Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

oe iE .
ELSEVIER Information and Software Technology 50 (2008) 1003-1034

A catalog of architectural primitives for modeling architectural patterns

Uwe Zdun ®*, Paris Avgeriou °

* Distributed Systems Group, Vienna University of Technology, Austria
® Department of Computer Science, University of Groningen, The Netherlands

Received 18 May 2007; received in revised form 11 September 2007; accepted 25 September 2007
Available online 11 October 2007

Abstract

Architectural patterns are a fundamental aspect of the architecting process and subsequently the architectural documentation. Unfor-
tunately, there is only poor support for modeling architectural patterns for two reasons. First, patterns describe recurring design solu-
tions and hence do not directly match the elements in modeling languages. Second, they support an inherent variability in the solution
space that is hard to model using a single modeling solution. This paper proposes to address this problem by finding and representing
architectural primitives: fundamental, formalized modeling elements in representing patterns. In particular, we examined architectural
patterns from the components and connectors architectural view, and we discovered recurring primitive abstractions among the patterns,
that also demonstrate a degree of variability for each pattern. We used UML 2 as the language for representing these primitive abstrac-
tions as extensions of the standard UML elements. The contribution of this approach is that we provide a generic and extensible concept
for modeling architectural patterns by means of architectural primitives. Also, we can demonstrate a first set of primitives that participate
in several well-known architectural patterns.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Software architecture; Software patterns; Pattern primitives; Modeling; UML

1. Motivation

The software architecture of a system needs to be rigor-
ously documented in order to profit from the advantages
of architecture-centric development and evolution. One of
the most significant aspects of documenting software archi-
tectures is the representation of architectural patterns (also
known as architectural styles)'. In general, a pattern is a
problem-solution pair in a given context. A pattern does
not only document ‘how’ a solution solves a problem but also

* Corresponding author.

E-mail addresses: zdun@infosys.tuwien.ac.at (U. Zdun), paris@
cs.rug.nl (P. Avgeriou).

! In this paper we do not distinguish between the terms ‘architectural
pattern’ (used e.g. in [6,39.44]) and ‘architectural style’ (used e.g. in [42]).
For the sake of simplicity, we shall use only the term ‘architectural
pattern’ for the rest of this paper. Their commonalities and differences are
elaborated in [2].

0950-5849/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.09.003

‘why’ it is solved, i.e., the rationale behind this particular
solution. Architectural patterns help to document architec-
tural design decisions, facilitate communication between
stakeholders through a common vocabulary, and assist in
analyzing the quality attributes of a software system.

There are three major approaches, that have been used
so far for modeling architectural patterns:

1. Architecture Description Languages (ADLs), which aim
at representing software architectures in general [27];

2. the Unified Modeling Language which is a generic mod-
eling language but can also be used to describe software
architectures [37,26,4];

3. some formal or semi-formal approaches for the formal-
ization of pattern specifications [8,29,43,25].

Unfortunately, none of these approaches succeeds in effec-
tively modeling architectural patterns for the following
reasons:

mailto:zdun@infosys.tuwien.ac.at
mailto:paris@ cs.rug.nl
mailto:paris@ cs.rug.nl

1004 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

e The approaches are too limited in the abstractions they
propose to grasp the rich concepts found in patterns.
UML, to start with, falls short in offering certain stan-
dard concepts of architectural patterns [1,26,20]. For
example in the ‘pipes and filters’ architectural pattern
[42,6], a pipe does not match the UML connector, since
the latter cannot have an associated state or even inter-
faces. Furthermore there are no elements in UML to
model architectural configurations such as a virtual
machine [42], a blackboard [3], or a C2 topology [26].
In contrast, many ADLs inherently support a few spe-
cific patterns such as C2 [26] or pipes and filters [42,6],
or can be extended to represent patterns (e.g. using style
repositories [30]). But except for these few patterns,
ADLs do not support the rest of the patterns. Similarly,
the third aforementioned approach is basically con-
cerned with just a handful of design patterns from [11].

e The approaches do not deal with the inherent variabil-
ity of architectural patterns. This is not restricted to
architectural patterns but it is a general problem of
specifying patterns because each pattern covers not
only one (parametric) solution, but informally
describes a whole solution space for a recurring design
problem. It is obvious in UML and ADLs, and even
more so in the third aforementioned approach that
deals with the formal specification of design patterns
[8,29,43,25]: such methods are capable of specifying
one particular solution in the solution space of the
pattern, but fail to specify the whole solution space
covered by the informal pattern description.

We propose to remedy the problem of modeling architec-
tural patterns through identifying and representing a num-
ber of ‘architectural primitives’ that can act as the
participants in the solution that patterns convey. We use
the term ‘primitive’ because they are the fundamental mod-
eling elements in representing a pattern, and they are the
smallest units that makes sense at the architectural level of
abstraction (e.g. specialized components, connectors, ports,
interfaces). Our approach relies on the assumption that
architectural patterns contain a number of architectural
primitives that are recurring participants in several other
patterns [28]. These primitives are common among the differ-
ent patterns even if their semantics demonstrate slight varia-
tions from pattern to pattern. We have ‘mined’ a number of
architectural patterns and discovered several architectural
primitives that we believe are key concepts in modeling archi-
tectural patterns and subsequently software architectures in
general. We provide a modeling abstraction for each type of
elicited architectural primitive, and then demonstrate that it
is possible to model architectural patterns explicitly, pre-
cisely, and intuitively, through a case study. It is noted that
the set of primitives identified in this paper is not exhaustive,
but does contain some of the most common primitives found
in popular architectural patterns.

Our general approach to define architectural primi-
tives can take advantage of any modeling language, as

long as it can be extended to provide the syntax and
semantics of the primitives. We have chosen the Unified
Modeling Language for this purpose, because it has
become the ‘lingua franca’ of software design and is
vastly supported by tools. We have specified an extension
of UML 2.0 metaclasses for each elicited primitive, using
the standard UML extension mechanisms: stereotypes,
tag definitions, and constraints. We have also used the
Object Constraint Language (OCL) to formalize the con-
straints and provide more precise semantics of the prim-
itives. The result is a UML profile that can be imported
in modeling tools; in our case we specified the profile in
Eclipse/Octopus. We have also developed a model vali-
dator as a prototype implementation for supporting
model-driven development using our concepts.

The rest of this paper is structured as follows: In Section
2 we give an overview of the proposed approach. Section 3
presents the UML extension mechanism of ‘Profiles’ and
the subset of the UML 2.0 meta-model that was used for
specifying our Profile. Section 4 elaborates on the results
of the approach by demonstrating several architectural
primitives that were mined from some of the most popular
architectural patterns. Section 5 demonstrates the
approach through a case study, while Section 6 further pre-
sents a prototype tool that validates the proposed architec-
tural primitives in a model-driven development context.
Finally, Section 8 discusses related work in this field, and
Section 9 sums up with conclusions and future work.

2. The proposed approach

The underlying idea behind our approach is that the var-
ious architectural patterns share some common architec-
tural ‘primitives’. Thus we wuse the patterns as a
foundation to elicit the recurring architectural primitives
for a particular architectural view. Specifically, we propose
the following approach:

1. Analyze the architectural patterns of a given architec-
tural view to discover common participants in their
solutions. These should be recurring and probably
varying instances of the same architectural concept,
e.g. a special-purpose component or connector. Pat-
terns (a) capture the variations of a solution and (b)
describe the solution in a realization-independent
way. For instance, pattern descriptions contain pattern
variants, implementation hints, design alternatives,
consequences, forces that govern a solution, and so
forth. These are all sources for eliciting the architec-
tural primitives.

2. Model these architectural primitives as extensions of
UML. First we find the UML metaclasses that are a
close semantic match to the primitives, e.g. components,
connectors, interfaces etc. Then define the semantics of
these primitives more precisely with the help of OCL
in order to facilitate the unambiguous and consistent
modeling of patterns.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1005

3. Use the derived UML extensions of primitives to model
pattern instances in real case studies and validate the
effectiveness of the primitive to unambiguously model
architectural patterns (e.g. using tool support).

It is noted that the pool of architectural patterns, we used
to elicit primitives, includes some patterns that are described
as ‘design patterns’ in the literature. In general it is hard to
draw the line between architectural patterns and design pat-
terns. In fact, it depends heavily on the viewpoint of the
designer or architect whether a specific pattern is categorized
as an architectural pattern or a design pattern. Consider for
instance, a classical design pattern, the INTERPRETER [11]. The
description in [11] presents it as a concrete design guideline.
Yet, instances of the pattern are often seen as a central ele-
ments in the architecture of software systems, because an
INTERPRETER is a central, externally visible component —
i.e., the pattern is treated like an architectural pattern (see
[42]). Thus, in this paper, we refer to such design patterns
as architectural patterns, considering them at an architec-
tural level of abstraction. However, this has resulted in few
object-oriented concepts being used in the primitives, e.g.
composition and aggregation cascade use object-oriented
inheritance.

3. Extending UML to represent the primitives
3.1. A UML profile

According to the UML standard there are two ways to
extend the language: the hard extension produces an exten-
sion of the language meta-model, i.e., a new member of the
UML family of languages is specified; the soft extension
results in a profile, which is a set of stereotypes, tag defini-
tions, and constraints that are based on existing UML ele-
ments with some extra semantics according to a specific
domain. In order to model the architectural primitives we
chose the soft extension mechanism of UML, i.e., the def-
inition of a profile for architectural primitives for the fol-
lowing reasons:

e A UML profile is good enough for this task since there are
already existing UML metaclasses that are semantically a
close match to the architectural primitives. Therefore we
can simply extend the semantics of these metaclasses
rather than having to define completely new metaclasses.

e The users of this profile will feel comfortable by using
stereotypes that are extensions of existing metaclasses
rather than using concepts they are not familiar with.
The learning curve can thus be minimized.

e A profile is still valid, standard UML, so we can count
on support from the existing UML tools, rather than
offer proprietary UML tools which are rarely used in
practice.

We also use OCL to define the necessary constraints for
the defined stereotypes to formalize their semantics. OCL

constraints are the primary mechanism for traversing
UML models and specifying precise semantics on meta-
classes and stereotypes.

3.2. The UML 2 meta-model

This section briefly presents part of the existing UML
2.0 meta-model for architectural description, and in partic-
ular those metaclasses that we have extended to model the
architectural primitives. It is noted that, according to the
software architecture community, an architectural descrip-
tion is comprised of multiple views [7,18,19,23]. In this
paper we focus on the view that is considered to contain
the most significant architectural information, which is
the component-and-connector view [7]. This view deals
with the components, which are units of runtime computa-
tion or data-storage, and the connectors which are the
interaction mechanisms between components [34,7]. We
have focused on this view because the patterns that we have
mined concern mainly this view. However, other architec-
tural patterns from other views, such as the ‘logical’ or
‘module’ view, can also be searched for primitives, as will
be stated in Section 9.

The following UML 2.0 metaclasses are extended to
model architectural primitives in the component and con-
nector view, mainly taken from the composite structures
and components packages:

1. Components are specializations of classes and therefore
have attributes and operations, but are also associated with
provided and required interfaces. Finally components
inherit indirectly from EncapsulatedClassifier and thus
may own ports that formalize their interactions points.

2. Interfaces serve as contracts that components must com-
ply with. An interface is either a provided interface that
describes a set of functionalities offered by a component,
or a required interface that describes a set of functional-
ities that a component expects from its environment.

3. Ports specify a distinct interaction point between the
component that owns the port and its environment, or
between the component and its internal parts (proper-
ties). Ports may specify required and provided interfaces
of the component that owns them.

4. Connectors are either assembly connectors that connect
the required interface of one component to the provided
interface of a second, or delegation connectors that link
the ports of a component to its internal parts.

5. Packages are mechanisms for grouping model elements
either by owning them or importing them. They also
provide a namespace for uniquely identifying the ele-
ments by their name.

We have also used the following UML metaclasses in
order to express the OCL constraints while traversing the
UML meta-model: AggregationKind, Association,
Classifier, ConnectableElement, ConnectorEnd, Encapsu-
latedClassifier, Feature, RedefinableElement, Namespace,

1006 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

NamedElement, PackageableElement, Property, Redefi-
nableElement, VisibilityKind.

It is noted that UML 2.0 provides the means to describe
design patterns through the Collaboration metaclass, as an
interaction between instances of components and connec-
tors. However, we do not use this metaclass since it is also
bounded by the limitations for modeling patterns discussed
in Section 1.

The specification of the primitives was implemented
with the help of the Octopus plug-in (http://www klasse.
nl/) in the Eclipse environment (http://www.eclipse.org/).
We chose this tool for specifying the primitives because
Eclipse is open-source and widely used, and also because
the Octopus plug-in can statically check OCL 2.0 con-
straints. For all OCL constraints we assume the standard
UML 2.0 role names for the extensions: “base$X”’, where
$X is the extended metaclass, and “‘extension$Y”’, where
$Y is the stereotype name. Additionally, we have also
implemented our own model validator tool to support
model-driven development using our concepts (see Section
6 for details).

Fig. 1 illustrates the part of the existing UML meta-
model that contains the aforementioned metaclasses and
shows their relationships, especially for traversing OCL

constraints. The figure has been adapted from the UML
2 standard [32] and, for simplicity, some details have been
omitted.

4. Modeling architectural primitives

In this section, we provide more details about our
approach, demonstrating the elicitation of architectural
primitives from general-purpose architectural patterns,
and modeling them with a UML 2.0 profile. We first show
the template for documenting the architectural primitives
and continue with an eclaborate presentation of nine
primitives.

4.1. Template for architectural primitive documentation

We propose a simple template for documenting the elic-
ited architectural primitives, consisting of four elements:

e Introduction: A brief textual description and discussion
of the architectural primitive.

e Known uses in patterns: A short description of the pat-
terns in which the architectural primitive participates.

v

. Classitier Packageable
-required Element
* ,—|> name:String
Component * Interface
-provided parents() -ownedMember’|* *
* ; * | -importedMember
-required| * «| -provided /\ « | + featuringClassifier
. . -owningPackage & 0..1
0..1 Port Package
. ® . . + feature *
Association |-owningAssociation 1
-ownedPort * Feat
eature »
0..1
0..1]| +type o 0.1 (Namespace
. + association
Encapsulated \37
Classifier
Connector Redefinable
Element > NamedElement
1
— Class +class visibility:
-end 2.* visibilityKind
0..1 name: String
ConnectorEnd
i «enumeration»
-end * -ownedEnd Property «enumeratl_on» Visi_bility
* + +ownedAttribute Aggregation Kind
-role 0..1 2.* i Kind
aggregation: public
+ memberEnd aggregationKind . none protected
Connectable)
Element < . o1 shared private
+ opposite - composite package

Fig. 1. Part of the UML 2.0 meta-model that was used for the stereotype definition.

http://www.klasse.nl
http://www.klasse.nl
http://www.eclipse.org

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1007

o Modeling issues: An explanation why this primitive can-
not be modeled with standard UML and thus needs to
be supported with a UML extension.

e Modeling solution: A description of UML 2.0 extensions,
containing stereotypes, possibly with tag definitions, and
constraints.

4.2. Callback

4.2.1. Introduction
‘Callback’ is described as follows:

A callback denotes an invocation to a component B that
is stored as an invocation reference in a component A.
The callback invocation is executed later, upon a speci-
fied set of runtime events, usually implemented as meth-
ods. Between two components 4 and B, a set of
callbacks can be defined, also usually implemented as
methods. Note that in this description 4 might be equal
to B. In essence, the callbacks between two components
A and B are a set of tuples. Each tuple consists of one
method methodA, € Methods 4 that represents a trigger
event and a method methodB, € Methodsg that is a call-
back, like:

Callbacks 5 ={(methodA,, methodB,),
(methodA,, methodB,),
(methodA,, methodB;),

)

There are two main variants of callbacks:

The runtime events are ordinary method invocations,
field accesses, or other events in the program flow. (Note
that these are also called ‘joinpoints’ in aspect-oriented
programming [22]).

e The runtime events are ‘real events’ in an event-based
programming system, triggered by some event loop.

With regard to modeling the callback, the two variants
make no difference: Structurally, both kinds of callbacks
are realized in the same way. Sometimes a callback has
only one associated runtime event (e.g. a set with only
one tuple), sometimes it is raised by a number of different
runtime events.

4.2.2. Known uses in patterns

e In the OBSERVER pattern [11] an observer component is
notified by one or more subjects about state changes
and other events. Usually the notification is realized as
a callback.

® MODEL-VIEW-CONTROLLER [6] uses callbacks to inform
views about changes in the model, much like the logic
behind the OBSERVER pattern.

e A REACTOR [39] is a special kind of OBSERVER that is
informed about network events using callbacks.

o In the EVENTSYSTEM pattern [42] components may broad-
cast a number of events. Another component may regis-
ter an interest in an event by associating a callback with
the event. When an event occurs, the EVENT SYSTEM dis-
patches all the callbacks associated with the event.

e There are various patterns describing interception archi-
tectures, such as INTERCEPTOR [39], MESSAGE INTERCEPTOR
[45], and INVOCATION INTERCEPTOR [44]. Interceptors are
invoked as extensions to some other invocation; thus
they must be invoked, when this other invocation takes
place. Usually, the interceptors are triggered by callback
events like ‘invocation arrived’ or ‘invocation finished’.

o vISITORS [11] are used to define an interpretation mecha-
nism apart from the structure to be interpreted. They are
usually called back, by the elements to be visited.

4.2.3. Modeling issues

A major problem in modeling these patterns in UML is
that, even though the callback-structure is a key partici-
pant in the patterns, it cannot be explicitly modeled and
made visible in UML diagrams, such as component dia-
grams, class diagrams, or sequence diagrams. There are
only some ‘hints’ that might imply the presence of a call-
back but there is much ambiguity that could lead to false
detections of callbacks. Consider the following examples
of such ‘hints’:

e A structural indicator for a callback that we could
include in UMLSs structural diagrams is to have a class
or a component A store a reference to a method of B.
Using this indicator, however, is problematic because
there is no unambiguous indication whether the method
reference is intended for being used as a callback or not.
To make matters worse, invocation references are not
necessarily realized by using a reference to a method.
Many programming languages do not require a refer-
ence to the callback operation at all. For instance, in
Java it is sufficient to have the operation name stored
in a string to be able to look-up the operation using
reflection. When the pattern coMMAND [11] is used, the
callback can be encapsulated in the commanD. In both
cases, the intended use of these structures as callbacks
is not directly visible in a UML model.

¢ Another structural hint for callbacks is their return type.
In event-driven applications, the return type of a call-
back is usually void, because the callback is raised by
an event, and thus the callback cannot return anything.
However, this is not always the case: For instance, an
interceptor often returns an error state to indicate to
the interceptor architecture, whether the interceptor
invocation was successful or not. Also, in non-event-dri-
ven applications, for instance, in the viSITOR and OBSER-
VER patterns, this rule-of-thumb does not hold: Here, the
callback may well be used with a return value.

1008 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

e In some cases, where the callback can be modeled as
simple recursive invocations (as in the VISITOR pattern),
we can get around this problem by using an accompa-
nying sequence diagram that shows the recursive call-
back (e.g. class A calls B and then B calls 4 back).
However, there are two basic problems with this
approach:

— No semantic annotation: Even though the sequence
diagram has a callback-like structure, the same kind
of sequence diagram might be used for a ‘normal’
invocation going back and forth, which is not a
callback.

— Temporal decoupling: Callbacks are usually stored
until an event happens, often much later in time,
and then they are invoked upon that event. This
cannot be easily depicted with a sequence diagram
because of the many invocations that happen
between performing the callback and the event that
caused it to be invoked.

In summary, UML elements can be used as an indicator
that a callback is used, but the callback-structure cannot be
identified unambiguously in UMLs structural and interac-
tion diagrams. Thus, the runtime behavior and interaction
semantics of the callback-structure cannot be properly
modeled in standard UML.

4.2.4. Modeling solution

To capture the semantics of callbacks properly in UML
and tackle the above problems, we propose five new
stereotypes:

o «lEvent»: A stereotype that extends the ‘Interface’ meta-
class and contains a number of methods that are exclu-
sively trigger events for a callback.

o «ICallback»: A stereotype that extends the ‘Interface’
metaclass and contains a number of methods that serve
exclusively as callback methods.

o «EventPort»: A stereotype that extends the ‘Port’ meta-
class and is typed by two interfaces: IEvent as a provided
interface and ICallback as a required interface. This can
be formalized using two OCL constraints for EventPort:

- - An event port is typed by IEvent as a
--provided interface
inv: self.basePort.required->size()=1
and self.basePort.required->forAll(
i:Core::Interface|
ICallback.baseInterface->
exists(j|j=1))

- - And: An event port is typed by ICallback
--as arequired interface.
inv: self.basePort.provided->size()=1
and self.basePort.provided->forAll(
i:Core::Interface|
IEvent.baselInterface->exists(j|j=1))

e «CallbackPort»: A stereotype that extends the ‘Port’
metaclass and is typed by two interfaces: ICallback as
a provided interface and IEvent as a required interface.
This can be formalized using two OCL constraints for
CallbackPort:

-- A callback port is typed by ICallback as a
- - provided interface
inv: self.basePort.required->size()=1
and self.basePort.required->forAll(
i:Core::Interface|
IEvent.baselnterface->exists(j|j=1))

- - And: A callback port is typed by IEvent
--as arequired interface.
inv: self.basePort.required->size()=1
and self.basePort.required->forAll(
i:Core::Interface|
ICallback.baseInterface->
exists(j|j=1))

o «Callback»: A stereotype that extends the ‘Connector’
metaclass and specifies the semantics of a callback con-
nector, which connects an EventPort of a component to
a matching CallbackPort of another component. This
can be formalized using two OCL constraints:

-- A Callback connector has only two ends.
inv: self.baseConnector.end->size()=2

-- A Callback connector connects an EventPort
- - of a component to amatching CallbackPort
- - of another component. An EventPort matches
- - a CallbackPort if the provided IEvent
- - interface of the former matches the
--required IEvent interface of the latter,
- - and the required ICallback interface of
- - the former matches the provided ICallback
interface of the latter:
inv: self.baseConnector.end->forAll(
el,e2:Core::ConnectorEnd|el<>e2 implies(
(el.role->notEmpty() and
e2.role->notEmpty()) and
(if EventPort.basePort->exists(p|
p.oclAsType(Core:: ConnectableElement)=
el.role)
then
(CallbackPort.basePort->exists(p|
p.oclAsType (
Core::ConnectableElement)=
e2.role)
and
el.role.oclAsType (Core::Port).required=
e2.role.oclAsType (Core::Port).provided
and
el.role.oclAsType (Core::Port).provided=
e2.role.oclAsType (Core::Port).required)
else
CallbackPort.basePort->exists(p|
p.oclAsType (
Core::ConnectableElement)=

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

el.role)
endif)))

Fig. 2 illustrates these stereotypes according to the
UML 2.0 Profiles package, while Fig. 3 depicts the nota-
tion used for the stereotypes. All stereotypes use the nota-
tion of the metaclass they extend adorned by the name of
the stereotype in guillemets.

4.3. Indirection

4.3.1. Introduction

Indirection happens when one or more related “proxy”’
components receive a message on behalf of one or more
“target” components and forward the message to these
“targets”, perhaps after some computation has taken
place. Afterward the result is sent back, again through
the “proxy” components.

Indirection can take place at small scale, with only one
client, one proxy, and one target component. It can also
involve multiple components playing the role of any of
these participants. For instance, a whole layer or subsys-
tem, consisting of multiple components and connectors,
might indirect invocations to other components.

4.3.2. Known uses in patterns

e An INDIRECTION LAYER [45]is a general pattern describing
a LAYER [6] that redirects all invocations from one sys-
tem context into another.

e Ordinary LAYERS [6] redirect invocations from layer X to
the layer beneath, X — 1.

1009

«|Event»

«|Event» ObserveEvent

ObserveEvent

«EventPort»
e

«CallbackPort»

«|Callback» «|Callback»
update update
2 | «Callback» =l
A B
«EventPort» «CallbackPort»
e c

Fig. 3. The notation of the stereotypes in Callback modeling.

® A VIRTUAL MACHINE [42] redirects invocations from a
byte-code layer into an implementation layer for the
commands of the byte-code.

An INTERPRETER [42,11] redirects invocations from a
script (interpreted code) layer into an implementation
layer for the commands of the script (interpreted code).
An ADAPTER [11] redirects invocations from one interface
to another.

FACADE [11] shields a subsystem and redirects invoca-
tions into that subsystem.

A proxy [11]1is a placeholder of another object and redi-
rects invocations to that object.

A CLIENT PROXY [44] is a special prRoXY in the distributed
system context.

A COMPONENT WRAPPER [47] wraps a component and redi-
rects invocations to that component.

WRAPPER FACADE [39] wraps a procedural library, and
redirects invocations to that library.

«stereotype»
IEvent
«metaclass»
Interface
«stereotype»
«stereotype» required provided Callback
ICallback
Y
«stereotype»
EventPort «metaclass»
Connector
«metaclass»
Port
«stereotype»
CallbackPort

Fig. 2. Stereotypes for modeling Callback.

1010 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

e A MESSAGE REDIRECTOR [45]is a component whose task it
is to redirect (dispatch) invocations for a subsystem.

4.3.3. Modeling issues

The indirection structure is not explicit in structural or
behavioral UML diagrams. The causes for this problem
are similar to those explained for the Callback primitive
because again two consecutive invocations cannot be
semantically aligned. That is, the semantics are missing:
is it an ordinary collaboration or an indirection?

There are similar structural and behavioral indicators as
in Callback, that cause similar problems. We do not repeat
these here in full detail but we provide a brief description:

e In an Indirection, clients store invocation references to
proxies, which store references to targets. However, this
is a vague hint because an Indirection’s invocation refer-
ences cannot be distinguished from ordinary references.
That is, it cannot be detected from the structure that
invocations are passed along the references.

¢ In some Indirections a standardized return type is used
or one of the passed parameters is a context object for
the Indirection. However, these are both occasionally
used, and it is hard to detect them automatically.

e As in callback, sequence diagrams may help, but are
ambiguous because again there is no semantic annota-
tion and it is difficult to cope with temporal decoupling
as well.

4.3.4. Modeling solution

To capture the semantics of indirections properly in
UML and tackle the above problems, we propose the fol-
lowing new stereotypes and constraints:

o «lIndirector»: A stereotype that extends the Interface
metaclass and designates the proxy component’s inter-
face to the Indirection client.

e «ITarget»: A stereotype that extends the Interface meta-
class and designates the proxy component’s interface to
the Indirection target.

o «IndirectionTarget Port». A stereotype that extends the
Port metaclass. The «IndirectionTargetPort» is attached
to the target component, and provides an «ITarget»
interface, in order to accept requests from the proxy
component. This can be formalized as follows:

-- An IndirectionTargetPort provides
--an ITarget interface
inv: self.basePort.provided->size()=1 and
self.basePort.provided->forAll(
i:Core::Interface|
ITarget.baseInterface->
exists(jlj=1))

o «IndirectionPort»: A stereotype that extends the Port
metaclass. The «IndirectionPort» is attached to a proxy
component, requires an «/7arget» interface and pro-

vides an «IIndirector» interface. The client of the target
component can connect via the «/Indirector» interface
to the proxy component, which forwards the request
to the target component through its «/Target» inter-
face. This can be expressed in OCL with the following
constraints:

- - The IndirectionPort requires an ITarget

- - interface

inv: self.basePort.required->size()=1 and

self.basePort.required->forAll(
i:Core::Interface|
ITarget.baselnterface->exists(j|j=1))

- - The IndirectionPort provides an
-- IIndirector interface
inv: self.basePort.provided->size()=1 and
self.basePort.provided->forAll(
i:Core::Interface|
IIndirector.baseInterface->
exists(j|j=1))

o «Indirection»: A stereotype that extends the Connector
metaclass. It is used to connect two ports which are ste-
reotyped as IndirectionPort and IndirectionTargetPort.
The connector is constrained as follows:

-- An Indirection connector has only two ends
inv: self.baseConnector.end->size()=2

- - An Indirection connector connects an
- - IndirectionPort of a proxy component to a
--matching IndirectionTargetPort of the
- - target component. An IndirectionPort
--matches an IndirectionTargetPort if
- - the provided ITarget interface of the
--latter matches the required
-- ITarget interface of the former.
inv: self.baseConnector.end->forAll(
el,e2:Core::ConnectorEnd|el<>e2 implies(
(el.role->notEmpty() and e2.role->
notEmpty())
and
(if IndirectionPort.basePort->exists(p]
p.oclAsType (Core::ConnectableElement)=
el.role)
then
(IndirectionTargetPort.basePort-> exists(p|
p.oclAsType(Core::ConnectableElement)=
e2.role)
and
el.role.oclAsType (Core::Port).requireds=
e2.role.oclAsType (Core::Port).provided
and
el.role.oclAsType (Core::Port).provideds=
e2.role.oclAsType (Core::Port).required)
else
IndirectionTargetPort.basePort->exists(p|
p.oclAsType (Core::ConnectableElement)=
el.role)
endif)))

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

Fig. 4 illustrates these stereotypes according to the
UML 2.0 Profiles package, while Fig. 5 depicts the nota-
tion used for the stereotypes.

4.4. Grouping

4.4.1. Introduction

In several design situations, a number of components
belong semantically together, for instance because they
fulfill a collective task. In some of these situations,
designers want to model this concern explicitly using
the object-oriented ‘“‘part-of”’ (or aggregation) relation-

1011

ship like the ones offered by UML. In such aggregation
relationships, there is one (or more) components that is
(are) a “whole” which has (have) a few other compo-
nents as ““parts”.

However, there are also other situations in which the
whole is made up only from the parts, and there is no
notion of a component that explicitly represents the whole.
The Grouping primitive deals with such situations: A
group member is part of a whole, and the whole is virtual.
That is, there is no component in the software architecture
for representing the group as a whole, but it is made only of
its parts.

«stereotype»
lindirector
«metaclass»
Interface
«stereotype»
«stereotype» required provided Indirection
ITarget
A
«stereotype»
IndirectionPort «metaclass»
Connector
«metaclass»
Port

«stereotype»
IndirectionTargetPort

Fig. 4. Stereotypes for modeling Indirection.

«lIndirector»
IndirectedOp

«IndirectionPort»
ip

«IndirectionTargetPort»

«|Target» «|Target»
targetOp targetOp
Client
1
«lIndirector»
IndirectedOp
«Indirection» g]

«IndirectionPort»
ip

«IndirectionTargetPort»
itp

Fig. 5. The notation of the stereotypes in Indirection modeling.

1012 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

4.4.2. Known uses in patterns

e The subsystem shielded by a FACADE [11]is a group of
those components belonging to the subsystem.

e The LAYERs pattern [6] divides the system into logical
layers, each of them is a ‘virtual’ group of components.

e The components of a BROKER [6] architecture are a group
of components working on the same task.

e An INDIRECTION LAYER [45] redirects invocations from
one group of components into another.

e A VIRTUAL MACHINE [42] redirects invocations into a
group of implementation layer components.

e An INTERPRETER [42,11] redirects script invocations into
a group of implementation components.

e A MESSAGE REDIRECTOR [45] dispatches invocations into a
group of components that form a subsystem.

e A BLACKBOARD [6,42] is accessed and modified by a
group of Knowledge Sources.

e A MICROKERNEL [6] offers services by groups of internals
and external servers.

e The REFLECTION pattern [6] allows a group of applica-
tion-logic components to query a group of meta-objects
in order for the former to abstract their structural and
behavioral aspects.

e A PEER-TO-PEER [7] system groups peer components and
relates different groups with each other.

e The PUBLISH-SUBSCRIBE pattern [6,7] offers asynchronous
notification to a group of independent subscribers.

4.4.3. Modeling issues

UMLs aggregation (shared aggregation) or composi-
tion (composite aggregation) relationships can be used
to model part-whole relationships. According to [32]
these relationships have the following semantics: Compos-
ite aggregation is a strong form of aggregation that
requires a part instance be included in at most one com-
posite at a time. If a composite is deleted, all of its parts
are normally deleted with it. Precise semantics of shared
aggregation varies by application area and modeler. In
both cases, a component is used in the relationship as
an explicit whole.

But in Grouping, the whole does not really exist as a
component, it is only the sum of its parts. For instance, a
subsystem contains subsystem elements, but usually there
is no explicit component for representing the subsystem
as a whole. Hence, both UMLs aggregation or composi-
tion, model a slightly different situation, which expresses
different semantics than Grouping.

Alternatively, a UML package can be used to depict
such a group, but a package may own the elements,
which means that a destruction of the package would
also destroy the elements. On the contrary we need a
more loose relationship between the group and its
members.

The aggregation relationships and packages alike can
contain elements other than components. Hence, it is not
possible to ensure in UML that only a virtual group of

components is modeled. Modelers can add other types of
UML elements to the group.

4.4.4. Modeling solution

We add a simple extension to the UML meta-model
for modeling groups: a stereotype «Group», extending
the Package metaclass, is used to model a group, pro-
viding a namespace for the different group member
components. We constrain the Group stereotype, Sso
that only components can be its members, and these
components are only imported and not owned by the
group.

We formalize grouping in OCL using the following
constraints:

- - A Group does not own any members
inv: self.basePackage.ownedMember->size()=0

- - All the imported members of a group are

- - Components

inv: self.basePackage.importedMember->forAll(
0clIsTypeOf(Core::Component))

Fig. 6 illustrates these stereotypes according to the
UML 2.0 Profiles package, while Fig. 7 depicts the nota-
tion used for the stereotypes.

4.5. Layering

4.5.1. Introduction

Layered structures are ubiquitous in software architec-
tures, where groups of components are ordered and invo-
cations between the different groups need to respect
certain rules. For instance, the most common rule is that
an intermediate layer cannot be bypassed during an invo-
cation from a higher layer to a lower layer. As in the
Grouping primitive, a layered component structure
should only contain components (and not other UML
elements). Also, a layer is typically a virtual entity, i.e.,
in many cases it only exists to indicate a conceptual
abstraction in the system.

Hence, Layering builds upon the Grouping primitive
and further constrains it. Specifically, it entails that group
members from layer X may call into layer X — 1 and com-
ponents outside the layers, but not into layer X — 2 and
below.

4.5.2. Known uses in patterns

e The rLAYERS [6] and LAYERED SYSTEM [42] patterns
described layered structures.

e An OBJECT SYSTEM LAYER [47] introduces a layer hosting a
object system as an extension of the language in which
the OBJECT SYSTEM LAYER is implemented.

® INDIRECTION LAYER [45] describes LAYERS [6] that redi-
rects all invocations in one system context into
another.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1013
Indirect inheritance, since N
Component is a Class, who is a
Classifier, who is a Type, who is a
PackageableElement
«metaclass» «metaclass» importedMember «metaclass»
+———o—{">| Packageable
Component Namespace
Element
«stereotype» «metaclass»
Group Package
Fig. 6. Stereotypes for modeling Grouping.
«Group» «Group»
Group1 Group2
D D D D
g] g] g] g]
A B Cc D

Fig. 7. The notation of the stereotypes in Grouping modeling.

e A MICROKERNEL [6] is structured in three layers: external
servers, the microkernel, and internal servers.

e The PRESENTATION-ABSTRACTION-CONTROL pattern also
enforces layers: a top layer with one agent, several inter-
mediate layers with numerous agents, and one bottom
layer which contains the ‘leaves’ agents of the tree-like
hierarchy.

4.5.3. Modeling issues

The problems in modeling Layering are similar to
Grouping. Hence, for the same reasons as in Grouping,
the UML aggregation and composition relationships, as
well as ordinary UML package structures, are not suit-
able to model all concerns of Layering. Additionally,
we need to ensure that calls between components residing
in different layers do not violate the aforementioned con-
straints. In contrast to groups, one layer member cannot
be part of multiple layers.

4.5.4. Modeling solution

We introduce the «Layer» stereotype, which specializes
the «Group» stereotype introduced above (which itself is
an extension of the Package metaclass). We also impose
the following constraints:

e A component can only be member of one layer and not
multiple layers.

e Components who are members of layer X may call their
fellow components in layer X, as well as components in
layer X — 1 but not in other layers (e.g. X — 2 and below).

It is noted that there is no constraint about calling com-
ponents in layer X + 1 or above, since this is a specific issue
to the pattern realization. Also, we introduce the tag defi-
nition layerNumber for Layers which represents the num-
ber of the layer in the ordered structure of layers. The
constraints are formalized as follows:

- - A Layer member can only be part of one
-- layer and not multiple layers
inv: self.basePackage->forAll (pl,p2:Core::Package |
pl<>p2 implies
pl.importedMember->
intersection(p2.importedMember)->isEmpty())

- - Components in Layer X may only call
- - components in the same Layer and Layer X — 1
-- but not other Layers.

inv: self->forAll(|1,|2:Layer||1<>|2 implies

1014

if ((|]1l.layerNumber- |2.1layerNumber).abs()>1)
then
not |l.basePackage.ownedMember->forAll (
c:Core::Component |
12.basePackage.ownedMember->
exists(connects(c)))
else
true
endif)

To realize the connects definition used above, the Compo-
nent metaclass of UML is extended as follows:

- - Check whether a Component is connected
--directly or indirectly to another component
- - through connectors
def: connects(target: Component): Boolean =
if self.ownedPort.opposite.class->includes
(target)
then
true
else
if self.ownedPort.opposite.class->
exists(connects(target))
then
true
else
false
endif

endif

Fig. 8 illustrates these stereotypes according to the
UML 2.0 Profiles package, while Fig. 9 depicts the nota-
tion used for the stereotypes.

4.6. Aggregation cascade

4.6.1. Introduction

A composITE [11] describes part-whole hierarchies where
a composite object is composed of numerous subparts.
Both composite and leaf components inherit from the same
class, and are treated uniformly by clients. For example a

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

GUI widget can call its parts to paint themselves, and they
call their parts and so on. A cascade [9] is a COMPOSITE
structure with (recursive) constraints of the form: “A com-
posite A can only aggregate components of type B, B only
C, etc”.

Such interconnected or recursive COMPOSITE structures of
components are in fact a common concern in object-ori-
ented systems. An Aggregation Cascade models this situa-
tion, but it does not define the precise semantics of the
aggregation relationships between the COMPOSITE struc-
tures. Instead, these are to be defined by the application
domain and the architect.

4.6.2. Known uses in patterns
e The composiTE [11] pattern describes general composite
structures. Our primitive concerns especially design situ-
ations with multiple composite structures that are inter-
connected or recursive (and may have additional
constraints).

e A CASCADE [9] is a COMPOSITE structure with (recursive)
constraints of the form: “A composite 4 can only aggre-
gate components of type B, B only C, etc”.
ORGANIZATION HIERARCHY [10] is an analysis pattern that
requires both composite constraints and (recursive)
constraints of the form: “A composite 4 can only aggre-
gate components of type B, B only C, etc”. Such analysis
patterns are frequently realized by component
architectures.

4.6.3. Modeling issues

For this primitive, we could consider the UML Aggrega-
tion, which is a special form of the UML Association.
Because it depicts a part/whole relationship, but the precise
semantics of shared aggregation varies by application area
and modeler (see [32]), it is the UML modeling element
that matches the Aggregation Cascade primitive concerns
the closest.

Through Aggregation, a whole aggregates parts, and a
part cannot contain its whole, but it is possible for a part
to be aggregated in multiple wholes. That is, links between

PackageableElement

Indirect inheritance, since Component is a Class,
who is a Classifier, who is a Type, who is a

«metaclass» » l;::itch:s;; importedMember «metaclass»
Component Hegent Namespace
«stereotype»
Layer «stereotype» «metaclass»
> |-
Group Package
+layerNumber:Integer

Fig. 8. Stereotypes for modeling Layering.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1015

«Layer» «Layer»
Application- Application-
specific general
{layerNumber=1} {layerNumber=2}
D D D D
2] g] 8] 2]
A B C D

Fig. 9. The notation of the stereotypes in Layering modeling.

hierarchies are possible, but not circular links. In our prim-
itive, the composites call their parts recursively, and there
are recursive composition constraints. UMLs aggregation,
however, cannot perform such recursive calls or ‘cascading’
constraints.

4.6.4. Modeling solution

We constrain all components of the hierarchy, com-
posites and leafs, to inherit from the same component
type. Furthermore we define a stereotype «Aggregation-
Cascade» as an extension of the stereotype «Indirec-
tion», which itself extends the Connector metaclass.
An Aggregation Cascade connects a composite to its
parts. It extends Indirection since it forwards the
recursive operations to clients. Since it specializes Indi-
rection all the constraints from Indirection are also
valid here.

The Association that types the Connector is an Aggrega-
tion, to enforce that this is really a connector between a
composite and its parts. Since we introduce the aggregation
between two specific, connected components, and not
between a Composite and a generic interface (as in the
COMPOSITE pattern), these aggregations are constrained so
that “A composite 4 can only aggregate components of
type B, B only C, etc”.

These constraints can be formalized as follows:

- - There is always an association that types
- - the AggregationCascade and that association
--1s an Aggregation. Note that the association
- - being an aggregation implies that it is also
- - binary (only binary associations can be
- - aggregations)
inv: self.baseConnector.type->size()=1 and
self.baseConnector.type.memberEnd->
exists(aggregation=
Core::AggregationKind::shared)

- - The association is navigable both ways
- - (so the classes own the association ends)

inv: self.baseConnector.type.ownedEnd->isEmpty ()

- - Component A can only aggregate components
- - of the same type B
inv: let componentA:Core::Class =
self.baseConnector.type.memberEnd->
select(aggregation=
Core::AggregationKind::shared).
class->any(true) in
componentA.ownedAttribute.opposite.
class->forAll(cl,c2:Core::Class|
cl<>c2 implies cl.name=c2.name)
- - A1l components of the hierarchy inherit
- - from the same type
inv: self.baseConnector.type.memberEnd.class->
forAll(cl,c2:Core::Class|cl<>c2 implies
cl.parents()->intersection
(c2.parents())->
notEmpty())

Fig. 10 illustrates these stereotypes according to the
UML 2.0 Profiles package, while Fig. 11 depicts the nota-
tion used for the stereotype using an example: a model
according to the ORGANIZATION HIERARCHY [10] analysis
pattern.

4.7. Composition Cascade

4.7.1. Introduction

A Composition Cascade builds upon Aggregation Cas-
cade, and further enforces that a component may not be
part of more than one composite at any time. In this case,
composites have a lifecycle responsibility for their parts.
That is, the whole may take direct responsibility for creat-
ing or destroying the parts, or it may accept an already
existing part, and later pass it on to some other whole that
assumes responsibility for it.

Again, these lifecycle operations need to be applied in a
recursive fashion: e.g. a composite that is destroyed, destroys
its parts, which recursively destroy their parts, and so on.

1016 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

«stereotype»
Composition
Cascade

v

«stereotype»
Aggregation
Cascade

A 4

«stereotype»
Indirection

«metaclass»
Association

«metaclass» +type
Connector

Fig. 10. Stereotypes for modeling Aggregation and Composition
Cascades.

Region

«AggregationCascade»

Division

Operating Unit «AggregationCascade»

Department

«AggregationCascade»

Sales Office

Fig. 11. Example of an aggregation cascade.

4.7.2. Known uses in patterns

Composition Cascade has the same known uses in pat-
terns as Aggregation Cascade: coMPOSITE [11], CASCADE
[9], and orGANIzATION HIERARCHY [10]. The difference to
the Aggregation Cascade known uses is that the patterns
are realized using aggregation relationships that assume
lifecycle responsibility for the parts.

4.7.3. Modeling issues

We face the same modeling issues as in Aggregation
Cascade, but we need to model a more rigid aggrega-
tion relationship: A component may not be part of
more than one composite at any time. The recursive
operations must also include the aforementioned lifecy-
cle operations.

4.7.4. Modeling solution

The modeling solution is to extend the Aggregation Cas-
cade primitive and add additional constraints on the
«Aggregation Cascade» Connector. We thus define the
«CompositionCascade» stereotype as an specialization of
«AggregationCascade». In this case the Association that
types the connector is a Composite Aggregation, so each
part can only be owned by one Composite.

We thus only have to add one more constraint. Of
course, the rest of the constraints from AggregationCas-
cade hold here.

- - The association that types the

- - CompositionCascade is a CompositeAggregation

inv: self.baseConnector.type.memberEnd->exists(
aggregation=Core:: AggregationKind::composite)

Fig. 10 illustrates these stereotypes according to the
UML 2.0 Profiles package, while Fig. 12 depicts the nota-
tion used for the stereotype.

4.8. Shield

4.8.1. Introduction

In certain cases, a set of components cannot or should
not be accessed directly by clients. Instead, another inter-
mediary component is to be used to access the set of com-
ponents. The rationale behind this ‘shielding’ is usually
information hiding, separation of concerns, or the imple-
mentation of central tasks which should be respected by
all the components in the set.

The Shield primitive captures this design rationale with
the following properties: One or more components act as
‘shields’ for a set of components that form a subsystem.
No external client should be allowed to access members
of the subsystem directly, but access should happen only
through these ‘shields’.

Componenti
«CompositionCascade»
L
Leaf1 Composite1
«CompositionCascade»
L
Leaf2 Composite2

Fig. 12. Notation of a composition cascade.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1017

4.8.2. Known uses in patterns
e The subsystem shielded by a Facape [11] often should

not be accessed directly, but only via the FACADE.
In the LAYERs pattern [6], often layers should not get
bypassed, i.e., lower-level layers should not be accessed
directly. Also, often layer elements should only be
accessed via the layer’s interface. Hence, the layer’s
interface shields the layer’s elements and other lower-
level layers.

e The INDIRECTION LAYER [45] shields the “target” compo-
nent from the client.

e A MESSAGE REDIRECTOR [45]is a component whose task it
is to redirect (dispatch) invocations for a subsystem. It
should usually not get bypassed.

e In the REFLECTION pattern [6], the meta-object
protocol shields the meta-objects from the client
component.

e A VIRTUAL MACHINE [12] shields the platform details in
order for the byte-code to be ported in different
platforms.

e An OBIJECT SYSTEM LAYER [47] introduces a layer host-
ing a object system as an extension of the language
in which the OBJECT SYSTEM LAYER is implemented.
The objects in the OBIJECT SYSTEM LAYER should only
be accessed through the OBJECT SYSTEM LAYER'S
interface.

e Many remoting patterns [44] used in a layered BROKER
architecture shield a whole subsystem realizing their
functionality: The subsystem’s should not be accessed
directly.

4.8.3. Modeling issues

We need to model the members of the subsystem, as well
as the components shielding the subsystem. Here, the prob-
lems in modeling the Shield primitive are similar to Group-
ing. Hence, for the same reasons as in Grouping, the UML
aggregation and composition relationships, as well as
ordinary UML package structures, are not suitable to
model subsystems.

Additionally, we need to make sure that no invocation
can bypass the ‘shield’ components. This concept also can-
not be represented in standard UML. For instance, if we
model the subsystem as a Group following the Grouping
primitive, any element of the Group’s Package can be
accessed from outside and is visible to clients. The
imported package member that are used to model
Grouping offer no means to limit the access to a Group
member.

4.8.4. Modeling solution

We utilize the Grouping primitive (or extensions of it
such as Layering), described above to model the member-
ship of the components in the ‘shielded’” group.

We introduce the stereotype «IShield» that extends
the Interface metaclass. «IShield» is offered by the com-
ponents that shield the subsystem and provide access to

the rest of the group members. We use UMLs Visibility
Kind abstraction to make an IShield interface a public
interface, and add the constraint that all IShield inter-
faces must be group members. This can be formalized
in OCL as follows:

- - The visibility of the methods of IShield are

- - declared public so that any client can access

-- 1t directly

inv: self.baseInterface.feature->forAll(f |
f.visibility = Core::VisibilityKind::public)

-- IShield interfaces are provided by a member
--of a group
inv: self.baseInterface->forAll(1i]
Core::Package.importedMember.oclAsType
(Core::Component).
provided->includes(1i))

We also introduce the stereotype «Shield» that extends
the Connector metaclass. A «Shield» connector can be used
by a client to connect to the “shield”” component. Thus we
constrain «Shield» to match the provided «IShield» inter-
face of a “‘shield” component to the matching required
interface of a client component. «Shield» is constrained
as follows:

-- A Shield Connector has only two ends
inv: self.baseConnector.end->size()=2

- - There is always an association that types

- - the Shield and that association is navigable
--both ways so the classes own the association
-- ends (preconditions so that

- - Property. opposite is not empty)

inv: self.baseConnector.type->size()=1

inv: self.baseConnector.type.ownedEnd->isEmpty ()

-- A Shield Connector matches the provided
- - IShield interface of a shield component
--to the matching required interface of a
--client component.
inv: self.baseConnector.end->forAll(
el,e2:Core::ConnectorEnd|el<>e2 implies (
(el.role->notEmpty () and e2.role->notEmpty())
and
((el.role.oclAsType (Core::Port).required=
e2.role.oclAsType (Core::Port).provided)
and
(el.role.oclAsType(Core::Port).required->
forAll(i|IShield.baseInterface->
exists(jli=1))))
or
((el.role.oclAsType (Core::Port).provideds=
e2.role.oclAsType (Core::Port).required)
and

1018 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

el.role.oclAsType(Core::Port).provided->
forAll(i|IShield.baseInterface->
exists(jlj=1)))))

Finally, we introduce the stereotype «ShieldPort» that
extends the Port metaclass. A port stereotyped as
«ShieldPort» provides at least one «[IShield» interface.
«ShieldPort» is also extended by a tag definition, shield-
Group, for denoting the group which is shielded. «Shield-
Port» is constrained so that all components that connect
to its port and are not client components, should be
members of the shieldGroup. Finally, each such compo-
nent that is not itself a shield component for the same or
other groups, should have a “package” visibility for all
its provided interfaces. That means, the member compo-
nents of the shielded group can only be accessed by
other members of the group or via the «/IShield» inter-
faces. These constraints of «ShieldPort» are formalized
in OCL as follows:

--Ashieldport provides one ormore interfaces,
- - and one of them is an IShield interface
inv: self.basePort.provided->size()>=1 and
self.basePort.provided->forAll(
i:Core::Interface|IShield.baseInterface->
exists(j|j=1))

- - All components connected to this port who are
--not client components (require the same
- - IShield that self provides) are members of the
- - same group and that group has the same name
- - as the tagged value “shieldGroup”
inv: let
ShieldedComponents:Bag(Core::Component) =
self.basePort.opposite->reject(p:Core::Port|
p.required->includes(self.basePort.provided)).
class.oclAsType(Core::Component) in
Groupings::Group.basePackage->
one (importedMember->
includesAll(ShieldedComponents) and
name = self.shieldGroup)
and
- - for each such component ¢, who does not
- - provide an IShield interface, all provided
- - interfaces of c are of visibility “package”
ShieldedComponents.ownedPort->
reject(p:Core::Port|
Shields::IShield.baseInterface->
includesAll(p.provided))->forAll
(p:Core::Port|p.provided.feature->
forAll(f|f.visibilitys=
Core::VisibilityKind::package))

Fig. 13 illustrates these sterecotypes according to the
UML 2.0 Profiles package, while Figs. 14 and 15 depict
the notation used for the stereotypes.

«stereotype»
IShield
«stereotype» «stereotype»
Shield ShieldPort
A J h 4 A
«metaclass» «metaclass» «metaclass»
Interface Connector Port
provided

«metaclass»
Component

importedMember «stereotype»
Group

Fig. 13. Stereotypes for modeling Shields.

4.9. Typing

4.9.1. Introduction

In many situations, the typing abstraction provided by
the design or programming language is not sufficient for
modeling domain types. For instance, the domain might
require dynamic or constrained type dependencies.

Consider for example a typical business situation: There
are different Party Types in a company (e.g. “manager”,
“implementation group”), and a particular business entity
(e.g. John, group X) can change its Party Type at runtime:
A component of party type ‘“‘manager’’ can become ‘‘senior
manager’”, a group of type “test group” can become
“implementation group”, and so forth. There are usually
constraints on these type changes (e.g. a group cannot take
a Party Type that needs to be fulfilled by a person).

The only abstraction that can be used in these cases, is
the generic association, but that does not include the
semantics of dynamic or constrained typing. A custom,
dynamic type system for Party Types needs to be imple-
mented from scratch by the developers. The Typing prim-
itive introduces the notions of a supertype connector and
a type connector, which can be used to define custom typ-
ing models using associations.

4.9.2. Known uses in patterns

e The pattern TYPE OBJECT [21] resolves the problem that a
certain type relationship has to be dynamic in a stati-
cally typed, object-oriented language. By building the
type relationship with the objects of the language,
instead of the static classes, dynamic typing is “‘simu-
lated” using delegation.

e A common example of an extension of the TYPE
OBJECTS [21] pattern are analysis pattern that realize
a KNOWLEDGE LEVEL [10], a meta-level architecture
for typing in the sense of TYPE oBJECT. We give
below the examples of party types and accountability

types.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

1019

2]

2]

«ShieldPort» Client

«|Shield» «IShield»

Fig. 14. The notation of the stereotypes in Shield modeling (1).

2]
N °
«Group»
Group1
E
L C
g]
g] A
B
g | 2]
Cc Client
«ShieldPort» «Shield»

Fig. 15. The notation of the stereotypes in Shield modeling (2).

e An OBJECT SYSTEM LAYER [47] introduces a layer hosting a
object system as an extension of the language in which
the OBJECT SYSTEM LAYER is implemented. Thus a whole
custom type system is introduced with in the oBJECT sys-
TEM LAYER.

4.9.3. Modeling issues

In UML2 the Generalization metaclass is used to model
inheritance. A generalization is a relationship between a
more general classifier and a more specific classifier. The
specific classifier inherits the features of the more general
classifier. The InstanceSpecification metaclass is used to
define a model element that represents an instance of a
Classifier. Those metaclasses exactly match our concern
to model a type system, and of course they can be extended
to model custom aspects of it. However, in UML there is
no notion of changing a model derived from the UML2
meta-model at runtime. For instance, a reclassification of
an instance, or a change of the supertype, are not sup-
ported by UMLs Generalization and InstanceSpecification
metaclasses.

UML supports associations as relationships that are
changeable at runtime. However, associations are only
changeable at the instance level. Typing, in contrast,
requires to express a relationship between Classifiers, or
Classifiers and their instances.

Additionally, the model cannot make explicit the fact
that a typing relation is modeled, because the relationship
looks like an ordinary association. The semantics of typing,
such as type compliance rules, type conversion rules, inher-

itance, etc., are only implicit and not documented. Con-
straints of the typing relation are also not documented as
such.

4.9.4. Modeling solution

We introduce components that represent types at run-
time. These components for types form a meta-level or
type-level. Between any ordinary component and a type-
level component, a Connector can be stereotyped as being
a Type Connector. This Connector depicts an instance of
relationship. Between two elements of the type-level, a
Connector can be stereotyped as being a Super Type Con-
nector. This Connector depicts an inheritance relationship.

We introduce two stereotypes that extend the Connector
metaclass, and realize these typing relationships:

o «TypeConnector» realizes the typing relationship (using
the associated «TypeConnector Behaviory). It has a con-
straint to avoid circular type dependencies:

- - A Type Connector has only two ends
inv: self.baseConnector.end->size()=2

- - A Type Connector might not be applied
--1in circular order
inv: self.baseConnector.end.role->forAll(
cl,c2:Core::ConnectableElement |cl<>c2 and
cl.oclAsType(Core::Port).class =
c2.0clAsType(Core::Port).class implies
not cl.typeConnection(c2))

o «SupertypeConnector» realizes the supertype relation-
ship (using the associated «SupertypeConnectorBehav-
ior»). Tt has a constraint to avoid circular supertype
dependencies:

- - A Super Type Connector has only two ends
inv: self.baseConnector.end->size()=2

- - A Super Type Connector might not be

--applied in circular order

inv: self.baseConnector.end.role->forAll(
cl,c2:Core::ConnectableElement |cl<>c2
and
cl.oclAsType(Core::Port).class =

1020 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

cl2.0clAsType(Core::Port).class implies
not cl.supertypeConnection(c2))

The two constraints above check for direct and indirect
circularity of the type relationships using the typeCon-
nection and supertypeConnection definition, which are
defined for the UML metaclass Component:

def: typeConnects(target: Component):Boolean =
if self.ownedPort.opposite.class->
includes (target)
and Typings:: TypeConnector.baseConnector.
end.role. oclAsType (Property).class->
includesAll (Set{self,target})
then
true
else
if self.ownedPort.opposite.class->
exists(connects(target))
then
true
else
false
endif
endif
def: superTypeConnects(target: Component):Boolean =
if self.ownedPort.opposite.class->
includes (target)
and Typings::SuperTypeConnector. baseConnector.
end.role.oclAsType (Property).class->
includesAll(Set{self,target})
then
true
else
if self.ownedPort.opposite.class->
exists(connects(target))
then
true
else

false
endif
endif

Using these Connectors we can model a custom-built
type system. For instance, in the example above we can
make the Party component have a «TypeConnector» to a
specific Party Type “‘manager”’, which itself has a «Super-
typeConnector» to a generic “party type” class. Using this
meta-model, we can derive instances, representing different
parties and party types, and we can provide the respective
constraints both on the instance-level and the meta-level.

Fig. 16 illustrates these stereotypes according to the
UML 2.0 Profiles package, while Fig. 17 depicts the nota-
tion used for the stereotypes.

Fig. 18 illustrates an example of how a typing meta-
model can be built according to the Party Type example
given before. We introduce an additional Accountability
Type. The component instances derived from this model
realize typed components (Party, Accountability, and
specialization of these), and meta-descriptions for these
types (Party Type, Accountability Type, and specializa-
tion of these). Both, Party and Accountability instances
can dynamically change their types because types are
realized as runtime components. Also we can provide
constraints between these types, such as the ones depicted
in the figure. Thus the result is a dynamic and con-
strained type system.

4.10. Virtual Connector

4.10.1. Introduction

In many patterns and larger architectures, components
have no direct relationship, but still communicate virtually
using other components and connectors in between. For
instance, in a layered distributed client/server architecture
a component on the client-side often virtually communi-

«stereotype» | «metaclass» «stereotype»
SuperTypeConnector = Connector TypeConnector
Fig. 16. Stereotypes for modeling Typing.
«SuperTypeConnector»
2] «TypeConnector»
A AType

«SuperTypeConnector>

Fig. 17. The notation of the stereotypes in Typing modeling.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1021

superType[0..1]

«SupertypeConnector»

«TypeConnector»
PartyType subTypes [0..%]
type[0..*] instance[1]]
commisioner) commisioners responsibles
responsible
LT LT
«TypeConnector»
Accountability AccountabilityType
superTypel[0..1]
typel[0..] instance[1] ¢ [}
subTypes [0..%]
«SupertypeConnector»

x.type.commissioners
and

x.type.responsibles

For each instance x that is of type Accountability:
x.commisioner.type must be element of

x.responsible.type must be element of

Fig. 18. Example of typing: Party Type and Accountability Type.

cates with a component from the same layer on the server-
side.
The Virtual Connector primitive models this concern.

4.10.2. Known uses in patterns

e The client-side components and the server-side compo-
nents of a BROKER [6] communicate virtually among each
other.

e Many remoting patterns [44] virtually communicate

with each other, for instance: client and server INVOCA-
TION INTERCEPTORS, REQUESTOR and INVOKER, client and
Server MARSHALLERS, CLIENT and SERVER REQUEST HAN-
DLER, and client and server PROTOCOL PLUG-INS.
PROXIES [11] often use intermediate components and thus
virtually communicate with their target. For instance,
remote PROXY [6] use a BROKER [6] to access the remote
target.

4.10.3. Modeling issues

The virtual relationship is an important additional
information, but is not explicit in a UML diagram. It
must be deduced from the implicit collaboration of com-
ponents and connectors. If multiple virtual dependencies
exist in the same architecture, as for instance in distrib-
uted layers, it cannot be deduced which component cor-
responds with which other component without further
documentation.

In standard UML the virtual relationship can only be
modeled by introducing another explicit connector or asso-
ciation between the component. Then, however, we cannot
distinguish the virtual communication from non-virtual
communication in the models anymore.

4.10.4. Modeling solution

We introduce a stereotype «VirtualConnector» as an
extension of the Connector metaclass. This connector is
used between components that have a virtual relation-
ship. We further define the stereotype «IVirtual», as an
extension of the Interface metaclass. Therefore a «Virtu-
alConnector» matches an «/IVirtual» Interface of one
component to another. We enforce the constraint that
the «VirtualConnector» can only be used between two
components 4 and B, if there is a path of components
and connectors that link 4 to B. For instance, if 4 is
connected to C, C is connected to D, and D is connected
to B, then a «VirtualConnector» from A to B might be
introduced.

We can formalize the constraints as follows:

-- AVirtual Connector has only two ends
inv: self.baseConnector.end->size()=2

--AVirtual Connector matches the provided
-- IVirtual interface of one component to
- - to thematching required interface of another.
inv: self.baseConnector.end->forAll(
el,e2:Core::ConnectorEnd|el<>e2 implies (
(el.role->notEmpty() and e2.role->notEmpty())
and
((el.role.oclAsType (Core::Port).requireds=
e2.role.oclAsType (Core::Port).provided)
and
(el.role.oclAsType(Core::Port).required->
forAll(i|IVirtual.baseInterface->
exists(Jli=1))))

1022 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

«stereotype»
VirtualConnector

«metaclass»
Interface

«stereotype»
IVirtual

y

«metaclass»
Connector

Fig. 19. Stereotypes for modeling Virtual Connector.

«|Virtual» «[Virtual»
service service

2] 2]

A B

«VirtualConnector»

Fig. 20. The notation of the stereotypes in Virtual Connector modeling.

or
((el.role.oclAsType (Core::Port).provideds=
e2.role.oclAsType (Core::Port).required)
and
el.role.oclAsType(Core::Port).provided->
forAll(i|
IVirtual.baseInterface->
exists(Jlj=1)))))

-- AVirtualConnector can only be used between
- - two components A and B, if there is a path of
- - components and connectors that 1ink A to B.
inv: self.baseConnector.end.role.
oclAsType(Core::Property).class->forAll(
cl,c2:Core::Component|cl<>c2 implies
cl.oclAsType
(Core::Component).connects(c2))

Fig. 19 illustrates these stereotypes according to the

UML 2.0 Profiles package, while Fig. 20 depicts the nota-
tion used for the stereotypes.

5. Case study

Leela [46] is an infrastructure that provides a federated
model of remote peers, thus offering loosely coupled ser-

vices. Within a federation, all peers are equal, they can offer
Web services (and possibly other kinds of services) to other
peers, and they can connect spontaneously to other peers
(and to the federation). Each remote object can potentially
be part of more than one federation as a peer, and each
peer decides which services it provides to which federation.
Certain peers in a federation may be able to access extra
services that are not offered to other peers in this federa-
tion, via their partaking in other federations. Leela peers
are hosted by Leela applications. One such application
can host multiple peers and federations.

Leela is implemented using the architectural patterns
from [44]. In our first attempt to design the system, we used
the standard UML class diagrams [46]. However, the archi-
tectural patterns could not be explicitly modeled and there-
fore the design decisions taken that were concerned with
these patterns are not documented, except as complemen-
tary meta-information to the class diagrams. This meta-
information can be textual or it can make use of a formal
notation, nevertheless it is not part of the UML diagrams.
To overcome this problem, we have applied our UML pro-
file to explicitly model the architectural components, con-
nectors, configurations, and constraints in Leela’s design.
Due to space constraints, as a case study we present an
excerpt of this design: the basic communication framework
of Leela.

5.1. Broker architecture

Leela implements a BROKER [6], which suggests a general
architectural configuration that separates a distributed sys-
tem’s communication functionality from its application
functionality by isolating all communication-related con-
cerns. A BROKER hides and mediates all communications
between the objects or components in a system. Local cli-
ent-side and server-side brokers enable the exchange of
requests and responses between the peers.

Each peer in Leela acts as a client and a server at the
same time. Thus, Leela peers are composite components
that contain both client-side and server-side BROKER sub-
components. In the following description, the BROKER is
viewed as a compound pattern that is implemented using
several patterns from the Remoting pattern language [44].
Even though client-side and server-side BROKER compo-
nents are present in the same system, it makes sense to dis-
tinguish client-side and server-side roles of the components
in order to make the pattern-based architecture more
understandable. Unfortunately, this cannot be easily mod-
eled with UML because the BROKER as a whole is not an
explicit component, but consists of several components.
Thus we cannot use UML composition or aggregation rela-
tionships here. However, the Grouping primitive from our
UML profile is an ideal match. We introduce two «Group»
packages: ClientBroker and ServerBroker. For each BRro-
KER component, we add a namespace relationship either
to ClientBroker package or ServerBroker package, indicat-
ing membership to the respective group. The group mem-

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

bership of the components introduced, is depicted in
Fig. 21.

5.2. Basic invocation architecture

Fig. 22 shows the basic software architecture diagram of
Leela, using our profile. A BROKER consists of a client-side
REQUESTOR [44] to construct and forward invocations, and a
server-side INVOKER [44] that calls the target peer’s opera-
tions. A MARSHALLER [44] on each side of the communica-
tions path handles the transformation of requests and
responses from programming-language-native data types
into byte arrays that can be sent over the wire.

As its basic communication resource each Leela applica-
tion uses a component, called the RequestHandler, that
implements both a CLIENT REQUEST HANDLER [44] and a SER-
VER REQUEST HANDLER [44]. The CLIENT REQUEST HANDLER
forwards request messages from a client to the server.
The SERVER REQUEST HANDLER receives these requests at
the server-side, and triggers the invocation of the peer.
Because RequestHandler realizes both patterns, it is
member of both groups, ClientBroker and ServerBroker.

The request handlers contain PROTOCOL PLUG-INS [44] for
the various protocols that transport the message across the
network. Currently, Leela supports PROTOCOL PLUG-INS [44]
for various SOAP implementations. However, virtually any
other communication protocol can be used as well, because
Leela’s MARSHALLER [44] uses a simple string-based format
as a message payload, and (re-)uses Tcl’s automatic type
converter to convert the string representations to native
types and vice versa.

There are a number of further design issues which need
to modeled. First of all, the application of the Remoting
patterns leads to an architecture based on the LAYERS pat-
tern [6]. The same layers are present on client and server-

1023

side: Protocol, RequestHandling, Invocation, and Appli-
cation. We model the layers according to our Layering
primitive. For each layer, we introduce a «Layer» package
and the tagged value receives the respective layer number.
Each layered component is imported to the corresponding
layer. Fig. 23 shows the layer membership of the compo-
nents discussed in this section. There a number of
constraints:

o Components from the layer Application can only inter-
act with components from the layers Application and
Invocation, or components who are not part of a layer.

e Components in the layer Invocation can only be
accessed via Invoker or Requestor, through a Shield
Connector. That is, all internal interfaces are stereo-
typed «IShield.

e Components from the layer Invocation can only interact
with components from the layers Invocation and
RequestHandling, or components who are not part of
a layer.

e Components in the layer RequestHandling can only be
accessed via the RequestHandler component
through a Shield Connector. That is, all internal inter-
faces are stereotyped «IShield.

e Components from the layer RequestHandling can only
interact with components from the layers RequestHan-
dling and Protocol, or components who are not part
of a layer.

e Components from the layer Protocol can only interact
with components from the layer Protocol or compo-
nents who are not part of a layer.

Note that these constraints apply for client-side and ser-
ver-side components. The client-side and server-side com-
ponents are distinguished using the Grouping primitive.

«Group»
ServerBroker

«Group»
ClientBroker
S ®
] 1
Requestor

MarshallerClient

-

23 D

Invoker

2]

MarshallerServer

]

InterceptorClient

RequestHandler

InterceptorServer

ProtocolPluginClient

ProtocolPluginServer

Fig. 21. Group membership of the Leela components.

1024

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

MarshallerClient marshaller «Shield»
requestors
«ShieldPort» « 4| requestor
{shieldGroup=Invocation}

Requestor

«Shield» arshaller MarshallerServer
invoker invokers ,
1+ «ShieldPort»
{shieldGroup=Invocation}

Invoker

Il

1
requestorST 1.*

«Shield»

clientRequestHandler|1..*
«ShieldPort»
{shieldGroup=RequestHandling}

requestHandler

RequestHandler

invokers T

«Shield»

serverRequestHandler
«ShieldPort»
{shieldGroup=RequestHandling}

«CallbackPort»
1 «Callback»

clientProtocolPluglins | 1..*

LT

ProtocolPluginClient

requestHandler ‘

serverProtocolPlugins |1..*
«EventPort»

LT

ProtocolPluginServer

Fig. 22. Basic, broker-based invocation architecture.

The client-side PROTOCOL PLUG-IN is simply invoked by the
request handler component. The server-side PROTOCOL
PLUG-IN, however, receives requests and result messages
from the network asynchronously (it contains a REACTOR
[39] implementation). Thus the request handler is informed
of network events using callback events. This is modeled
using our Callback primitive (see Fig. 22).

In addition a virtual communication between the respec-
tive components at each layer of the BROKER architecture
happens. This is modeled using the Virtual Connector
primitive, as shown in Fig. 24.

So far we have only modeled the base components. In
the next sections, let us take a closer look at two exemplary
component types: peers and interceptors.

5.3. Peers and federations

As aforementioned, two different kinds of peers exist:
ordinary peers and federations of peers. Federations of
course contain peers, but this cannot be properly modeled
with UMLs composition or aggregation relationship alone
because we require a constrained relationship here. Thus
we model federations as special, composite peers that are
connected through an Aggregation Cascade to other peers
with the following constraints:

e A peer can be part of multiple federations. That’s why
we use Aggregation Cascade and not Composition
Cascade.

e A federation cannot contain peers of the type federa-
tion, unless they are federation proxies (see below).

e A federation proxy (see below) cannot contain other
peers.

Peers can interact with other peers using the REQUESTOR,
which realizes the virtual communication link. Sometimes
it is more handy to use the pattern CLIENT PROXY [44]: A
CLIENT PROXY is a placeholder for the peer in the client pro-
cess. By presenting clients with an interface that is the same
as the peer’s, the proxy lets the client interact with the peer
as if it were a local object. Internally, the CLIENT PROXY
transforms the invocations it receives into REQUESTOR 1nvo-
cations. Leela also supports peer and federation proxies
that act as CLIENT PROXIES, offering the interfaces of a peer
or federation. The proxies thus provide indirections, which
can be modeled using the Indirection primitive. We have
realized the proxies slightly different from the proxy pat-
tern in [11]. In order to have “real” proxies we need two
more constraints for the indirections in Fig. 25:

e A peer proxy cannot have peers of the types peer proxy
or federation as indirection targets.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1025
2]
] Peer Federation
«Layer» r
Application Soa .
{Iay:r'l)\lumbeh 4 FederationProxy
®L PeerProxy
] Invocationinterceptor
Requestor
«Layer»
Invocation
{layerNumber=3} |p Invoker
S D
MarshallerClient
MarshallerServer
«Layer»

RequestHandling
{layerNumber=2}

RequestHandler

«Layer»

ProtocolPluginClient

Protocol
{layerNumber=1}

]
i

ProtocolPluginServer

Fig. 23. Layers of the Leela architecture.

e A peer proxy cannot have peers of the types federation
proxy as indirection targets.

5.4. Invocation interceptors

The Leela invocation chain on the client-side and the
server-side is based on INVOCATION INTERCEPTORS [44], which
transparently extend the invocation on both sides with new
behavior. The most prominent task of the mvocaTion
INTERCEPTORS in Leela is control of remote federation
access. On the client-side, an INVOCATION INTERCEPTOR inter-
cepts the construction of the remote invocation and adds
all federation information for a peer into the INVOCATION
CONTEXT [44]. On the server-side this information is read
by another INVOCATION INTERCEPTOR. If the remote peer is
not allowed to access the invoked peer, the INVOCATION
INTERCEPTOR stops the invocation and sends a REMOTING
ERROR to the client, otherwise access is granted. INVOCATION
INTERCEPTORS are triggered by callbacks (modeled using the
Callback primitive), as can be seen in Fig. 26. Naturally the
interceptors on the client-side and the server-side are linked
through a Virtual Connector.

Often interceptors for one and the same task exist both
on client-side and server-side. In Fig. 27 three examples are
presented. Logging is needed both on client-side and ser-
ver-side, but no Virtual Connector between the logging
interceptors is necessary. The server-side federation inter-
ceptor checks whether an invoking peer belongs to a feder-
ation or not. The client-side federation interceptors thus
must put the federation information of the invoking peer
into the INVOCATION CONTEXT. Thus there is a virtual com-
munication between these two interceptors, which is mod-
eled using a Virtual Connector. Likewise, the client-side
and server-side authentication interceptors need to trans-
mit authentication information over the wire.

6. A model validator for the architectural primitives

To further support the use of the architectural primitives
in model-driven software development, we have developed
a model validator, which can be used as a plug-in in a
model-driven tool chain (such as the OpenArchitecture-
Ware generator [33]). The plug-in is capable of validating
architectural models that conform to UML2 meta-models
(like the excerpt in Fig. 1 or other compliant meta-models)

1026

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

L «VirtualConnector»

g]
Peer

InterceptorClient

«VirtualConnector»

2 | «VirtualConnector»

%] InterceptorServer

Requestor

MarshallerClient

«VirtualConnector»

2]
Invoker

%] MarshallerServer

LI £ «VirtualConnector»
RequestHandler

ProtocolPluginClient

«VirtualConnector»

J‘] ProtocolPluginServer

Fig. 24. Virtual communication among Leela components.

«IndirectionTargetPort»

«IndirectionTargetPort»

«AggregationCascade»

*/federations

2]
Peer
peer| *
«Indirection»
peerProxy| 1
PeerProxy Federation
«IndirectionPort»

«IndirectionPort»

«IndirectionTargetPort»
*|federations
«Indirection»

1| federationProxy

FederationProxy «IndirectionPort»

Fig. 25. Proxy-based indirection in Leela.

and OCL constraints. We have specified the proposed
architectural primitives UML profile using the tool, in
order to validate architectural models that contain such
primitives. Based on both the UML meta-model and the
primitives profile, the validator can parse architectural
models and check that the constraints of the primitives
are not violated. The models produced by the validator
can be then used as input for code generators.

We use the language Frag [49,48] as the syntactic foun-
dation for defining the UML meta-model, the architectural
primitives profile, as well as the UML models per se. Frag’s
main goal is to provide a tailorable language. Among other
things, Frag supports the tailoring of its object system and
the extension with new language elements. In addition to

the UML2 meta-model and the meta-meta-model, we have
defined a constraint language which follows the OCL
constructs.

The process of using the plug-in conforms to a typical
workflow for model-driven development. First, the input
models need to be read and transformed into the special
Frag syntax for UML2 models and the architectural prim-
itives, which are defined using a meta-model and a profile,
respectively. The UML2 models can either be written with
UML tools (with XMI export) or directly in the textual
Frag syntax. If a UML tool is used, the XMI export is
transformed into the textual Frag syntax. Second, the
application models get validated with respect to the
UML meta-model, as well as the OCL constraints defined

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1027

g || «VirtualConnector»

InterceptorClient InterceptorServer
1 1
«CallbackPort» «CallbackPort»
interceptors | * interceptors| *
«Callback» «Callback»
requestor | 1 invoker | 1
«EventPort» «EventPort»
L L
«VirtualConnector»
Requestor Invoker

Fig. 26. Invocation interceptors in the invocation chain.

upon them with respect to the primitives profile. After the
model is validated it is transformed into an EMF model,
which is understood by the code generator. The latter cre-
ates the code in the target output languages, such as Java.
This tool chain is depicted in Fig. 28. In between this
sequence, other steps may be inserted, such as domain-spe-
cific model transformations.

In our plug-in, we define all meta-models, including the
UML meta-model, on top of one common meta—meta-
model. The meta—meta-model can be very simple, or more
elaborate like the OMG Meta Object Facility (see http://
www.omg.org/mof/). The meta—meta-model is used to
define meta-models. In addition, the constraint language
is defined using the meta—meta-model, with which models
can be constrained at the meta-level and hence validated
at the model level. In the case of our plug-in and the Frag
language, we have defined a simple meta—meta-model that
reuses Frag’s language features wherever possible. An
excerpt of this meta—meta-model for defining UML2
meta-models is shown in Fig. 29. The meta—meta-model
is based on the most general class in the Frag object system:
Object. The meta—meta-model classes are sub-classes of

ConstrainedClass which allows to add OCL-style con-
straints to classes. The convenience class Constraint-
Checker looks up all ConstrainedClass instances
via reflection and checks the constraints. Constraints are
specified in a language similar to OCL (defined using the
class FCL). The meta-models are defined using Class.
We introduce also a number of relationships between clas-
ses: Dependencies, Associations, Compositions, and
Aggregations. In addition, typed attributes can be speci-
fied. Please note that we do not define the generalization
relationship, because multiple inheritance is suitably prede-
fined by Frag and we can reuse this implementation. The
Stereotype class defines the UML2 extends-relation-
ship; that is, it allows to extend metaclasses. Enum is a con-
venience class to define Enumeration types.

Using the meta—meta-model, we can define meta-models
like the UML2 meta-model shown in Fig. 1. As an exam-
ple, consider the Component and Namespace metaclasses
and two associations of Component of the UML2 meta-
model in the Frag syntax:

namespace eval UML2 {

MMM::Class create Component \
-superclasses \
{PackageableElement Class}
MMM::Association create \
ComponentInterfaceRequired -ends {
{Component -multiplicity *
-navigable O}
{Interface -roleName required
-multiplicity *
-navigable 1}
}
MMM::Association create \
ComponentInterfaceProvided -ends {

Invocationinterceptor

2]

i

2]| «VirtualConnector» 2]

InterceptorClient [H

Zﬁ A

LogginginterceptorClient

FederationinterceptorClient [[1-

AuthenticationinterceptorClient []

«VirtualConnector»

g]| «VirtualConnector»

H] InterceptorServer

i i

LogginginterceptorServer

{[IFederationinterceptorServer

[1 AuthenticationinterceptorServer

Fig. 27. Special invocation interceptors.

http://www.omg.org/mof
http://www.omg.org/mof

1028

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

Frag Syntax-Based
Models

UML2 Component

XMI2Frag

v

Frag Model Validator

Frag UML2 Profile:
Architectural Primitives

\<_|—

Diagrams Transformation Plugin
J L Frag uML2 Meta-Model
Y
Frag2EMF
Transformation Plugin

Y

Individual Code] /
Code Generator

Transformation » \
Rules/Templates

Y

System Code
Fig. 28. Tool Chain Overview.
1
Frag
Object
«instanceOf» «instanceOf»
«instanceOf»
«instanceOf» attribute
|
FCL MMM
FCL ConstraintChecker ConstrainedClass AssociationEnd
: A
lccccccccccaaa 4
«use»
«use» client
supplier

Class

class
ends

Dependency Stereotype Enum Association
Aggregation Composition

Fig. 29. Validator Tool UML2 meta-meta-model — excerpt.

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1029

{Component -multiplicity *
-navigable O}
{Interface -roleName provided
-multiplicity *
-navigable 1}
}
MMM::Class create Namespace \
-superclassesNamedElement

}...

Once the UML meta-model is defined, the UML profile
for the architectural primitives needs to be specified. Con-
sider, as an example the textual definition of the Grouping
primitive. Again, we can also use the model transformers to
generate this textual model from graphical models:

namespace eval Grouping {
MMM::Stereotype create Group \
-extendsUML2::Package

Group addInvariant {
[FCL size [[self basePackage] \
ownedMember]]==0

}

Group addInvariant {
[FCL forAll im [[self basePackage] \
importedMember] {

[FCL isKindOf $im UML2::Component]

1

}

}

The primitive specification first defines the necessary
stereotype for Grouping, and then it provides all con-
straints required for that primitive. It is noted that the
constraints are almost a one-to-one translation of the
OCL constraints explained before for Grouping, but in
Frag constraint syntax as in the example above (called
FCL). We can use the OCL-to-FCL transformer to auto-
matically generate FCL code from OCL, and vice versa.
The UML profile for the architectural primitives is thus
translated into a set of such specifications in the Frag
syntax, and subsequently used to parse and validate
models.

]

As a small example, we consider a small model with the
following elements (also shown graphically in Fig. 30):

UMLZ2::Component create WorkflowEngine
UML2::Component create ProcessIntegrationAdapter
UMLZ2::Component create Dispatcher

UML2::Package create WorkflowCorrelationGroup \
-importedMember {
WorkflowEngine ProcessIntegrationAdapter

Dispatcher
1
s

Grouping::Group create gl \
-basePackage WorkflowCorrelationGroup

In this example model, we first specify three UML compo-
nents: a workflow engine, a process integration adapter, and
a dispatcher. Then we define a Package that depicts a corre-
lation group of three components and we use the Group ste-
reotype to apply the relevant constraints of the Grouping
architectural primitive. Our model validator automatically
checks all constraints, once a model is assembled. In this
example, no problems are found, but if we would for instance
have owned members in the Package or other member types
then Components, the model validation would fail.

It is noted that our syntax introduced above is not nec-
essarily intended to be used by developers. Rather it can
itself be generated from the export of an UML2+OCL
tool. That is, the developers can also specify UML2 models
and constraints graphically, and the models can then be
validated in the model-driven tool chain. During this vali-
dation, the primitives are automatically checked as well.

7. Lessons learned

Our case study in Section 5 was conducted to demon-
strate that a non-trivial system, that was initially modeled
and implemented independently of our approach can retro-
actively be modeled using our pattern primitives. During
the application of the approach and the application of
the model validator, presented in Section 6, a number of
inconsistencies in the initial models have been found and

«Group»
WorkflowCorrelation Group

D

Workflow Engine

Process Integration Adapter

Dispatcher

Fig. 30. Example model for workflow correlation.

1030 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

corrected. This is an important benefit, as the proposed
approach can help to improve the quality of a system’s cur-
rent documentation. It also demonstrated that each of the
primitives were variable enough to deal with multiple situ-
ations, where the respective patterns were applicable.

Furthermore, we have used the resulting models in a
number of student projects. Despite the fact that a higher
quantity of information was given through the stereotypes,
the students did not find the enriched primitives models less
intuitive than the original models. In contrast — after some
initial explanation — the primitives conveyed the design
intent of our case study prototype in a better way. This
proved especially useful for evolution of the prototype:
changes have been made without violating the design con-
straints of the patterns. This aspect is especially important,
when systems are generated from the models using a
model-driven approach. Also, the students deemed that
they were able to link the primitives to the patterns, which
document important forces and consequences of the design
decisions (especially the consequences of architectural pat-
terns to the system’s quality attribute). This link, however,
could be improved through better tool support, specifically
targeted at making this link explicit.

When modeling the case study we have mainly used tex-
tual representations of the models, as shown in Section 6,
and created the graphical UML representation based on
them. For the model validator, we have also realized an
integration with EMF, to demonstrate the interplay with
existing modeling tools. This, however, often requires cust-
omizations of the models or tools, as there are usually cer-
tain differences between the various UML tools.

We have selected UML, a de-facto standard modeling
language in software architecture, in order to guarantee
broad tool support and familiarity of modelers with the
language. However, the main shortcoming of this approach
stems from the very own use of UML. The extension mech-
anisms of UML, in particular the stereotypes, are cumber-
some to use because of their second-class status: they are
neither metaclasses of the standard meta-model, nor model
elements and this fact often confuses the users of UML.
Furthermore, OCL constraints, even though they provide
semi-formal semantics to the stereotypes, are not well
accepted in the software architecture community, partly
because there are no tools so far that can dynamically
check the constraints in UML models. Lastly, the constant
evolution of the UML standard, forces us to update the
mapping of the architectural primitives in the language in
its subsequent versions, which can prove to be cumber-
some. However, we do believe that the advantages that
UML conveys outweigh these disadvantages.

In addition, our choice to use only UML profiles limits
the capabilities of the visual representations of the models.
In particular, as can be seen in the case study, the UML rep-
resentations may quickly lead to visual cluttering, especially
if multiple primitives are combined in one model. One solu-
tion would be to build customized UML tools that can les-
sen the visual clutter, e.g. by visually replacing some of the

primitives’ stereotypes with textual notes. This way, the
primitives are still formalized in the model, but the graphi-
cal representation is more usable. Another solution is to use
other modeling environments, which introduce their own
abstractions as new modeling language elements, and can
thus provide richer visualizations. For instance, the Generic
Modeling Environment (GME) [24] provides a notion of
hierarchy in its modeling syntax, which is a clearer represen-
tation of the concern represented by aggregation and com-
position cascade than the UML representation. In this
research, we deliberately focused only on UML profiles,
for the reasons explained before, but as future work we plan
to explore the possibilities of using domain-specific model-
ing languages as concrete syntax and our UML profiles as
abstract syntax (e.g. following the approach described in
[15]) to combine the best of both worlds.

The primitives that we have proposed are structural in
nature, as they concern the composition of components
and connectors as well as interface matching between
them. Nonetheless, architectural patterns contain also a
behavioral part that mandates the interaction of architec-
tural elements, which has not been studied yet. For
example The Callback primitives can be used to compose
the Model-View-Controller, but the interaction protocol
between the Model on the one hand and Views and Con-
trollers on the other hand, is not covered by the current
definition of the primitive. We aim to extend this work
with behavioral models for the individual primitives, as
mentioned in the future work section. We have already
performed this in a another approach, where we have
successfully integrated activity diagrams and class dia-
grams via OCL constraints for modeling compositions
in dynamic programming environments (see [50]). Even
though this is quite a different modeling problem, the
general approach for integrating activity diagrams with
structural models can be followed for the primitives
approach reported in this paper as well.

The proposed primitives are a modeling solution that
can address the inherent variability of patterns — an issue
that makes the modeling of the pattern participants
themselves highly problematic. However, this does not
automatically make the patterns explicit in an architectural
design — the primitives only give a hint of the application of
specific patterns. An architect needs to further annotate a
specific collaboration of primitives to denote their synergy
and implementation of the patterns semantics.

The full benefits of our approach can be obtained when
full tool support is accessible to ordinary developers. We
have started working on model-driven tool support by pro-
viding a model validator (see Section 6), which is an impor-
tant aid for composing and decomposing primitive models
via model-driven development. In addition, further visual-
izations of the composition/decomposition would be help-
ful. Also tool support is needed to facilitate the
composition of primitives into patterns, making explicit
that a set of primitives with customized constraints form
a specific pattern variant. This would furthermore support

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1031

analysis of the design, by linking each pattern with the
quality attributes it affects positively or negatively.

8. Related work

The approach described in this paper is based on related
research on architectural primitives, UML profiles for
architectural description, and modeling architectural pat-
terns. Table 1 gives an overview of the related work, and
how it compares to the approach presented in this paper.

The idea of primitives as the fundamental elements of
architectural patterns and design patterns has been investi-
gated from several viewpoints. Pree has worked in the area
of object-oriented frameworks and has explored primitives
in the construction of ‘hot spots’, i.e., variation points that
are adapted in individual applications [35,36]. His primi-
tives are defined in two levels of abstraction: At a lower
level, the fundamental elements of patterns are ‘hook’
and ‘template’ methods and their corresponding classes;
at a higher level the aforementioned fundamental elements
are used to specify composition patterns for hot spots that
are called meta-patterns. These composition patterns them-
selves can be used for specifying even higher-level patterns,
such as the GoF [11] patterns; however they are not archi-
tectural elements and thus cannot be used to describe archi-
tectural patterns like the architectural primitives in this
paper.

In the realm of patterns, many patterns are described as
compound patterns that consist of other, existing patterns.
For instance, in [44] the BROKER pattern is described as a
compound pattern composed from patterns from
[44,39,11,6]. Our approach follows a similar philosophy
as we define primitives that can be used to model architec-
tural patterns, but is different in that these architectural
primitives are more specific and formally specified than
patterns. The primitives can be seen as participants of pat-
terns, whereas patterns require substantial hand-crafting
(i.e., a design and implementation effort) in order to be
used as part of another pattern.

Mehta and Medvidovic proposed a framework, called
Alfa, for composing architectural patterns through archi-
tectural primitives [28] that are certain underlying concepts,
shared by all patterns. They propose a number of such
primitives as the building blocks for constructing the archi-
tectural elements of patterns and demonstrate their
approach through the representation of several architec-
tural patterns through the primitives. This approach is
based on the assumption that there exists a fixed set of fun-
damental primitives that can potentially characterize any
architectural pattern participant and therefore this frame-
work of primitives can be used for characterizing and com-
paring patterns. Our approach is different in the sense that
we investigate architectural primitives at a larger granular-
ity and level of abstraction. Moreover, our primitives are
recurring concepts in several, but not all, architectural pat-
terns, and they are characterized by rich semantics that
serve specialized purposes.

Similarly, Bass et al. in the first edition of [3] had proposed
a predefined set of unmit operations, such as separation,
abstraction, compression and resource sharing as the build-
ing blocks for all architectural and design patterns. In con-
trast to our architectural primitives, these unit operations
are defined at a much higher level of abstraction. They rather
describe atomic architectural transformations and opera-
tions, whereas our primitives describe fundamental, recur-
ring structures. The same authors, in the second edition of
their book propose a number of architectural tactics for con-
trolling the response of quality attributes. Architectural pat-
terns packages a number of tactics, in the sense that the
consequences of applying the pattern is the realization of
one or more tactics. Tactics are abstract hints on how to sup-
port a specific quality attribute and are not directly related to
how an architectural pattern is modeled.

There have also been several attempts for specifying
existing ADLs or proposing new ADLs as extensions of
UML, usually in the form of profiles. Medvidovic et al.
have pointed out three different ways to use UML as an
ADL [26]: (a) using the “pure” UML meta-model “as

Table 1

Overview and comparison of related work

Approach Building blocks Granularity Application Semantics

Hot spots [35,36] Class methods Class Object-oriented Object-oriented

Alfa primitives [28] Form and function of

Component and

frameworks

Architectural patterns General characteristics

architectural patterns connector
Unit operations [3] Abstract principles Component Architecture informal
Architectural tactics [3,7,13,20,4,40] Abstract principles or Component and Quality-attribute Informal
heuristics connector driven design
UML profiles [26] UML stereotypes Components and Architectural ADLs
connectors description
Acme [14] Templates for patterns Components and Architectural Acme ADL
connectors description
Formal approaches to modeling Language constructs Class Design patterns Formalization of one specific

patterns [8,29,43,25]
Primitives of architectural patterns Participants of architectural

patterns

Component and
connector

pattern variant

Architectural patterns Specialized and formalized

1032 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003—1034

is”, which forces the architect to implicitly define the neces-
sary architectural concepts; (b) constraining the UML
meta-model through profiles and thus providing explicitly
the architectural concepts as constrained stereotypes, while
still conforming to the standard meta-model; (c) modifying
the UML meta-model and thus providing “native’ support
for architectural description, but losing conformance to the
standard meta-model. They have also evaluated the first
two approaches by using them to map three ADLs to
UML.

An ADL that treats architectural patterns as first-class
entities is Acme [14] supported by the AcmeStudio tool
[38]. The language itself provides built-in templates that
can be used to model patterns, while AcmeStudio has some
well-established patterns (e.g. Layers, Pipes and Filters,
Client-Server) in its default package. However, the syntax
support offered by Acme is rather limited, as it provides a
fixed set of architectural elements like components, connec-
tors, ports, roles etc. Our approach aims at more flexibility
by providing a wider range of lower-level primitives, such
as namespaces or aggregations used in Grouping and
Aggregation Cascade.

Clements et al. in [7] demonstrated how UML 1.x can
be used “as is” in representing the fundamental architec-
tural concepts in a number of architectural views. This
work was continued by Garlan et al. in [13] and later
by Ivers et al. in [20] to take under account the forth-
coming UML 2.0, and particularly focus on the provision
for the component and connector view in the new stan-
dard. The improvements of the new UML 2.0 meta-
model for architectural concepts, especially ports and
internal structures, was also advocated by Bjorkander
and Kobryn in [4]. Finally Selic and Rumbaugh [40,41]
have defined a UML profile for real-time systems,
UML-RT, which embodies several architectural concepts
such as components (so-called “capsules™), connectors,
and ports. Our approach uses a different line of attack:
we do not model the architectural concepts that are spe-
cific to an architectural pattern, but rather the fundamen-
tal primitives that participate in a number of patterns.
Thus we overcome the limitations of ADLs by providing
a wealth of abstractions, capable of modeling several of
the well-known architectural patterns.

There are many approaches for modeling or represent-
ing software patterns, the vast majority of which focuses
on the design patterns from [11]. A number of such
approaches attempted to formally specify these patterns
(see for instance [8,29,43,25]). These approaches, how-
ever, have not gained much momentum in recent years
mainly because of their complexity and their resulting
limitations regarding their practical use. Moreover, these
approaches have not been used for architectural patterns
or whole pattern languages, like our primitives, but just
for some isolated patterns from [11]. A third major differ-
ence of these approaches, compared to our approach, is
that they only support one variant of a pattern (often
simply following the C++ example from [11]) and not

other possible pattern variations. The same problem
appears also when using the Collaboration metaclass pro-
vided by UML 2.0 to describe a design pattern. Most
patterns (especially architectural patterns), however, can
be realized using a multitude of different design variants.
Our approach describes primitives that are participants
of the patterns and can be tailored to support multiple
variants of a pattern. In other words, we can model
the variants of a pattern, by constraining the specific
semantics of the architectural primitives that comprise
the pattern.

There have also been some approaches that propose
language support for design patterns, such as [31,5], or
implementations of patterns as aspects, such as [16,17].
These approaches make patterns first-class entities of
the language or aspect framework, and thus they become
more traceable in the code than a pattern implementa-
tion scattered across a number of classes. All of these
approaches might be considered as a way to better
understand the use of a single pattern in an architecture,
but not for documenting the design of complex architec-
tures based on (multiple) patterns, as this paper
advocates.

9. Conclusions and future work

We have proposed modeling architectural patterns
through a number of architectural primitives in the com-
ponent and connector view. We have elicited an initial
set of these primitives from a pool of established archi-
tectural patterns in order to ensure their correctness
and broad applicability. This set of primitives is original
and helps solving the fundamental problems in modeling
architectural patterns that were outlined in Section 1:
they offer the necessary abstractions that grasp the rich
semantics found in patterns; they can represent not only
a specific pattern variant but multiple variants of a pat-
tern, by tailoring the architectural primitives with con-
straints. We have validated our approach by modeling
the primitives in the well-known Eclipse/Octopus tool
set, applying it to a number of case studies (one of them
was presented in Section 5), and developing our own
model validator prototype to support model-driven
development using our concepts (see Section 6 for
details).

We plan to extend this work in the following directions:

e document the architectural primitives of other domain-
specific patterns and pattern languages in the compo-
nent and connector view;

e provide the explicit modeling of patterns through the
collaboration of a group of primitives by annotating
them and adding semantics to them;

e cxperiment on modeling the variability of the patterns,
not only by modifying the constraints of primitives but
also by combining alternative primitives in given
patterns;

U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034 1033

e relate our approach to the notion of pattern languages
(larger collections of interrelated patterns). In particu-
lar, we plan to document more patterns from the remot-
ing pattern language (see [44]) and a pattern language
for general-purpose architectural patterns (see [2]);

e offer support for a better visualization (or concrete syn-
tax) of the primitives than the current representation as
UML stereotypes;

e add behavioral modeling (e.g. based on activity or
sequence diagrams or state machines) to the pattern
primitives;

e search for architectural primitives in other views, such as
the module view;

e offer the validation tool as a ready-to-use Eclipse plug-in
that can be used in cooperation with other model-driven
development plug-ins.

References

[1] P. Avgeriou, N. Medvidovic, N. Guelfi, Software architecture
description with UML, in: J. Nunes, B. Selic, A. Silva, A. Toval
(Eds.), UML Modeling Languages and Applications — UML 2004
Satellite Activities, LNCS, 3297, Springer Verlag, Lisbon, Portugal,
2004.

[2] P. Avgeriou, U. Zdun, Architectural patterns revisited — a pattern
language, in: Proceedings of the 10th European Conference on
Pattern Languages of Programs (EuroPlop 2005), Irsee, Germany,
July 2005.

[3] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
first (second) ed., Addison Wesley, Reading, MA, USA, 1998, 2003.

[4] M. Bjorkander, C. Kobryn, Architecting systems with UML 2.0,
IEEE Softw. 20 (4) (2003) 57-61.

[5] J. Bosch, Design patterns as language constructs, J. Object Orient.
Program. 11 (2) (1998) 18-32.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture — A System of Patterns, John
Wiley and Sons Ltd, 1996.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, J. Stafford, Documenting Software Architectures: Views and
Beyond, Addison-Wesley, 2002.

[8] A.H. Eden, Y. Hirshfeld, LePUS — symbolic logic modeling of object
oriented architectures: A case study, in: Second Nordic Workshop on
Software Architecture — NOSA’99, Ronneby, Sweden, April, 1999.

[9] T. Foster, L. Zhao, Cascade, J. Object Orient. Program. 11 (9) (1999).

[10] M. Fowler, Analysis Patterns, Addison-Wesley, 1997.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
1994.

[12] J. Garcia-Martin, M. Sutil-Martin, Virtual machines and abstract
compilers — towards a compiler pattern language, in: Proceedings of
EuroPlop 2000, Irsee, Germany, July, 2000, pp. 375-396.

[13] D. Garlan, S.-W. Cheng, A.J. Kompanek, Reconciling the needs of
architectural description with object-modeling notations, Sci. Com-
put. Program. 44 (1) (2002) 23-49.

[14] D. Garlan, R. Monroe, D. Wile, Acme: An architecture description
interchange language, in: CASCON’97, in: Proceedings of the 1997
conference of the Centre for Advanced Studies on Collaborative
research, IBM Press, 1997, p. 7.

[15] J. Greenfield, K. Short, Software Factories: Assembling Applications
with Patterns, Frameworks, Models & Tools, John Wiley and Sons
Ltd, 2004.

[16] J. Hannemann, G. Kiczales, Design pattern implementation in Java
and AspectlJ, in: C. Norris, J.J.B. Fenwick (Eds.), Proceedings of the

17th ACM conference on Object-oriented programming, systems,
languages, and applications (OOPSLA-02), ACM SIGPLAN
Notices, 37, 11, ACM Press, New York, 2002, pp. 161-173.

[17] R. Hirschfeld, R. Laimmel, M. Wagner, Design patterns and aspects —
Modular designs with seamless run-time integration, in: Proc. of the
3rd German GI Workshop on Aspect-Oriented Software Develop-
ment, Technical Report, University of Essen, 2003, p. 8.

[18] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture,
Addison-Wesley Longman Publishing Co., Inc., 2000.

[19] IEEE. Recommended Practice for Architectural Description of
Software Intensive Systems. Technical Report IEEE-std-1471-2000,
1EEE, 2000.

[20] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, J.R.O. Silva,
Documenting component and connector views with uml 2.0. Tech-
nical Report CMU/SEI-2004-TR-008, Software Engineering Insti-
tute, Carnegie Mellon University, 2004.

[21] R. Johnson, B. Woolf, Type object, in: R.C. Martin, D. Riehle, F.
Buschmann (Eds.), Pattern Languages of Program Design 3, Addi-
son-Wesley, 1998.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M.
Loingtier, J. Irwin, Aspect-oriented programming, in: Proceedings of
ECOOP’97, LCNS 1241, Springer-Verlag, Finnland, 1997.

[23] P. Kruchten, The 4+1 view model of architecture, IEEE Softw. 12 (6)
(1995) 42-50.

[24] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C.
Thomason, G. Nordstrom, J. Sprinkle, P. Volgyesi, The Generic
Modeling Environment, in: Workshop on Intelligent Signal Process-
ing, vol. 17, Budapest, Hungary, May, 2001.

[25] J.K.H. Mak, C.S.T. Choy, D.P.K. Lun, Precise modeling of design
patterns in uml, in: Proceedings of the 26th International Conference
on Software Engineering, IEEE Computer Society, 2004, pp. 252—
261.

[26] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, J.E. Robbins,
Modeling software architectures in the unified modeling language,
ACM Trans. Softw. Eng. Methodol. 11 (1) (2002) 2-57.

[27] N. Medvidovic, R.N. Taylor, A Classification and Comparison
Framework for Software Architecture Description Languages, IEEE
Trans. Softw. Eng. 26 (1) (2000) 70-93.

[28] N.R. Mehta, N. Medvidovic, Composing architectural styles from
architectural primitives, in: Proceedings of the 9th European software
engineering conference held jointly with 10th ACM SIGSOFT
international symposium on Foundations of software engineering,
ACM Press, Helsinki, Finland, 2003, pp. 347-350.

[29] T. Mikkonen, Formalizing design patterns, in: Proceedings of the
20th international conference on Software engineering, IEEE Com-
puter Society, Kyoto, 1998, pp. 115-124.

[30] R.T. Monroe, D. Garlan, Style-based reuse for software architec-
tures, in: Proceedings of the Fourth International Conference on
Software Reuse, 1996.

[31] G. Neumann, U. Zdun, Filters as a language support for design
patterns in object-oriented scripting languages, in: Proceedings of
COOTS99, Sth Conference on Object-Oriented Technologies and
Systems, San Diego, California, USA, May, 1999.

[32] OMG. UML 2.0 superstructure final adopted specification, Technical
Report ptc/03-08-02, Object Management Group, August, 2003,

[33] Open Architecture Ware. openArchitectureWare 4.1. http://
www.openarchitectureware.org/, 2006.

[34] D.E. Perry, A.L. Wolf, Foundations for the study of software
architecture, ACM SIGSOFT Softw. Eng. Notes 17 (4) (1992).

[35] W. Pree, Metapatterns: a means for capturing the essentials of object-
oriented design, in: Eur. Conf. Object Orient. Program. (ECOOP),
Springer-Verlag, Bologna, 1994, pp. 4-8.

[36] W. Pree, Hot-spot-driven framework development, in: R.J.M.
Fayad, D. Schmidt (Eds.), Building Application Frameworks:
Object-Oriented Foundations of Framework Design, Wiley & Sons,
2000.

[37] J.E. Robbins, N. Medvidovic, D.F. Redmiles, D.S. Rosenblum,
Integrating architecture description languages with a standard design

http://www.openarchitectureware.org
http://www.openarchitectureware.org

1034 U. Zdun, P. Avgeriou | Information and Software Technology 50 (2008) 1003-1034

method, in: Proceedings of the 20th ICSE, IEEE Computer Society,
Kyoto, 1998, pp. 209-218.

[38] B. Schmerl, D. Garlan, Acmestudio: Supporting style-centered
architecture development (research demonstration), in: Proceedings
of the 26th International Conference on Software Engineering,
Edinburgh, Scotland, 2004, pp. 23-28.

[39] D.C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Patterns for
Concurrent and Distributed ObjectsPattern-Oriented Software Archi-
tecture, John Wiley and Sons Ltd, 2000.

[40] B. Selic, Turning clockwise: using UML in the real-time domain,
Commun. ACM 42 (10) (1999) 46-54.

[41] B. Selic, J. Rumbaugh, Using UML for modeling complex real-time
systems, 1998.

[42] M. Shaw, D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline, Addison-Wesley, 1996.

[43] N. Soundarajan, J.O. Hallstrom, Responsibilities and rewards:
Specifying design patterns, in: Proceedings of the 26th International
Conference on Software Engineering, IEEE Computer Society, 2004,
pp. 666-675.

[44] M. Voelter, M. Kircher, U. Zdun, Remoting PatternsPattern Series,
John Wiley and Sons, 2004.

[45] U. Zdun, Patterns of tracing software structures and dependen-
cies, in: Proceedings of EuroPlop 2003, Irsee, Germany, June,
2003.

[46] U. Zdun, Loosely coupled web services in remote object federations,
in: Proceedings of the Fourth International Conference on Web
Engineering (ICWE’04), Munich, Germany, July, 2004.

[47] U. Zdun, Some patterns of component and language integration, in:
Proceedings of the 9th European Conference on Pattern Languages of
Programs (EuroPlop 2004), Irsee, Germany, July, 2004.

[48] U. Zdun. Frag. <http://frag.sourceforge.net/>, 2005.

[49] U. Zdun, Tailorable language for behavioral composition and
configuration of software components, Comput. Lang. Syst. Struct.
32 (1) (2006) 56-82.

[50] U. Zdun, M. Strembeck, Modeling composition in dynamic pro-
gramming environments with model transformations, in: Proc. of the
Sth International Symposium on Software CompositionLNCS 4089,
Springer-Verlag, Vienna, Austria, 2006.

http://frag.sourceforge.net

	A catalog of architectural primitives for modeling architectural patterns
	Motivation
	The proposed approach
	Extending UML to represent the primitives
	A UML profile
	The UML 2 meta-model

	Modeling architectural primitives
	Template for architectural primitive documentation
	Callback
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Indirection
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Grouping
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Layering
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Aggregation cascade
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Composition Cascade
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Shield
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Typing
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Virtual Connector
	Introduction
	Known uses in patterns
	Modeling issues
	Modeling solution

	Case study
	Broker architecture
	Basic invocation architecture
	Peers and federations
	Invocation interceptors

