Architecture and Design Intent: An Experience Report

Paul S Grisham, Matthew J. Hawthorne, & Dewayne E. Perry

May 20, 2007
Introduction

What is Design Intent?
- Set of decision-making factors
 - Rationale
 - Best-Practices
 - Patterns, Styles, Idioms
 - Naturalistic Decision-making
 - Situational Analysis

Graduate Topics Course on Design Intent
- Teach theory, history, and current practices of AK and DI
- Goal: Use the project as a prototype study on DI modeling
 - Gain preliminary results for hypothesis forming
 - Improve methods for future studies
Overview of the Project

➔ Project overview:
 ➤ Add features to an existing software project
 ➢ Evolutionary design

➔ Project Phases:
 1. Infer DI/AK from unstructured documentation
 2. Perform decision modeling without decision process
 3. Perform decision modeling with decision process

➔ Problem Domain:
 ➤ Document management system
 ➤ Extensive documentation covering all aspects of the system
 ➢ Executive summaries and white papers
 ➢ Informal architecture documentation
 ➢ User manuals
 ➢ Wikis / mailing list archives
 ➢ Source code (open-source)
 ➤ Mature, suitably complex
 ➤ Easy to understand domain
Phase 1 – Using Existing Knowledge

➔ Read documentation and answer specific questions

♀ Where can certain knowledge be found?
 ➢ Functional requirements
 ➢ Architectural design
 ➢ Architectural rationale

♀ How was rationale explicitly and implicitly represented?

➔ Results:

♀ Docs were suitably thorough to find basic functional and architectural design
 ➢ Relevant information was spread throughout multiple sources
 ➢ Subject to interpretation
 ➢ Difficult to terminate search without exhaustive reading

♀ Rationale present, but subtle coding
 ➢ Students used content analysis

♀ Searches were disorganized
 ➢ Reflected immaturity of architects
 ➢ Lack of structure in documents
Phase 2 - Decision Modeling w/out process

- Treat requirements structuring as a design activity
- Use QOC to:
 - formalize requirements (questions, constraints) and
 - consider early design alternatives (options)
- Students felt that the process helped them discover alternatives and hidden assumptions
 - But they couldn't identify anything specific
- Students felt that it helped coordinate their group
 - More or less than other collaborative systems?
Phase 3 – Decision modeling with Process

➔ Use CBSP to structure requirements and map to arch elements
 ➔ Treats requirement structuring as a design activity
 ➔ Distinct steps with input and output artifacts
 ➔ Other architecture design processes not suitable for evolutionary design
 ➔ Other arch+rationale systems do not provide a design method

➔ Students found CBSP difficult to use
 ➔ Steps were incompletely defined or too vague
 ➔ Categories and classifications were too ambiguous
 ➔ Lack of tool support and method guidance
Analysis of Problem Domain

⇒ DSpace was a good domain choice
 ⇨ Can be used for repeatable, controlled experiments
 ⇨ Half- to full-day observation studies with individuals or teams
 ⇨ Question: How do experienced architects approach existing documentation for evolving domains?
 ⇨ We can “fake” AK or DI for DSpace to perform specific tests
Analysis of Method

➔ Decision-Support is useful
 ➔ AK as process by-product
 ➔ Many decision support processes are for initial design
 ➔ CBSP or Preskriptor (e.g.) not suitable for evolving designs

➔ General rationale modeling for architectural design is not that useful
 ➔ General rationale systems have been studied more thoroughly and better in the past
 ➔ We should be focusing on systems of integrating arch. design with AK

➔ Missed Opportunity – Round Trip
 ➔ Integrate semiformal DI/AK into unstructured documentation as a comparison for the next iteration