, encryption/decryption and authentication. Furthermore, to understand
the integration process for different ADLs, we have performed these integrations
not only in the context of Fractal ADL [8] but also in the context of CCM [15],
Olan [3], SOFA [11] and SafArchie [4]. This domain analysis has led us to identify,
for each of these ADLs, the elements involved in an integration.

We have also studied other ADLs, such as Unicon [16], Darwin [13], Wright [1],
AADL [2] and Acme [10]. Overall, we have studied 15 ADLs and from our domain
analysis, we have established a common vocabulary to abstract architectural el-
ements that are involved in an integration process. Furthermore, we have deter-
mined that adding a new functionality can be performed through two categories
of integration.

2.1 Common Vocabulary Across ADLs

We have identified six architectural elements that the software architect needs
to reason about when integrating a new functionality into a component-based
architecture description: component, connector, configuration, communication
point, communication element and role. We define them as follows:

– A component is a computational element or a data store of a system;
– A connector describes the interactions between components;
– A configuration represents an assembly of components and connectors, which

corresponds to the structure of the application;
– A communication point is an element of a component that enables the com-

ponent to communicate with its environment, i.e., the other components;
– A communication element corresponds to what is exchanged through con-

nectors between components;
– A role is a participant of the interaction represented by the connector.

Furthermore, we distinguish primitive components from composite components,
as well as direct communication points from delegated communication points. A
primitive component is a basic computational element and a composite defines a
given assembly of primitive and composite components. A direct communication
point is the source or the sink of communication. A delegated communication
point propagates communication elements toward another communication point.

Table 1 illustrates how these six elements map to the specific elements of
Fractal ADL, CCM, SafArchie, SOFA, Unicon and AADL. We have chosen these
ADLs because they are representative of various characteristics that can be found
in many ADLs.

As shown in Table 1, the concepts of primitive and composite components
exist in numerous ADLs but some, such as CCM, only provide primitive com-
ponents. Connectors are often simple bindings, but they can also be dedicated
software entities, as in SOFA and Unicon. For example in SOFA there are three
predefined connectors, CSProcCall, EventDelivery, and DataStream, and the
user may also define new connector types. The concept of configuration may be
explicit as in AADL and CCM, or implicit, i.e., the global structure of the appli-
cation corresponds to the most outwards (i.e., higher-level) defined composite.

A communication point is often called interface or port, depending on the
ADL. Furthermore, if the ADL is service-oriented, an interface or a port may
be qualified as client or server, which is equivalent to declaring them as required
or provided, respectively. In the case of a data-oriented ADL, the direction of
the dataflow may be indicated, e.g., in AADL, in (resp. out) specifies that the
dataflow is coming in (resp. out) of the communication point. Other kinds of
communication points can be found as in Unicon where communication points
are players, 14 player types are defined in total.

A role corresponds to the access point of a connector. For example, in Frac-
tal and CCM, there are two roles, one at each endpoint of the connector, one
endpoint being client and the other one server. There is also one role at each
endpoint of SafArchie connectors, but they have no name. The number of roles

ADL Component Connector Configuration Communication Role Communication
point element

Fractal primitive, binding composite client/server client/server synchronous
composite interface method call

CCM primitive binding component port (Facet, client/server asyn/syn
assembly receptacles, event method call
descriptor source, event sink) + syn event

SafArchie primitive, binding composite port endpoints synchronous
composite method call

SOFA primitive, software composite required/provided required/ asyn/syn
composite entity interface provided method call

Unicon primitive, software composite player caller, definer, syn method call,
composite entity participant, asyn event,

load, etc. syn typed flow
AADL primitive, binding system in/out data port, input/output synchronous

composite event port, typed flow
event data port

Table 1. Common architecture elements

may not be limited to two as illustrated by Unicon, which provides 11 predefined
roles.

Finally, a communication point gathers a set of communication elements.
Communication elements differ across ADLs. In the Java implementation of the
Fractal component model, communication is performed through calls to methods
that are defined in interfaces. Method calls may be synchronous or asynchronous.
In SafArchie, methods are further declared as required or provided, indicating
whether the component requires or provides the operation to function. Conse-
quently, in SafArchie a communication port is not declared as required (resp.
client) or provided (resp. server) as it may contain some required methods as
well as provided ones. Communication elements may also be for example events
or typed flows.

2.2 Two Categories of Integration

When performing our domain analysis we have identified two categories of inte-
gration. An integration may correspond to adding a new connector or require an
existing connector be modified, or both. To illustrate these two categories, we
consider the manual integration of a logging and a caching functionalities into
the Comanche Web server application. The examples are specified in Fractal.

A high-level representation of the structure of the Comanche application is
shown in Figure 1. When the Request receiver receives a URL request from
a client, it triggers the Scheduler to create a new thread to handle the client.
The request is first forwarded to the Request analyzer, then to the Request
dispatcher and finally to the File request handler. If the file specified by
the URL is found on the filesystem then the Resquest dispatcher sent file back
to the client, otherwise it calls the Error request handler.

Scheduler

analyser

Request
dispatcher

File request
handler

Error request
handler

receiver
Request

Frontend

Request handler

Backend

Comanche

Request

Fig. 1. Structure of the Comanche Web server

LoggerP1
(Logging)

public interface Logging {

public void log(String msg);

}

<interface name="P1"

role="server"

signature="Logging"/>

Fig. 2. Definition of the Logger component

Adding of a Connector: the Logging Example. We propose to add a
Logger component that will be connected to the Request analyzer component
in order to log all the requests sent to the Web server. The Logger component
is shown in Figure 2. It has a communication point P1, which provides the log
method through the Logging interface.

To integrate the Logger component, the architect has to add a new communi-
cation point, say P8, on the Request analyzer component. The communication
point P8 should be created so that it is compatible with P1. As our example is
specified in Fractal ADL, compatibility implies that P8 contains the Logging
interface and is declared as client. To complete the integration, the Logger com-
ponent should be placed in the Backend composite, and P1 and P8 connected
using a binding.

Modification of a Connector: the Caching Example. We now consider
adding a Cache component between the Request dispatcher and the File
request handler components to reduce the number of disk accesses performed
by File request handler. This integration requires the modification of a con-
nector.

The Cache component has two communication points, as shown in Figure 3.
Data is received through the communication point P2, which offers the Send
interface, containing the method send. In Fractal ADL, P2 is a server interface.

(Send)
Cache

(Send)
P3P2

public interface Send {

public Object send(Object data);

}

<interface name="P2"

role="server"

signature="Send"/>

<interface name="P3"

role="client"

signature="Send"/>

Fig. 3. Definition of the Cache component

P6dispatcher

Request handler

File request
handlerP5

(URL) (URL)

Request public interface URL {

public String getPage(URL u);

}

Fig. 4. Excerpt definition of the Request handler composite

A2
(Send)

P12 P13
(URL)(URL)

P10
(Send)

P11A1

Fig. 5. Adapters

If the data passed as an argument of the send method is already in cache, then
the cached data is returned. Otherwise, the request is forwarded through the
method send of the communication point P3, which returns the requested data.
This data is cached for later requests and then sent back to the caller of the P2’s
send method.

To integrate the Cache component, the architect has to remove the connec-
tor between the Request dispatcher and File request handler components
illustrated in Figure 4. The Cache component should be placed into the Request
handler composite. The communication points P5 and P6 should be transformed
so that they are compatible with P2 and P3, respectively. To do so, adapter com-
ponents may be used to perform type conversion. The adapters A1 and A2, shown
in Figure 5, provide this feature. In Fractal, this amounts to creating two com-
ponents A1 and A2, such that A1 has a server interface URL, named for example
P10, and a client interface Send, P11, and A2 has a server interface Send, P12
and a client interface URL, P13. Finally, the adapters are placed in the Request
handler composite and connectors are created between P5 and P10, P11 and P2,
P3 and P12, and P13 and P6. Figure 6 illustrates the result of the integration of
the Cache component.

A1 Cache
Request
dispatcher

File request
handler

Request handler

P5 P2 P3P11P10 P12 P13 P6
(URL) (Send) (Send) (URL)

A2

Fig. 6. Result of the integration of the Cache component

3 The FIESTA Framework

FIESTA is directly inspired by TranSAT. Consequently, FIESTA relies on the
creation of software patterns and a weaver that both determines where a pattern
can be applied in a target architecture and performs the integration. Figure 7
provides an overview of our framework.

While TranSAT is dedicated to the SafArchie ADL, our approach is decou-
pled from any specific ADL. Being ADL-independent has required defining new
means to express software patterns, as well as the development of a generic in-
tegration engine. In this section, we present how to specify software patterns in
our approach, as well as our generic architecture internal representation model
and weaver, which are the key parts of our generic integration engine.

Fractal

Loader

CCM
Olan

Architecture internal

representation

Weaver
Fractal

Writer

CCM
Olan

New plan Mask Integration
 rules

Architect

Pattern developer

Base
architecture

Design
choices

Transformed
base

architecture

Transformed

representation

New plan internal

representation

Software pattern

Fig. 7. Overview of the FIESTA framework

3.1 Software Patterns

A software pattern describes a given functionality and contains all the infor-
mation needed to integrate this functionality into an architecture. It may be
developed independently of any specific architecture by a software pattern de-
veloper, and reused on different architectures by a software architect. In our
approach, a software pattern is composed of a new plan, a join point mask and
a set of integration rules.

New Plan. A new plan is an assembly of components describing a functional-
ity. For example, the Logger component (Figure 2) and the Cache component
(Figure 3) can be considered as new plans. Some communication points of the
assembly may not be connected yet. These points will be the points at which
connectors will be attached to integrate the new plan into the base architecture,
i.e., the target architecture.

A new plan is described in a given ADL. It could be SafArchie, Fractal
ADL or SOFA, etc. We have chosen to not specify the new plan with a generic
ADL in order to keep all the expressiveness and the specific characteristics of
each ADL, and to also not force the pattern developer to learn another ADL.
The new plan will be automatically transformed into our generic architecture
internal representation for use during the integration process. All the information
described in the new plan will still remain in the architecture resulting from the
integration.

Join Point Mask. In our approach, a join point mask expresses structural
properties that the base architecture must satisfy for the integration to be possi-
ble. More precisely, it specifies a valid integration site as an abstract component
assembly description.

A join point mask is composed of component masks, connector masks and
communication point masks. These masks abstract the general concepts of com-
ponent, connector and communication point and thus are not specific to any
ADL. Furthermore, communication point masks are constrained to be linkable
with specific communication points of the new plan. Since the new plan is ex-
pressed in a given ADL, the resolution of the linkable property will be specific
to this ADL and determined at integration time.

Figure 8 illustrates the mask to associate with the Logger component. This
mask can match any existing component of the base architecture since the log-
ging functionality may be added anywhere. At integration time, the architect will
specify which component should be concerned by the integration of the logging
functionality.

Figure 9 depicts the mask for the caching functionality. This mask specifies
that in order to add caching the base architecture must exhibit two compo-
nents connected through a connector. The connector may go through delegated
communication points if the components are not within the same composite.
The communication point masks Pn and Pm are declared to be linkable with the
communication points P2 and P3 (Fig. 3), respectively.

ComponentMask Cm1;

Fig. 8. Join point mask for the logging functionality

ComponentMask Cm1, Cm2;

CommunicationPointMask Pn on Cm1 linkable with Cache.P2;

CommunicationPointMask Pm on Cm2 linkable with Cache.P3;

ConnectorMask{Pn,Pm};

Fig. 9. Join point mask for the caching functionality

At integration time, the weaver will search all the integration sites satisfying
the mask and the architect will specify which of these sites to affect. Each ab-
stract name associated to a mask element will be then unified with the actual
names contained in the architecture description.

Integration Rules. Integration rules are specified using integration primitives.
FIESTA provides two integration primitives, one for each category of integration
that we have identified during our domain analysis. We illustrate these two
primitives with the logging and caching examples presented in Section 2.

Adding of a new connector in the logging example is expressed using the
primitive addConnector as follows:

addConnector Logger.P1 on Cm1;

This rule specifies that the communication point P1 of the new plan must be
connected to the component associated with the component mask Cm1. This rule
implies that a compatible new communication point will have to be created on
Cm1 and a connector will have to be added between this communication point
and P1. These operations will be automatically performed by the weaver. Design
choices, such as choosing the name of the new communication point will be asked
to the architect by the weaver at integration time.

Modifying an existing connector in the case of the cache example is expressed
using the primitive modifyConnector as follows:

modifyConnector from Cm1.Pn to Cache.P2 and
from Cache.P3 to Cm2.Pm;

This rule indicates that the connector between Pn and Pm must be removed
and replaced by a connector between Pn and P2 and another connector between
P3 and Pm. Design choices, such as using adapters or directly modifying the
communication points P2 and P3 to make the types compatible, are postponed
until integration time.

3.2 The FIESTA Integration Process

Our domain analysis has shown that integrating a new functionality requires ma-
nipulating elements that are common across ADLs. Accordingly, we propose to
build a generic integration framework rather than one framework for each ADL.
To do so, our framework relies on a generic architecture internal representation
model to express a component assembly and on a generic weaver.

The FIESTA integration process is illustrated in Figure 7. A base archi-
tecture and the new plan expressed in, say Fractal ADL, are transformed by
an ADL-specific loader, each into an internal representation, according to our
generic ADL model (Figure 10). The weaver transforms the architecture internal
representation following the information contained by software pattern. Finally,
the transformed representation is translated by a ADL-specific writer back into
a Fractal ADL specification.

Generic Architecture Internal Representation Model. The model of our
internal representation, which results from our domain analysis, is shown in
Figure 10. To handle commonalities and variations between ADLs, our model
relies on two sets of information: common structural information and ADL-
specific non-structural information.

Since integrating a new functionality requires transforming the instance of
the system structure at a given time, our model captures only the static structure
of an architecture. The structural elements of the model are the ones identified
in Section 2. Accordingly, a configuration is an assembly of components and
connectors. A component may be a primitive component with direct communi-
cation points, or a composite component with delegated communication points.
Communication points contain communication elements and are connected to
connectors through roles. A composite component is formed of primitive and/or
composite components, and connectors.

Our model takes into account the specific characteristics of each ADL and
stores all the information contained in the original ADL description in order to
be able to recreate it at the end. ADL-specific variabilities are stored into sets of
properties, one set per structural element. These properties are represented as
associations (key, value). For example, in the case of the communication point
P2 of the Cache component, a property ’signature’ is associated with the value
’Send’ and a property ’role’ with the value ’server’. Other information, such as

Fig. 10. Architecture internal representation model

the name of the file where an architectural element is specified in the original
ADL description, is also stored.

Weaver. The weaver assists the architect during the integration of a software
pattern. First, it determines from the internal representation of the architecture
the set of integration sites with respect to the join point mask of the pattern.
The architect chooses the sites to affect and for each site the weaver executes
the integration rules defined in the pattern to integrate the new plan. Before
being applied, these integration rules, which are ADL-independent, are trans-
formed into low-level ADL-specific operations. Indeed each of the integration
rules corresponds to a well-defined sequence of low-level operations, the order of
the operations in the sequence being always the same, independently of the ADL
used. For example, integrating the caching functionality, as described by the rule
defined in the pattern, consists of removing the connector P5-P6, creating the
adapters A1 and A2, and finally creating four new connectors.

Though the sequence of low-level operations is generic across ADLs, these
operations are performed differently depending on the ADL used. We have identi-
fied 12 low-level operations that must be specified for each ADL, such as creating
a connector or determining whether two communication points are compatible
or not. For example, in Fractal ADL, two communication points are compatible
if they have the same signature and if one is declared as client and the other as

// Fractal ADL
boolean isCompatible(CommunicationPoint P1,

CommunicationPoint P2) {
return

P1.getProperty(’signature’).equals(P2.getProperty(’signature’))
&&
((P1.getProperty(’role’).equals(’client’) &&

P2.getProperty(’role’).equals(’server’))
||
(P1.getProperty(’role’).equals(’server’) &&

P2.getProperty(’role’).equals(’client’))
);

}

// CCM
boolean isCompatible(CommunicationPoint P1,

CommunicationPoint P2) {
return

P1.getProperty(’interface’).equals(P2.getProperty(’interface’))
&&
((P1.getProperty(’type’).equals(’facet’) &&

P2.getProperty(’type’).equals(’receptacle’))
||
(P1.getProperty(’type’).equals(’receptacle’) &&

P2.getProperty(’type’).equals(’facet’))
||
(P1.getProperty(’type’).equals(’event source’) &&

P2.getProperty(’type’).equals(’event sink’))
||
(P1.getProperty(’type’).equals(’event sink’) &&

P2.getProperty(’type’).equals(’event source’))
);

}

Fig. 11. Definitions of the operation isCompatible for Fractal ADL and CCM

server. In CCM, the notion of compatibility amounts to checking that both com-
munication points have the same interface and that one is a facet (resp. event
source) and the other a receptacle (resp. event sink). These two definitions of the
operation isCompatible are shown in Figure 11. Another example of the oper-
ations that need to be specified for each ADL is the operation linkableWith,
which appears in the join point mask specification and specifies under which
conditions two ports may be connected with each other.

During the execution of the sequence of low-level rules, some design choices
have to be made by the architect as mentioned in Section 3.1. Consequently,
the weaver may ask the architect for naming new communication points, for
deciding whether adapters should be created or communication points directly
modified, for choosing the type of the connector, or also for deciding in which
composite a new component should be placed. The number of design choices
depends directly of the ADL used as some ADLs offer more possible actions
than others. Nevertheless, the architect can also specify default design choices
in a file so that he will not be prompted during the integration process.

4 Related Work

The TranSAT approach [5, 6] has introduced the concept of software pattern to
modularize a given functionality and specify under which conditions the func-
tionality can be integrated into an architecture description as well as the as-
sociated transformation rules to perform the integration. Our approach is also
built on the concept of software patterns but is more generic since our join point
mask specification and integration rules are decoupled from the SafArchie ADL
or any other ADL. Furthermore, we provide higher abstractions to express how
to integrate a new functionality than the TranSAT transformation rules, which
remain low-level. Indeed, in TranSAT the pattern developer must express the
sequence of all the operations to perform while our approach proposes two high-
level integration primitives that are automatically expanded by our weaver into
a sequence of low-level operations. This reduces the risk for errors on the part
of the pattern developer and simplifies the verification of the coherence of the
software pattern. However, TranSAT handles SafArchie behavioral descriptions
while our current approach only considers structural information.

Some works, such as Acme [10] or xADL [9], have proposed a generic ADL
model to represent different ADLs. Acme focuses on high-level structural prop-
erties of architectures and allows assemblies of components and connectors to
be described. xADL is a generic ADL based on XML. It serves as a common
internal representation of ArchStudio IDE, which consists of various architecture
manipulation tools, such as Rational Rose or Armani. Consequently, xADL is
more focused on representing types of architectures. Though these two models
have commonalities with ours, they do not provide enough details about com-
munication between components. For example, they do no offer the notion of
communication elements and direct or delegated communication points, which
are required for our purpose of integrating new functionalities.

5 Conclusion and Future Work

We have presented FIESTA, a generic framework that enables the integration of
new functionalities into an architecture description. Our approach is built on a
domain analysis that has led to the identification of the architectural elements
involved in an integration process, independently of the ADL used, which has
enabled the definition of a common ADL model. Our approach is thus decou-
pled from any given ADL. Furthermore, we provide higher-level abstractions
to describe the join point mask and transformation rules of a software pattern
than the TranSAT approach, simplifying the task of the pattern developer. Our
weaver assists the architect during the integration of new functionalities. He only
has to decide which integration sites to affect and to provide information related
to design choices.

Our integration engine is generic in that it always performs the same actions
in the same order for every ADL used. However, these actions are decomposed
into sequences of well-identified low-level operations, which are implemented

differently for each ADL. These operations have thus to be specified once and for
all, for each ADL that the engine supports. Adding support for a new ADL can
be obtained by defining the 12 ADL-specific operations that we have identified.
From our experience, most of these operations are straightforward to specify.
Furthermore, a loader and a writer must also be developed, however, they can
be most of the time adapted from the existing tools associated with this ADL.

Currently, we have defined the low-level operations for several of the ADLs we
have studied and have fully implemented our framework for Fractal ADL. In the
near future, we plan to handle more ADLs, such as SafArchie. This will require
our model and rules to be extended in order to capture and manipulate SafArchie
behavioral information. Furthermore, we would like to apply our approach to the
development of more applications to better assess our proposition. Finally, we
are interested in investigating the possibilities to adapt our approach in order to
provide functionality integration capabilities at runtime.

References

1. R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, Jan. 1997. Issued as CMU Technical Report
CMU-CS-97-144.

2. AS-2 Embedded Computing Systems Committee SAE. Architecture Analysis &
Design Language (AADL). SAE Standards nAS5506, Nov. 2004.

3. R. Balter, L. Bellissard, F. Boyer, M. Riveill, and J.-Y. Vion-Dury. Architecturing
and configuring distributed application with olan. In Proceedings of the 1st IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware’98), pages 241–256, The Lake District , UK, Sept. 1998.
Springer-Verlag.

4. O. Barais and L. Duchien. SafArchie studio: An ArgoUML extension to build
safe architectures. In Architecture Description Languages, pages 85–100. Springer-
Verlag, 2005.

5. O. Barais, L. Duchien, and A.-F. Le Meur. A framework to specify incremental
software architecture transformations. In Proceedings of the 31st EUROMICRO
Conference on Software Engineering and Advanced Applications (EUROMICRO-
SEAA’05), pages 62–69, Porto, Portugal, Sept. 2005. IEEE Computer Society.

6. O. Barais, J. Lawall, A.-F. Le Meur, and L. Duchien. Safe integration of new
concerns in a software architecture. In Proceedings of the 13th Annual IEEE In-
ternational Conference on Engineering of Computer Based Systems (ECBS’06),
pages 52–64, Potsdam, Germany, Mar. 2006. IEEE Computer Society.

7. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An open
component model and its support in Java. In Proceedings of the 7th International
Symposium Component-Based Software Engineering (CBSE’04), volume 3054 of
Lecture Notes in Computer Science, pages 7–22, Edinburgh, Scotland, May 2004.
Springer-Verlag.

8. E. Bruneton, T. Coupaye, and J.-B. Stefani. The Fractal Component Model, Feb.
2004. Online documentation http://fractal.objectweb.org/specification/.

9. E. M. Dashofy, A. V. der Hoek, and R. N. Taylor. A highly-extensible, XML-
based architecture description language. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA’01), page 103, Washington, DC,
USA, 2001. IEEE Computer Society.

10. D. Garlan, R. Monroe, and D. Wile. Acme: An architecture description interchange
language. In Proceedings of the 1997 conference of the Centre for Advanced Stud-
ies on Collaborative research Processing (CASCON’97), pages 169–183, Toronto,
Ontario, Canada, Nov. 1997.

11. T. Kalibera and P. Tůma. Distributed component system based on architecture
description: The SOFA experience. In On the Move to Meaningful Internet Sys-
tems 2002: CoopIS, DOA, and ODBASE : Confederated International Conferences
CoopIS, DOA, and ODBASE 2002, volume 2519 of Lecture Notes in Computer Sci-
ence, pages 981–994, London, UK, 2002. Springer-Verlag.

12. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Proceedings ECOOP, volume 1241,
pages 220–242. Springer-Verlag, 1997.

13. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. Lecture Notes in Computer Science, 989, 1995.

14. N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software En-
gineering, 26(1):70–93, Jan. 2000.

15. Object Management Group. CORBA Component Model, v3.0, formal/2002-06-65,
June 2002.

16. G. Zelesnik. The UniCon Language Reference Manual. School of Computer Science
Carnegie Mellon, Pittsburgh, Pennsylvania, May 1996.

