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Abstract—Technical debt (TD) reflects issues that may nega-
tively affect software maintenance and evolution. There is cur-
rently little evidence on how the different types of TD co-occur;
for example, how code smells and design smells affect the same
part of the system. This paper investigates how different types of
TD co-occur, as well as the time period of the co-occurrence. To
that end, we analyzed the co-occurring associations between five
types of TD, captured in 42 SonarQube rules, in 3862 files of 20
Python projects from the Apache Software Foundation. We found
that this phenomenon is dominant, affecting more than 90% of
Python files. We also found that Documentation Debt and Test
Debt appear in the majority of the files, although it seems to be
mostly by coincidence. Finally, we noticed that co-occurrence of
TD seems to happen very quickly: co-occurring issues tend to
be introduced within the same week. But once it does happen, it
is hard to get rid of. These results can benefit both researchers
and practitioners by: aiding the prioritization of TD remediation;
leading to novel tools for detecting co-occurring TD and warning
potential issues; shedding further light on the explanation of how
TD is introduced and can be mitigated.

Index Terms—technical debt; co-occurrence; Python; Apache
Software Foundation

I. INTRODUCTION

Technical debt (TD) reflects shortcomings in a software
system that can potentially harm its maintainability and evolv-
ability [1]. Different types of TD are related to different
artifacts of the software development life cycle. The majority
of work on TD is related to the source code, but there is
also work associated with other types of debt, related to
documentation, design, defects and testing [2], [3].

The vast majority of research on TD has focused on
investigating the effect of individual instances of TD, e.g.,
code smells [4]. More recently, researchers have been looking
into the interactions among different TD instances, when they
co-occur in the same component, class, or file. For example,
one study found six pairs of co-occurring code smells that
frequently appear together in open-source software systems
and elaborated on the extent of this phenomenon as well
as how such co-occurrences are introduced and removed by
developers [5]. Other studies confirmed that co-occurring TD
poses a great risk as it can intensify the negative consequences
caused by individual issues [6], [7].

This work was supported by ITEA3 and RVO under grant agreement No.
17038 VISDOM (https://visdom-project.github.io/website/).

Motivation. Although the related work has investigated the
negative impact of co-occurring TD instances on maintenance,
they have two main limitations.

First, there is very little work beyond code smells, on how
other types of TD co-occur (e.g., Design Debt or Documen-
tation Debt). A broader understanding of the different types
of debt in a project is essential to better inform the involved
stakeholders on various maintenance liabilities, especially be-
cause the different types of debt are related. For example,
one may decide to document the code at a later moment (i.e.,
Documentation Debt) and this decision may lead to further
creation of unnecessarily complex components (i.e., Design
Debt) due to poor insight into their implementation.

Second, current research does not deal with the time in-
terval between a co-occurrence appearing and disappearing.
This may hint at possible reasons for TD co-occurrences
and provide information for prioritizing their remediation.
For example, if one type of debt is always followed by the
appearance of a second type very soon after the first, the first
may be causing the second. That could, at the very least, result
in monitoring the first type from an early stage. Conversely, co-
occurring issues that seem to be removed almost at the same
time, can be targeted together for more effective maintenance.

Aim and scope. This paper reports on an empirical
study that investigates the relationship between different, co-
occurring issues and types of technical debt. The study focuses
on the issues and types of TD that co-occur frequently and
on the interval between their introduction and removal. We
consider approx. 28,200 commits from 20 Python projects
from the Apache Software Foundation (ASF) and investigate
five types of TD: Design, Code, Defect, Documentation and
Test Debt.

To detect TD, we use SonarQube, an open-source tool that
measures quality and technical debt. We selected this tool for
two main reasons: (1) it is being widely used in industry1 as
well as in the literature of TD [8]; (2) it can track the evolution
of technical debt by analyzing multiple versions of projects.
SonarQube detects TD by identifying violations of a number
of rules; different rules correspond to different types of TD.
Limitations of using SonarQube are reported in Section V.

1https://www.sonarsource.com/customers/
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We have selected projects in Python, as it has grown
substantially over the years and is currently ranked as the 3rd
most popular programming language2. Although developers
can benefit from the flexibility and conciseness brought by the
dynamic features of Python, they have to spend extra effort on
software maintenance and software quality improvement [9].
Thus, our results can guide developers specifically in manag-
ing TD for Python and highlight the differences with other
languages [10].

Results. Our findings indicate that the phenomenon of co-
occurring TD is widely spread, i.e, more than 90% of Python
files have been affected by at least two types of TD at the same
time. Moreover, Design Debt issues are the most likely to co-
occur with issues of similar nature, while Documentation Debt
and Test Debt appear in the majority of the files. Test Debt
issues co-occur the most frequently with other types, although
the majority of such associations does not seem strong.

We also found that co-occurring issues tend to be introduced
within the same week. However, after one of the co-occurring
issues is removed, the second one survives for much longer
(often around a year). The most notable exception to this
relates to Design Debt: co-occurring Design Debt issues are
likely to be removed together within a week.

Implications. Our findings are relevant to both researchers
and practitioners. For the former, the results would be useful
to develop tools to prioritize TD remediation and warn about
potential future co-occurring issues. For example, the co-
occurring relationship between Design Debt and Code Debt
could be used to indicate design problems by using existing
code smell detectors. For the latter, the findings can be used
as guidelines to avoid the introduction of TD and consciously
reduce co-occurring TD, which would in turn reduce the cost
of software maintenance.

Structure of the paper. Section II discusses the study
objectives, the research questions, and provides details regard-
ing the data collection and analysis. Section III reports on
the results of our study and Section IV discusses the results
and their implications. Section V reports on the threats to
the validity of our study and provides information about our
dataset and replication package. After the discussion of related
work in Section VI, Section VII concludes the paper and
outlines the directions of future work.

II. STUDY DESIGN

This empirical study was designed according to the guide-
lines of Runeson et al. [11] and is reported according to the
Linear Analytic Structure [11].

A. Objectives and Research Questions

The goal of our study, described according to the Goal-
Question-Metrics (GQM) approach [12], is to “analyze Apache
software systems written in Python for the purpose of in-
vestigating various types of technical debt with respect to
the co-occurrence of these types, from the point of view of

2According to the Tiobe Index, one of the best known indices of program-
ming languages popularity, https://www.tiobe.com/tiobe-index/

software developers in the context of open source software”.
This objective is further refined into two research questions:

RQ1: Which types of technical debt frequently co-occur?
The goal of this research question is to analyze the types

of technical debt that co-occur in the same file. The results
can shed further light on understanding the ‘domino effect’ of
particular types of associated debt, i.e., specific types of debt
that usually lead to other types. This may draw developers’
attention to specific types of TD that tend to result in even
more TD, and thus extra complexity and maintenance effort.

RQ2: How long is the interval between the appearance
and disappearance of co-occurring technical debt issues?

This research question aims at analyzing the average
time between the appearance and disappearance of the co-
occurrences. Such information would provide additional in-
sights to developers, further supporting the prioritization of
remediation. For example, a short time-span (on average)
between different co-occurring issues may strongly indicate
that one causes the introduction or removal of the other.

B. Case Selection

To perform our analysis, we considered Python projects
from the ASF as subject systems. These have high quality and
long-term stability since they are managed by self-selected
teams of technical experts3. The ASF includes 48 Python
projects of different domains, sizes (up to 1,000 KLOC),
activity (up to 10K commits to the master branch) and number
of files (up to 700) on GitHub. To select systems among them,
we used two main inclusion criteria:

1) The project must show up on the Apache Projects List4,
which excludes Apache Incubator projects. Incubated
projects are on a transition period to conform to Apache
standards and, are therefore non-representative.

2) The project’s main programming language must be
Python, i.e., the largest number of files and source lines
of code (SLOC) are written in Python.

Based on the criteria, we selected 20 Python projects5,
which include 3682 Python source files from the ASF. The
projects have an average of 1410 commits (median: 187; max:
10942), 124 files (median: 32; max: 865) and 17K SLOC
(median: 4K; max: 126K). The majority of projects have a long
history of commits (at least 3 years), which allows following
the co-occurrence of technical debt issues over an extensive
period. The majority also has a large number of files, which
mitigates potential threats to the external validity (i.e. how far
the sample represents the population).

To analyze the evolution of project files, the historical infor-
mation of the project is required. To enable the study of long-
lived software systems and standardize the data collection,
we decided to take equally-spaced snapshots. In particular,
a period of one week was used to guarantee the inclusion

3http://www.apache.org/foundation/how-it-works.html
4https://www.apache.org/index.html#projects-list, visited in Sep. 2019
5A detailed description of the projects can be found at https://github.com/

jieshanshan/SEAA2020/blob/master/Projects.md
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of sufficient revisions for each analyzed system. The same
method was used in another research on TD evolution [13].

C. Variables

Each unit of analysis comprises the tuple:

<file identification; snapshot time-stamp; TD information>

The file identification comprises the project name and file
path. The snapshot time-stamp regards the date in which the
weekly snapshot was taken. Finally, TD information regards
the amount of open issues in a particular file and snapshot.
Section II-C1 elaborates on the types of TD collected, while
Section II-C2 explains the data collection procedure.

1) Technical Debt Identification: To perform our study,
as aforementioned, we use SonarQube as the tool to detect
technical debt. SonarQube defines a set of rules to detect
various types of technical debt and classifies them into four
severity levels based on impact and likelihood: blocker, crit-
ical, major and minor. The minor issues are trivial and
commonly perceived as having little to no relevance (e.g.,
Lines should not end with trailing whitespaces) and could,
therefore, bias the results6. Thus, we limited the severity level
to blocker, critical and major. During analysis, SonarQube
creates a new issue when a piece of code breaks one of the
predefined rules.

Moreover, issues related to some rules (e.g., Syntax error)
are essentially interpreter errors instead of technical debt; thus,
we also excluded such rules. We clarify that we maintain rules
that can be associated with changes between Python2 and
Python3 (e.g., The ”print” statement should not be used). Af-
ter removing issues of minor severity and related to interpreter
errors, we are left with a total of 42 rules7. These rules are
mapped to categories (e.g. complexity, duplicated code) and
then to the five TD types8, i.e., Design Debt, Code Debt, Test
Debt, Documentation Debt and Defect Debt [10]. These types
were independently derived by two different studies, i.e. by
Alves et al. [2] and Li et al. [1]. The TD information variable
for each unit of analysis is the count of issues for each of the
42 rules.

2) Data Collection: To perform our study, we started by
cloning the GitHub repositories of the Python projects. Then,
we wrote a script to: (1) extract the entire change history
of each project; (2) group it by week, therefore defining
the snapshots, and (3) submit the snapshots to SonarQube in
chronological order. The weekly commits were then analyzed
by SonarQube to identify the technical debt issues.

Finally, we use a second script to obtain all the information
for each issue, i.e., which rule it breaks, when it appeared
and disappeared in the file and the name of the file. With this
information, we calculate the variables the comprise the TD

6https://docs.sonarqube.org/latest/user-guide/rules/, visited in Dec. 2019
7The detailed description of the rules can be found at https://github.com/

jieshanshan/SEAA2020/blob/master/TD Rules.csv
8The mapping of rules to categories and types is explained at https://github.

com/jieshanshan/SEAA2020/blob/master/RuleType map.pdf

information of each unit of analysis, i.e., the TD of each file
for each snapshot.

Overall, we detected more than 23K issues related to 42
different rules of technical debt from over 45K commits of
selected 20 Python projects.

D. Data Analysis

In this section, we first explain a method that is key to our
analysis, namely Association Rule Mining. Subsequently we
describe the steps necessary to analyze the collected data and
answer the proposed research questions.

1) Association Rule Mining: This method is used for de-
tecting an association between different objects in a set, by
finding frequent patterns in a transaction database, relational
database or any other information repository. In this paper,
we perform association rule mining based on a well-known
machine learning algorithm, namely Apriori [14]. The same
method is also used by Palomba et al. [5]. Following the
original definition by Agrawal et al. [14], we let TD =
{td1, td2, . . . , tdn} be a set of n binary attributes composed
by all types of technical debt and each file contains a subset
of the types of TD.

In our study, the direction of the relation is defined as an
implication of the form:

tdi → tdj ,where tdi, tdj ∈ TD, and i 6= j, (1)

to represent the relationship that tdi appears before tdj in the
same source file.

To answer each RQ, we introduce the following formula to
measure association between different types of technical debt:

confidencetdi→tdj
=
support(tdi ∧ tdj)

support(tdi)
(2)

where support(tdi ∧ tdj) is the probability of both tdi
and tdj appearing in the same file and support(tdi) is the
percentage of files that contain tdi. This formula represents
the likelihood of tdj appearing when tdi already exists in the
same file, expressed as tdi → tdj .

The drawback of this method in calculating the percentage
of co-occurrences of tdi and tdj is that it might misrepresent
the relationship, as it only accounts for how popular the issue
tdi is but does not consider tdj . If the rule tdj is also appearing
frequently in general, there will be a higher chance that a file
containing tdi will also contain tdj , thus impacting on the
value and accuracy of the relationship between co-occurring
technical debt.

To account for the prevalence of co-occurrences, we use the
following formula:

lifttdi→tdj
=

support(tdi ∧ tdj)
support(tdi)× support(tdj)

, (3)

which can be interpreted as the probability of both tdi and
tdj co-occurring in the same file while controlling for the
popularity of both tdi and tdj . The interpretation of the results
of this formula is as follows:

https://docs.sonarqube.org/latest/user-guide/rules/
https://github.com/jieshanshan/SEAA2020/blob/master/TD_Rules.csv
https://github.com/jieshanshan/SEAA2020/blob/master/TD_Rules.csv
https://github.com/jieshanshan/SEAA2020/blob/master/RuleType_map.pdf
https://github.com/jieshanshan/SEAA2020/blob/master/RuleType_map.pdf


• if lifttdi→tdj
= 1, it would imply that the probability

of occurrence of tdi and tdj are independent of each
other, thus no rule can be drawn involving them.

• if lifttdi→tdj
> 1, the value gives the degree of

interdependence between tdi and tdj , and makes that re-
lationship potentially useful for predicting the consequent
technical debt in the future. Greater lift values indicate
stronger associations.

• if lifttdi→tdj < 1, it means that presence of tdi has
negative effect on presence of tdj , and vice versa.

2) Analysis Procedure: To answer RQ1, we use the in-
formation of the evolution per issue to find all the dates on
which rule violations were introduced or removed, henceforth
referred to as debt-changed-date. After that, we calculate the
percentage for each TD rule on the 20 analyzed projects per
debt-changed-date and use the average value support(tdi)
to represent how popular tdi is during the evolution of these
projects.

Then, we use the percentage of files that contain both tdi
and tdj to divide the percentage of files that only contain
tdi to calculate confidencetdi→tdj

for each project on its
debt-changed-dates. Similarly, we also get the average value
as the final result for confidencetdi→tdj

to investigate how
often the existence of one rule tdj relates to the occurrence
of another rule tdi in the same file.

As confidencetdi→tdj
shows how popular a co-

occurring relationship between tdi and tdj is, a low value of
confidencetdi→tdj

means that a co-occurrence tdi → tdj
is likely to be occasional and meaningless, or one of the
debt rules (i.e., tdi or tdj) does not appear frequently during
the evolution of Python projects. To avoid the analysis of
meaningless relationships, we choose the top ten percent of
the total confidencetdi→tdj

values.
Finally, we investigate how often the occurrence of one rule

tdi in a source file is related to the introduction of another rule
of technical debt tdj . It is worth noting that the previous results
show how popular the co-occurring rules are. However, we
still cannot be sure that there is a strong relationship between
them, especially when tdj appears much more frequently than
the other rules. In that case, we do not have strong evidence
that the introduction of tdj is related to the introduction of
tdi. To handle this research question, we select the valid co-
occurrences with lifttdi→tdj

> 1.
For RQ2, we analyze the pairs of co-occurring TD detected

in RQ1. For each pair, we use all reported issues to calculate
and analyze the interval of introduction and removal between
two co-occurring issues found in RQ1. These variables are
measured as the number of days between the moments when
they are introduced (Formula 4) and removed (Formula 5) in
the file:

intro-intervaltdi→tdj
= introtdi

− introtdj
(4)

remov-intervaltdi→tdj
= removtdi

− removtdj
(5)

note that intro-intervaltdi→tdj differs from
intro-intervaltdj→tdi

, and if tdi is introduced before
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Fig. 1. Network of top 10% co-occurring rule violations

tdj , the value of intro-intervaltdi→tdj
is negative. For

the removal of co-occurring issues, if only one issue (e.g.,
tdj) is removed and the other co-occurring issue (tdi) still
exits in the file, we regard the removal time of the latter
as an infinite value, i.e., the interval of removal is infinite
(remov-intervaltdi→tdj → ∞). As a reminder, we are
interested in both issues being removed instead of just one;
this is because we are interested in associating the removal
of one to the other, especially if removing one causes the
removal of the other.

III. RESULTS

A. RQ1: Which types of technical debt frequently co-occur?

We calculated the number of TD types (i.e., Design Debt,
Documentation Debt, Test Debt, Code Debt, Defect Debt) that
affected each file at the same period. We found that 90.3% (i.e.,
3324 out of 3682) of the files were affected by at least two
debt types. This signifies that Python files are predominantly
afflicted by multiple TD issues.

To examine this phenomenon in more depth, we look at the
numerous rules for the different TD types (see Section II-C).
Specifically, in the following we compare the confidence val-
ues of every pair of co-occurring rules. For that, we organized
the confidence values of the 1722 pairs in bins of size 0.02.
We found that the majority of the confidence values (72.6%)
are under 0.02, i.e., most of the associations tend to be
occasional and meaningless.

As discussed in Section II-D2, we choose the top ten percent
of the total confidencetdi→tdj values. Figure 1 shows
a network describing those selected 172 top co-occurring
associations (as aforementioned, the ID, types and descriptions
of the rules can be found online9). Each node represents one
TD rule, while the node label is marked with the rule ID
number. The nodes are color-coded according to their TD
type. Larger nodes denote higher popularity (i.e., chance of
appearing in a file). The edges are directed according to
the direction of the co-occurrence. From this figure, one can

9https://github.com/jieshanshan/SEAA2020
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Fig. 2. Distribution of the possibility of co-occurrence and lift values for the
violations of 29 pairs of rules

TABLE I
MAPPING OF HIGHLIGHTED RULES TO TYPES OF TECHNICAL DEBT

Ri Definition S%a

T56 Lines should have sufficient coverage by tests 98.2
D14 Docstrings should be defined 87.8
D57 Source files should have a sufficient density of comment lines 62.8
C50 Lines should not be too long 39.0
S29 Cognitive Complexity of functions should not be too high 32.0
S58 Source files should not have any duplicated blocks 23.4
C42 Function names should comply with a naming convention 17.7
F21 The “print” statement should not be used 17.7
S24 Control flow statements should not be nested too deeply 17.2
C16 Sections of code should not be “commented out” 17.1
S20 Functions should not be too complex 15.3
S41 Collapsible “if” statements should be merged 14.6

C394 File should not use “import*” 14.2
S40 Functions should not contain too many return statements 13.5
S47 Files should not have too many lines of code 10.1
C46 Functions, methods and lambdas should not have too many

parameters
9.0

i ID number of the rule
(S=design debt, C=code debt, D=documentation debt, F=defect debt, T=test
debt)
a support values, i.e., the percentage of files that contain the rule

observe that some of the more central nodes regard Design
Debt, while Documentation and Test Debt are also very central
but with two and one nodes respectively.

To investigate how often the occurrence of tdi in a source
file is related to the appearance of another rule tdj , we choose
the co-occurrences with lifttdi→tdj > 1. Table I reports
detailed information on the top 16 rules involved in these
selected associations, denoting the type, ID number, definition
and percentage of files that contain it. Figure 2 reports a bar
chart comparing the lift values and the probability of the co-
occurrences. We do not observe a correlation between them.
This is mostly because the probability of the co-occurrence
is greatly affected by the popularity of each rule, but lift
value is not. In short, the likelihood of confidencetdi→tdj

does not reflect on the strength of the relationship and, thus,
the examination of lifttdi→tdj

helps to normalize the co-
occurrence by the popularity of both co-occurring rules.

To illustrate this through an example from Figure 2:
confidenceT56→D57 is the most likely association since
it displays the highest value (63.9%) among the 37 co-
occurrence associations. However, liftT56→D57 is close to
the median value, which may denote that both T56 and D57
appear in the majority of Python files. The percentage of
files that contain one of these two rules is shown in Table I.

Therefore, it has indeed a high chance of simultaneously
occurring in the same file.

The top four co-occurrences are between Design Debt
issues regarding complexity, i.e., cyclomatic complexity (S20),
cognitive complexity (S29) and spaghetti code (S24). As shown
in Figure 2, confidenceS20→S29 is the highest one, i.e.,
35.1% of files affected by S20 (cyclomatic complexity) are
also affected by S29 (cognitive complexity), followed by
confidenceS29→S20 (26.3%). This indicates that cyclo-
matic complexity and cognitive complexity are strongly
intertwined during the evolution of Python files. In other
words increase in cognitive complexity triggers increase in
cyclomatic complexity and vice versa. Furthermore, the results
suggest that cyclomatic complexity (S20) and spaghetti code
(S24) have a similar impact on each other, i.e., similar
probability of co-occurrence.

Regarding Test Debt (T56) we observed that it tends to
co-occur with other rule violations and appears in almost
all files throughout their evolution. However, all of the lift
values that are related to Test Debt are close to 1, i.e., the
probability of insufficient test coverage for introducing
other rule violations is reduced.

Regarding Defect Debt, one rule (F21) out of the 15 avail-
able is involved in the frequently co-occurring associations.
Moreover, the lift values between Defect Debt and Test Debt
are higher than the other rules related to Design Debt and
Code Debt in Figure 2. These observations show an indication
that incompleteness of software testing could be associated
with an increase in Defect Debt. In addition, issues related to
F21 are caused by the update of the Python interpreter (from
Python2 to Python3). Thus, the increase of test coverage may
greatly support maintenance activities when the interpreter is
updated.

Concerning the relationship between Test Debt and Code
Debt or Design Debt, all of the lift values between them are
near 1.01. Thus, there seems to be no obvious relationship
between the introduction of Test Debt and the increase in
Code Debt and Design Debt. In addition to rule T56, rule S29
(Cognitive Complexity of functions should not be too high),
has the second largest number of co-occurrences. However,
compared with T56, the lift values are higher than the others.
Figure 2 shows that 70% of the top ten lift values are related
to S29. Moreover, the majority of the other rules involved in
these associations are also related to Design Debt, only two
of them are related to Code Debt. Such evidence suggests
strongly that Design Debt issues are often associated with
more problems that can be of similar nature (i.e. other
Design Debt issues) or that can be caused by the same
design decisions.

B. RQ2: How long is the interval between the appearance and
disappearance of co-occurring technical debt issues?

To answer this research question, we calculated
the interval values (intro-intervaltdi→tdj and
remov-intervaltdi→tdj

) for each pair of the frequently
co-occurring associations found in RQ1 (Section III-A).
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Fig. 3. Distribution of the possibility of co-occurrence and lift values for the violations of 27 pairs of rules

Note that if tdi is introduced before tdj , the value of
intro-intervaltdi→tdj

is negative. Similarly, if tdi is
removed before tdj , the value of remov-intervaltdi→tdj

is negative.
Figure 3(a) and Figure 3(b) show diverging stacked bar

charts to visualize the percentages that describe the distribution
of intervals for the different pairs of co-occurring technical
debt issues. The percentages show how often an issue tdi was
introduced (Figure 3(a)) or removed (Figure 3(b)) before an
issue tdj within a certain time-frame (i.e., one week, one
month, one year and after one year). The time-frames are
represented by the different shades of colors, ranging from
“within one week”, to “more than one year”.

The main finding based on Figures 3(a) and Figure 3(b) is
that if co-occurring issues are not introduced within one
week, then there is a negligible chance of them appearing
within one month; in most cases they will appear after at
least one year. However, once introduced, we notice that co-
occurring issues tend not to be removed within weeks or
months, but will likely survive at least one year in the
file. Combining these two findings, TD co-occurrence seems
to happen either very quickly or not at all; but once it does
happen, it is hard to get rid of. Furthermore, co-occurring
Design Debt issues seem to be repaid in a shorter time as
shown in Figure 3(b).

IV. DISCUSSION

A. Interpretation of Results

The phenomenon of co-occurring TD is widely spread in
Python projects; this confirms a similar observation regarding
Java projects [5]. Moreover, all the Design Debt rules shown in
Table I are not Python-specific and have also been detected in
projects written in other programming languages, such as Java
and JavaScript10. This indicates that these particular results do
not apply to Python only. For example, we observe that rule
S58 (duplicated blocks) co-occurs with S47 (long file), which
is similar to what Yamashita et al. [15] observed for Java, i.e.,
duplications appear together with smells related to size. Thus,
some co-occurring TD issues may apply also to Java.

However, the rest of our results are limited to Python
and can aid practitioners and researchers specifically for this

10https://rules.sonarsource.com/

language. To begin with, there tends to be a strong association
between Design Debt issues and Code Debt issues. This result
is supported by the high lift values observed in the investiga-
tion of RQ1 and the shorter removal intervals observed in the
investigation of RQ2. It indicates that investigating issues at
code level can support assessment and reasoning about the
design of a software-intensive system.

Comparing the network in Figure 1 and the corresponding
support values in Table I, we notice that Design Debt issues are
strongly interconnected. However, this is not uniform across all
projects. For example, issues related to cyclomatic complexity
(S20) and spaghetti code (S24) co-occur most frequently in
a software development collaboration tool (BLOODHOUND),
but those co-occurrences are less likely to appear in projects
for messaging APIs or test suites (e.g., QPID). Thus, projects
in different domains show differences regarding which TD
issues co-occur.

Moreover, Design Debt issues not only seem to be strongly
associated with one another (RQ1), but they also tend to be
removed together and quickly (RQ2). For example, issues
related to long files (S47) tend to be resolved together with
other issues the fastest; this is probably because files are
shortened when undertaking refactoring activities to address
other (co-occurring) issues. These findings corroborate earlier
findings [5] that Design Debt issues are generally removed
together as a consequence of maintenance and evolution
activities.

We also found that, although Test Debt tends to co-occur
with issues regarding other TD types, it has a lesser impact on
the increase of Code Debt or Design Debt. These results are
not in full accordance with related work, which suggest that
Test Debt has a strong negative influence on maintenance [16].
A possible reason is that only one rule related to Test Debt
was involved in our study. To further investigate this rela-
tionship, we calculated the Spearman correlation between the
percentage of files that contain both types of debt (Test and
Design Debt) and the percentage of files containing Design
Debt only (see the corresponding values in Table I). We found
the correlation to be positively strong11 (ρ = 0.98), which

11We interpret the correlation coefficient according to Cohen [17], i.e.,
strong correlation when 0.5 ≤ |ρ| ≤ 1.
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further confirms that Test Debt has a lesser impact on the
increase of Design Debt.

Comparing the findings from the appearance and disap-
pearance of co-occurring TD (Figures 3(a) and 3(b)), the
percentages of co-occurring rule violations that are introduced
within one week are much higher than those that are removed
within one week, especially for Test Debt. Moreover, Test Debt
is always removed later than others. These observations are
possibly related to adopted practices, or lack thereof, as we
were able to identify evidence of test-driven development in
only one project (ALLURA). This indicates that, since it always
appears earlier than the others, Test Debt seems easier to
incur, but also more difficult to resolve, possibly because
it is perceived as less important.

B. Implications for Researchers and Practitioners

Based on the interpretation of our results, we highlight that:
(1) Design Debt issues may be associated with more similar
problems; thus, practitioners should target them in earlier
refactoring activities. On the contrary, fixing Test Debt can
be postponed since it has a lesser impact on increasing the
probability of introducing other TD issues and tends to be
harder to resolve. However, one should be careful with such
trade-offs as refactorings may lead to bugs and, without
appropriate tests, also to catastrophic results.
(2) The findings might help practitioners to estimate the
risk level of potential TD issues and make decisions over
design problems by using code-level insights. For example,
the accumulation of issues such as cognitive complexity and
code duplication in components could raise the risk of specific
design problems emerging in the near future.
(3) Researchers can use our results to guide the development
of theoretical frameworks and associated research tools, as
well as a basis for future studies. In particular, the results of
frequently co-occurring TD can be used as an input to calculate
TD indices that integrate metrics from individual issues with
their co-occurrence information. In addition, TD tools can
improve the prioritization of TD remediation by calibrating
the weights for the different TD issues. For example, Design
Debt issues can be assigned higher weights since they are more
interconnected and repaid in a shorter time.
(4) Our findings can also be used to warn developers about
potential future co-occurring issues. For example, developers
could be cautioned that incompleteness of software testing
could be an indicator of increasing Defect Debt, especially
Defect Debt issues caused by the update of the interpreter.

V. THREATS TO VALIDITY

In the following, we discuss the threats to construct and
external validity of the reported study, as well as reliability
threats. We note that we do not analyze internal validity, since
we do not seek to establish causal relations but to study the
associations between various TD issues.

Construct validity pertains to the connection between the
research questions and the objects of study. In this regard, the
result of this study relies on SonarQube to detect TD issues.

Although the tool has been widely used in both industry and
academia, our interpretation of TD is limited to the tool’s
capabilities. Different tools could use different strategies to
detect TD, which might lead to variations in the TD issues
and, consequently, potential co-occurrence associations.

Another threat is related to how we analyze the evolution
of projects. In particular, we analyze the change history on
a weekly basis and, thus, the introduction and removal time
might have a maximum error of one week. Moreover, projects
may receive new commits at different rates, which may affect
the time-frame between the introduction or removal of co-
occurring issues in different projects. To mitigate potential bias
we use the Apriori method to identify the associations.

The analyses reported in this paper were performed at
file level, which may be affected by the high diffuseness of
rules from a certain TD type (e.g. Test Debt), increasing the
probability of co-occurring issues. Other studies have also per-
formed analyses at file level to investigate co-occurrence [7],
[15] but, unlike them, we introduced the lift value to further
control for the popularity of co-occurring issues.

External validity concerns threats to the generalizability
of our findings. The main threat here comes from the fact
that we analyzed the evolution of 3862 files from 20 projects
that are limited to the ASF and Python systems. Despite the
credibility of the Apache Foundation and the diversity of its
Python projects, our results may not fully represent the entire
population of non-trivial Python projects. Furthermore, the set
of rules considered in this study is not exhaustive and does not
portray the complete set of TD related issues that may affect
Python source code.

We emphasize that the size of the dataset is also limited by
the use of SonarQube and its multi-version analysis: collecting
the data required for this analysis can take a long time. In our
case, analyzing 20 systems took more than two months of
work on an Intel Core i7-5500U PC with 8GB of RAM.

Reliability threats were addressed by involving at least
two researchers in both data collection and analysis. Also,
samples of analyses output at the different steps were manually
inspected for irregularities and alignment with the proposed
study design.

Finally, we created an online repository with instructions
and scripts to collect the same data that we used in the study12.
The repository helps with setting up the necessary environ-
ment, i.e., tools and configuration. The provided Jupyter13

notebook guides the procedure from acquiring the Git repos-
itories, extracting the weekly snapshots, and submitting them
to SonarQube for analysis.

VI. RELATED WORK

In recent years, the research community has extensively ana-
lyzed the effect of individual instances of TD [4], while several
studies also focused on the correlation between different items
of technical debt. Some results indicate that code smells that

12https://github.com/jieshanshan/SEAA2020
13https://jupyter.org/
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co-occur in the same source file can intensify negative effects
on software maintenance [7], [15]. Palomba et al. [5] investi-
gated six pairs of frequently co-occurring instances among 13
code smells, and found that code smells are generally removed
together as a consequence of maintenance. Fontana et al. [18]
found that code smells co-occur and interact in many ways,
which is confirmed in our study.

Several studies also focused on the association between dif-
ferent debt types. Abbes et al. [19] found that the combination
of two design smells, namely God Class and Spaghetti Code,
significantly reduces program comprehension when compared
to only one. The results suggest that developers could deal with
one design smell but the combination of different design smells
should be avoided through detection and refactoring. Spadini
et al. [16] investigated the relationship of six test smells and
their co-occurrence with software quality. They found that
detecting test smells is important for the effectiveness of defect
detection. Bavota et al. [3] studied the relationship between test
smells and their effects on software maintenance, observing
that these smells are highly diffused [3]. However, we did not
confirm that Test Debt has a strong negative impact on issues
related to software maintenance, i.e., Code Debt or Design
Debt.

Unlike the aforementioned studies, which focused on one or
two debt types only, we analyzed the co-occurrence between
five types of debt.

VII. CONCLUSION AND FUTURE WORK

This paper reports on an empirical study that investigated
the relationship between co-occurring technical debt types. We
performed our study by analyzing the multi-annual evolution
of TD in 20 Python projects (approx. 28,200 commits) from
the ASF and identifying TD based on 42 rules defined in
SonarQube. Moreover, we mined co-occurring TD based on
a well-known machine learning algorithm, namely Apriori, in
3862 files.

We found that the phenomenon of co-occurring TD is highly
spread, i.e., more than 90% of Python files have been affected
by at least two types of TD at the same time. In particular,
from the 1722 possible associations between rules, 48 pairs
frequently co-occurred in files, from which 27 are more
strongly associated with each other. Among them, Design
Debt issues more commonly co-occur with issues of similar
nature, while Documentation Debt and Test Debt are the most
prevalent in the studied projects.

Furthermore, we found that co-occurring issues tend to be
introduced within the same week. However, after one of the co-
occurring issues is removed, the second one survives for much
longer (often around a year). Moreover, co-occurring Design
Debt issues seem to be repaid in a shorter time, while most of
the Test Debt issues are introduced before the other debt types
but it is also the last to be repaid. These findings may indicate
that developers are more aware of Design Debt compared to
the other types, and that Test Debt may be regarded as a
difficult type of debt or with less priority.

In future work, we plan to investigate the relationship
between the habits of developers and co-occurring TD. We
also plan to develop a tool that can use our results to warn
developers about potential issues and help them to make more
informed decisions prior to refactoring activities.
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